organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(2,2,3,3,4,4,4-hepta­fluoro­butyl)naphthalene-1,4:5,8-tetra­carboximide

aEastman Kodak Company, Rochester, NY 14650-2106, USA
*Correspondence e-mail: manju.rajeswaran@kodak.com

(Received 30 October 2008; accepted 7 November 2008; online 13 November 2008)

The title mol­ecule, C22H8F14N2O4, lies across a crystallographic inversion center with the naphthalene diimide core essentially planar (mean deviation from plane is 0.0583 Å). The CF2 groups in the perfluorobutyl chains are in an energetically favorable all trans conformation. In the crystal structure, mol­ecules are packed in slightly displaced layers so that the side chains overlap the aromatic naphthalene diimide rings, thus minimizing any possible ππ overlap.

Related literature

For general background on the semic-conducting properties and use of this class of materials in organic thin-film transistor applications, see: Chesterfield et al. (2004a[Chesterfield, R. J., McKeen, J. C., Newman, C. R., Ewbank, P. C., da SilvaFilho, D. A., Brédas, J. L., Miller, L. L., Mann, K. R. & Frisbie, C. D. (2004a). J. Phys. Chem. B, 108, 19281-19292.],b[Chesterfield, R. J., McKeen, J. C., Newman, C. R., Frisbie, C. D., Ewbank, P. C., Mann, K. R. & Miller, L. L. (2004b). Appl. Phys. Lett. 95, 6396-6405.]); Facceti et al. (2008[Facceti, A., Yoon, M.-H. & Marks, T. J. (2008). Adv. Mater. 17, 1705-1725.]); Jones et al. (2004[Jones, B. A., Ahrens, M. J., Yoon, M.-H., Facchetti, A., Marks, T. J. & Wasielewski, M. R. (2004). Angew. Chem. Int. Ed. 43, 6363-6366.]); Katz et al. (2000a[Katz, H. E., Johnson, J., Lovinger, A. J. & Li, W. (2000a). J. Am. Chem. Soc. 122, 7787-7792.],b[Katz, H. E., Lovinger, A. J., Johnson, J., Kloc, C., Siegrist, T., Li, W., Lin, Y.-Y. & Dodabalapur, A. (2000b). Nature (London), 404, 478-481.]); Kazmaier & Hoffmann (1994[Kazmaier, P. M. & Hoffmann, R. (1994). J. Am. Chem. Soc. 116, 9684-9691.]); Klebe et al. (1989[Klebe, G., Graser, F., Hädicke, E. & Berndt, J. (1989). Acta Cryst. B45, 69-77.]); Shukla et al. (2008[Shukla, D., Nelson, S. F., Freeman, D. C., Rajeswaran, M., Ahearn, W. G., Meyer, D. M. & Carey, J. T. (2008). Chem. Mater. In the press.]); Wurthner (2004[Wurthner, F. (2004). Chem. Commun. pp. 1564-1579.]).

[Scheme 1]

Experimental

Crystal data
  • C22H8F14N2O4

  • Mr = 630.30

  • Triclinic, [P \overline 1]

  • a = 5.1910 (5) Å

  • b = 10.1459 (12) Å

  • c = 11.5988 (15) Å

  • α = 66.693 (4)°

  • β = 79.064 (4)°

  • γ = 89.115 (7)°

  • V = 549.64 (11) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 (2) K

  • 0.15 × 0.10 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 3049 measured reflections

  • 2094 independent reflections

  • 909 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.223

  • S = 0.93

  • 2094 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and Materials Studio (Accelrys, 2002[Accelrys (2002). Materials Studio. Accelrys Inc., San Diego, California.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Amongst n-type semiconductors used in organic thin film transistors, perylene diimides (PDIs) and naphthalene diimides (NDIs) have attracted considerable attention. The π -orbital wavefunctions in these systems form nodes at the two nitrogen positions in the imide rings. Indeed, it has been shown that semiconducting properties and device performance of these materials is very sensitive to the nature of substituents on the diimide nitrogen atoms. The title compound N,N'-Bis(1H,1H-perfluorobutyl) naphthalene- 1,4,5,8-tetracarboxylic acid diimide(I) has been shown to exhibit good n-type semiconducting behavior and OTFTs made incorporating I can be operated in air. The latter property has been ascribed to the denser packing of fluorinated alkyl chains in thin film.

Naphthalene diimide (NDI) and perylene diimide (PDI) based systems have been studied extensively (Chesterfield, et al., 2004a; Chesterfield et al., 2004b; Facceti et al., 2008; Jones, et al., 2004; Katz, et al., 2000a; Katz, et al., 2000b). We report here the structure of the title diimide molecule (I) (Fig. 1 and Fig 2). In the crystal structure, molecules are packed in slightly displaced layers so that the side chains overlap the aromatic naphthalene diimide rings, thus resulting in minimizing any possible π-π overlap (Fig .3).

Related literature top

For general background on the semic-conducting properties and use of this class of materials in organic thin-film transistor applications, see: Chesterfield et al. (2004a,b); Facceti et al. (2008); Jones et al. (2004); Katz et al. (2000a,b); Kazmaier & Hoffmann (1994); Klebe et al. (1989); Shukla et al. (2008); Wurthner (2004).

Experimental top

The method described in Katz et al., 2000a, was followed for preparation of the title compound (I). Crystals of title (I) appeared during powder X-ray diffraction data collection of the dry lot sample. The crystals were weakly diffracting, but we were unable to get better quality crystals. Diffraction data were collected on various crystals, and the results of structure determination using best data set results are reported here.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic 0.97 Å, Uiso = 1.2Ueq (C) for CH2 atoms.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Materials Studio (Accelrys, 2002); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity.
[Figure 2] Fig. 2. A diagram illustrating planar naphthalene diimide core and trans configuration of perfluorobutyl chains on diiimide N atoms.
[Figure 3] Fig. 3. Unit cell packing showing layered structure.
N,N'-Bis(2,2,3,3,4,4,4-heptafluorobutyl)naphthalene-1,4:5,8- tetracarboximide top
Crystal data top
C22H8F14N2O4Z = 1
Mr = 630.30F(000) = 312
Triclinic, P1Dx = 1.904 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.1910 (5) ÅCell parameters from 4558 reflections
b = 10.1459 (12) Åθ = 1.0–26.7°
c = 11.5988 (15) ŵ = 0.21 mm1
α = 66.693 (4)°T = 293 K
β = 79.064 (4)°Needle, pink
γ = 89.115 (7)°0.15 × 0.10 × 0.05 mm
V = 549.64 (11) Å3
Data collection top
Nonius KappaCCD
diffractometer
909 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.057
Graphite monochromatorθmax = 26.6°, θmin = 4.1°
Detector resolution: 9 pixels mm-1h = 66
ϕ and ω scansk = 1211
3049 measured reflectionsl = 1412
2094 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.223H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.1P)2 + 0.3623P]
where P = (Fo2 + 2