organic compounds
N,N′-Bis(2,2,3,3,4,4,4-heptafluorobutyl)naphthalene-1,4:5,8-tetracarboximide
aEastman Kodak Company, Rochester, NY 14650-2106, USA
*Correspondence e-mail: manju.rajeswaran@kodak.com
The title molecule, C22H8F14N2O4, lies across a crystallographic inversion center with the naphthalene diimide core essentially planar (mean deviation from plane is 0.0583 Å). The CF2 groups in the perfluorobutyl chains are in an energetically favorable all trans conformation. In the molecules are packed in slightly displaced layers so that the side chains overlap the aromatic naphthalene diimide rings, thus minimizing any possible π–π overlap.
Related literature
For general background on the semic-conducting properties and use of this class of materials in organic thin-film transistor applications, see: Chesterfield et al. (2004a,b); Facceti et al. (2008); Jones et al. (2004); Katz et al. (2000a,b); Kazmaier & Hoffmann (1994); Klebe et al. (1989); Shukla et al. (2008); Wurthner (2004).
Experimental
Crystal data
|
Data collection: COLLECT (Nonius, 2000); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and Materials Studio (Accelrys, 2002); software used to prepare material for publication: publCIF (Westrip, 2008).
Supporting information
10.1107/S1600536808036738/lh2728sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808036738/lh2728Isup2.hkl
The method described in Katz et al., 2000a, was followed for preparation of the title compound (I). Crystals of title (I) appeared during powder X-ray diffraction data collection of the dry lot sample. The crystals were weakly diffracting, but we were unable to get better quality crystals. Diffraction data were collected on various crystals, and the results of
using best data set results are reported here.All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic 0.97 Å, Uiso = 1.2Ueq (C) for CH2 atoms.
Data collection: COLLECT (Nonius, 2000); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Materials Studio (Accelrys, 2002); software used to prepare material for publication: publCIF (Westrip, 2008).C22H8F14N2O4 | Z = 1 |
Mr = 630.30 | F(000) = 312 |
Triclinic, P1 | Dx = 1.904 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.1910 (5) Å | Cell parameters from 4558 reflections |
b = 10.1459 (12) Å | θ = 1.0–26.7° |
c = 11.5988 (15) Å | µ = 0.21 mm−1 |
α = 66.693 (4)° | T = 293 K |
β = 79.064 (4)° | Needle, pink |
γ = 89.115 (7)° | 0.15 × 0.10 × 0.05 mm |
V = 549.64 (11) Å3 |
Nonius KappaCCD diffractometer | 909 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.057 |
Graphite monochromator | θmax = 26.6°, θmin = 4.1° |
Detector resolution: 9 pixels mm-1 | h = −6→6 |
ϕ and ω scans | k = −12→11 |
3049 measured reflections | l = −14→12 |
2094 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.067 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.223 | H-atom parameters constrained |
S = 0.93 | w = 1/[σ2(Fo2) + (0.1P)2 + 0.3623P] where P = (Fo2 + 2Fc2)/3 |
2094 reflections | (Δ/σ)max < 0.001 |
190 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
C22H8F14N2O4 | γ = 89.115 (7)° |
Mr = 630.30 | V = 549.64 (11) Å3 |
Triclinic, P1 | Z = 1 |
a = 5.1910 (5) Å | Mo Kα radiation |
b = 10.1459 (12) Å | µ = 0.21 mm−1 |
c = 11.5988 (15) Å | T = 293 K |
α = 66.693 (4)° | 0.15 × 0.10 × 0.05 mm |
β = 79.064 (4)° |
Nonius KappaCCD diffractometer | 909 reflections with I > 2σ(I) |
3049 measured reflections | Rint = 0.057 |
2094 independent reflections |
R[F2 > 2σ(F2)] = 0.067 | 0 restraints |
wR(F2) = 0.223 | H-atom parameters constrained |
S = 0.93 | Δρmax = 0.23 e Å−3 |
2094 reflections | Δρmin = −0.23 e Å−3 |
190 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
F1 | 0.1050 (6) | 0.4145 (3) | 0.7561 (3) | 0.0814 (11) | |
F2 | 0.1713 (6) | 0.5174 (3) | 0.8788 (3) | 0.0828 (12) | |
F3 | 0.5849 (6) | 0.3623 (4) | 0.9393 (3) | 0.0873 (12) | |
F4 | 0.5572 (7) | 0.2684 (3) | 0.8049 (3) | 0.0883 (12) | |
F5 | 0.3622 (7) | 0.0974 (4) | 1.0537 (3) | 0.0931 (12) | |
F6 | 0.0806 (7) | 0.2472 (4) | 1.0654 (4) | 0.1050 (15) | |
F7 | 0.0800 (9) | 0.1477 (4) | 0.9346 (4) | 0.1234 (17) | |
O1 | 0.2493 (8) | 0.6081 (4) | 0.4924 (4) | 0.0742 (12) | |
O2 | 0.5194 (8) | 0.8024 (4) | 0.7439 (4) | 0.0725 (12) | |
N1 | 0.3566 (7) | 0.6967 (4) | 0.6298 (4) | 0.0484 (11) | |
C1 | 0.2325 (10) | 0.7037 (5) | 0.5308 (5) | 0.0528 (14) | |
C2 | 0.0799 (9) | 0.8305 (5) | 0.4790 (5) | 0.0467 (12) | |
C3 | −0.0607 (10) | 0.8401 (5) | 0.3865 (5) | 0.0562 (14) | |
H3 | −0.0557 | 0.7679 | 0.3559 | 0.067* | |
C4 | −0.2109 (10) | 0.9584 (5) | 0.3386 (5) | 0.0541 (14) | |
H4 | −0.3058 | 0.9637 | 0.2767 | 0.065* | |
C5 | 0.0752 (9) | 0.9387 (5) | 0.5243 (4) | 0.0440 (12) | |
C6 | 0.2199 (9) | 0.9345 (5) | 0.6184 (5) | 0.0482 (13) | |
C7 | 0.3779 (10) | 0.8079 (5) | 0.6691 (5) | 0.0523 (14) | |
C8 | 0.4892 (9) | 0.5658 (5) | 0.6912 (5) | 0.0537 (14) | |
H8A | 0.6355 | 0.5891 | 0.7224 | 0.064* | |
H8B | 0.5580 | 0.5257 | 0.6292 | 0.064* | |
C9 | 0.2958 (10) | 0.4562 (6) | 0.8023 (5) | 0.0544 (14) | |
C10 | 0.4188 (10) | 0.3238 (5) | 0.8827 (5) | 0.0550 (14) | |
C11 | 0.2281 (13) | 0.2022 (6) | 0.9871 (6) | 0.0676 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.061 (2) | 0.082 (2) | 0.086 (2) | −0.0057 (16) | −0.0279 (18) | −0.0114 (19) |
F2 | 0.091 (2) | 0.063 (2) | 0.074 (2) | 0.0213 (17) | 0.0167 (18) | −0.0222 (18) |
F3 | 0.074 (2) | 0.098 (3) | 0.083 (3) | −0.0005 (18) | −0.0340 (18) | −0.021 (2) |
F4 | 0.108 (3) | 0.077 (2) | 0.070 (2) | 0.0396 (19) | −0.0012 (19) | −0.0278 (19) |
F5 | 0.107 (3) | 0.071 (2) | 0.078 (2) | 0.025 (2) | −0.018 (2) | −0.0064 (19) |
F6 | 0.101 (3) | 0.087 (3) | 0.082 (3) | 0.023 (2) | 0.026 (2) | −0.007 (2) |
F7 | 0.147 (4) | 0.081 (3) | 0.125 (4) | −0.039 (3) | −0.057 (3) | −0.008 (3) |
O1 | 0.095 (3) | 0.070 (3) | 0.073 (3) | 0.031 (2) | −0.024 (2) | −0.042 (2) |
O2 | 0.079 (3) | 0.067 (3) | 0.080 (3) | 0.0131 (19) | −0.038 (2) | −0.029 (2) |
N1 | 0.054 (2) | 0.040 (2) | 0.051 (3) | 0.0061 (18) | −0.010 (2) | −0.018 (2) |
C1 | 0.059 (3) | 0.046 (3) | 0.052 (3) | 0.009 (3) | −0.006 (3) | −0.021 (3) |
C2 | 0.049 (3) | 0.048 (3) | 0.044 (3) | 0.003 (2) | −0.002 (2) | −0.023 (3) |
C3 | 0.068 (3) | 0.051 (3) | 0.057 (3) | 0.006 (3) | −0.015 (3) | −0.028 (3) |
C4 | 0.064 (3) | 0.058 (3) | 0.047 (3) | 0.005 (3) | −0.016 (2) | −0.026 (3) |
C5 | 0.045 (3) | 0.044 (3) | 0.038 (3) | 0.001 (2) | −0.002 (2) | −0.014 (2) |
C6 | 0.046 (3) | 0.051 (3) | 0.041 (3) | 0.003 (2) | −0.003 (2) | −0.014 (3) |
C7 | 0.051 (3) | 0.052 (3) | 0.044 (3) | 0.000 (2) | −0.004 (3) | −0.012 (3) |
C8 | 0.050 (3) | 0.055 (3) | 0.051 (3) | 0.009 (2) | −0.010 (2) | −0.017 (3) |
C9 | 0.053 (3) | 0.056 (3) | 0.057 (4) | 0.010 (3) | −0.010 (3) | −0.026 (3) |
C10 | 0.060 (3) | 0.058 (3) | 0.054 (3) | 0.014 (3) | −0.011 (3) | −0.031 (3) |
C11 | 0.085 (4) | 0.056 (4) | 0.058 (4) | 0.003 (3) | −0.024 (4) | −0.015 (3) |
F1—C9 | 1.357 (6) | C2—C5 | 1.389 (6) |
F2—C9 | 1.341 (6) | C3—C4 | 1.402 (7) |
F3—C10 | 1.325 (6) | C3—H3 | 0.9300 |
F4—C10 | 1.338 (6) | C4—C6i | 1.360 (7) |
F5—C11 | 1.321 (6) | C4—H4 | 0.9300 |
F6—C11 | 1.294 (7) | C5—C6 | 1.425 (6) |
F7—C11 | 1.314 (6) | C5—C5i | 1.435 (9) |
O1—C1 | 1.213 (6) | C6—C4i | 1.360 (7) |
O2—C7 | 1.223 (6) | C6—C7 | 1.491 (7) |
N1—C7 | 1.387 (6) | C8—C9 | 1.522 (7) |
N1—C1 | 1.398 (6) | C8—H8A | 0.9700 |
N1—C8 | 1.467 (6) | C8—H8B | 0.9700 |
C1—C2 | 1.477 (7) | C9—C10 | 1.513 (7) |
C2—C3 | 1.380 (7) | C10—C11 | 1.539 (8) |
C7—N1—C1 | 124.8 (4) | N1—C8—C9 | 109.7 (4) |
C7—N1—C8 | 117.3 (5) | N1—C8—H8A | 109.7 |
C1—N1—C8 | 117.8 (4) | C9—C8—H8A | 109.7 |
O1—C1—N1 | 120.4 (5) | N1—C8—H8B | 109.7 |
O1—C1—C2 | 123.0 (5) | C9—C8—H8B | 109.7 |
N1—C1—C2 | 116.6 (5) | H8A—C8—H8B | 108.2 |
C3—C2—C5 | 120.2 (5) | F2—C9—F1 | 105.5 (4) |
C3—C2—C1 | 119.6 (5) | F2—C9—C10 | 108.6 (4) |
C5—C2—C1 | 120.2 (5) | F1—C9—C10 | 108.7 (4) |
C2—C3—C4 | 120.1 (5) | F2—C9—C8 | 110.1 (4) |
C2—C3—H3 | 119.9 | F1—C9—C8 | 109.2 (4) |
C4—C3—H3 | 119.9 | C10—C9—C8 | 114.3 (4) |
C6i—C4—C3 | 120.9 (5) | F3—C10—F4 | 107.7 (4) |
C6i—C4—H4 | 119.6 | F3—C10—C9 | 109.0 (4) |
C3—C4—H4 | 119.6 | F4—C10—C9 | 108.5 (4) |
C2—C5—C6 | 122.3 (5) | F3—C10—C11 | 107.7 (5) |
C2—C5—C5i | 120.6 (6) | F4—C10—C11 | 107.2 (5) |
C6—C5—C5i | 117.2 (6) | C9—C10—C11 | 116.4 (5) |
C4i—C6—C5 | 121.0 (5) | F6—C11—F7 | 109.6 (6) |
C4i—C6—C7 | 121.4 (5) | F6—C11—F5 | 108.2 (5) |
C5—C6—C7 | 117.7 (5) | F7—C11—F5 | 107.3 (5) |
O2—C7—N1 | 121.5 (5) | F6—C11—C10 | 111.6 (5) |
O2—C7—C6 | 120.7 (5) | F7—C11—C10 | 110.2 (5) |
N1—C7—C6 | 117.8 (5) | F5—C11—C10 | 109.8 (5) |
C7—N1—C1—O1 | 171.2 (4) | C4i—C6—C7—N1 | 173.8 (4) |
C8—N1—C1—O1 | −4.5 (7) | C5—C6—C7—N1 | −5.4 (6) |
C7—N1—C1—C2 | −9.8 (7) | C7—N1—C8—C9 | 95.1 (5) |
C8—N1—C1—C2 | 174.5 (4) | C1—N1—C8—C9 | −88.9 (5) |
O1—C1—C2—C3 | 2.8 (8) | N1—C8—C9—F2 | −50.4 (6) |
N1—C1—C2—C3 | −176.1 (4) | N1—C8—C9—F1 | 65.0 (6) |
O1—C1—C2—C5 | −178.0 (5) | N1—C8—C9—C10 | −173.0 (5) |
N1—C1—C2—C5 | 3.1 (7) | F2—C9—C10—F3 | −59.0 (5) |
C5—C2—C3—C4 | −0.6 (7) | F1—C9—C10—F3 | −173.3 (4) |
C1—C2—C3—C4 | 178.6 (4) | C8—C9—C10—F3 | 64.4 (6) |
C2—C3—C4—C6i | 0.4 (8) | F2—C9—C10—F4 | −176.0 (4) |
C3—C2—C5—C6 | −179.1 (4) | F1—C9—C10—F4 | 69.7 (5) |
C1—C2—C5—C6 | 1.7 (7) | C8—C9—C10—F4 | −52.6 (6) |
C3—C2—C5—C5i | 0.0 (8) | F2—C9—C10—C11 | 63.0 (6) |
C1—C2—C5—C5i | −179.2 (5) | F1—C9—C10—C11 | −51.3 (7) |
C2—C5—C6—C4i | −179.8 (4) | C8—C9—C10—C11 | −173.5 (5) |
C5i—C5—C6—C4i | 1.1 (8) | F3—C10—C11—F6 | 65.9 (6) |
C2—C5—C6—C7 | −0.6 (7) | F4—C10—C11—F6 | −178.4 (5) |
C5i—C5—C6—C7 | −179.7 (5) | C9—C10—C11—F6 | −56.8 (7) |
C1—N1—C7—O2 | −169.7 (5) | F3—C10—C11—F7 | −172.1 (5) |
C8—N1—C7—O2 | 6.0 (7) | F4—C10—C11—F7 | −56.4 (6) |
C1—N1—C7—C6 | 11.0 (7) | C9—C10—C11—F7 | 65.2 (7) |
C8—N1—C7—C6 | −173.3 (4) | F3—C10—C11—F5 | −54.1 (7) |
C4i—C6—C7—O2 | −5.5 (7) | F4—C10—C11—F5 | 61.6 (6) |
C5—C6—C7—O2 | 175.3 (4) | C9—C10—C11—F5 | −176.8 (5) |
Symmetry code: (i) −x, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C22H8F14N2O4 |
Mr | 630.30 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 5.1910 (5), 10.1459 (12), 11.5988 (15) |
α, β, γ (°) | 66.693 (4), 79.064 (4), 89.115 (7) |
V (Å3) | 549.64 (11) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.21 |
Crystal size (mm) | 0.15 × 0.10 × 0.05 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3049, 2094, 909 |
Rint | 0.057 |
(sin θ/λ)max (Å−1) | 0.630 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.067, 0.223, 0.93 |
No. of reflections | 2094 |
No. of parameters | 190 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.23, −0.23 |
Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXTL (Sheldrick, 2008) and Materials Studio (Accelrys, 2002), publCIF (Westrip, 2008).
Acknowledgements
The authors thank Dr Thomas R. Welter and Thomas N. Blanton of Eastman Kodak Company for their help in the preparation of this material and crystals of this material, respectively.
References
Accelrys (2002). Materials Studio. Accelrys Inc., San Diego, California. Google Scholar
Chesterfield, R. J., McKeen, J. C., Newman, C. R., Ewbank, P. C., da SilvaFilho, D. A., Brédas, J. L., Miller, L. L., Mann, K. R. & Frisbie, C. D. (2004a). J. Phys. Chem. B, 108, 19281–19292. Web of Science CrossRef CAS Google Scholar
Chesterfield, R. J., McKeen, J. C., Newman, C. R., Frisbie, C. D., Ewbank, P. C., Mann, K. R. & Miller, L. L. (2004b). Appl. Phys. Lett. 95, 6396–6405. CAS Google Scholar
Facceti, A., Yoon, M.-H. & Marks, T. J. (2008). Adv. Mater. 17, 1705–1725. Google Scholar
Jones, B. A., Ahrens, M. J., Yoon, M.-H., Facchetti, A., Marks, T. J. & Wasielewski, M. R. (2004). Angew. Chem. Int. Ed. 43, 6363–6366. Web of Science CSD CrossRef CAS Google Scholar
Katz, H. E., Johnson, J., Lovinger, A. J. & Li, W. (2000a). J. Am. Chem. Soc. 122, 7787–7792. Web of Science CrossRef CAS Google Scholar
Katz, H. E., Lovinger, A. J., Johnson, J., Kloc, C., Siegrist, T., Li, W., Lin, Y.-Y. & Dodabalapur, A. (2000b). Nature (London), 404, 478–481. Web of Science CrossRef PubMed CAS Google Scholar
Kazmaier, P. M. & Hoffmann, R. (1994). J. Am. Chem. Soc. 116, 9684–9691. CrossRef CAS Web of Science Google Scholar
Klebe, G., Graser, F., Hädicke, E. & Berndt, J. (1989). Acta Cryst. B45, 69–77. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shukla, D., Nelson, S. F., Freeman, D. C., Rajeswaran, M., Ahearn, W. G., Meyer, D. M. & Carey, J. T. (2008). Chem. Mater. In the press. Google Scholar
Westrip, S. P. (2008). publCIF. In preparation. Google Scholar
Wurthner, F. (2004). Chem. Commun. pp. 1564–1579. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Amongst n-type semiconductors used in organic thin film transistors, perylene diimides (PDIs) and naphthalene diimides (NDIs) have attracted considerable attention. The π -orbital wavefunctions in these systems form nodes at the two nitrogen positions in the imide rings. Indeed, it has been shown that semiconducting properties and device performance of these materials is very sensitive to the nature of substituents on the diimide nitrogen atoms. The title compound N,N'-Bis(1H,1H-perfluorobutyl) naphthalene- 1,4,5,8-tetracarboxylic acid diimide(I) has been shown to exhibit good n-type semiconducting behavior and OTFTs made incorporating I can be operated in air. The latter property has been ascribed to the denser packing of fluorinated alkyl chains in thin film.
Naphthalene diimide (NDI) and perylene diimide (PDI) based systems have been studied extensively (Chesterfield, et al., 2004a; Chesterfield et al., 2004b; Facceti et al., 2008; Jones, et al., 2004; Katz, et al., 2000a; Katz, et al., 2000b). We report here the structure of the title diimide molecule (I) (Fig. 1 and Fig 2). In the crystal structure, molecules are packed in slightly displaced layers so that the side chains overlap the aromatic naphthalene diimide rings, thus resulting in minimizing any possible π-π overlap (Fig .3).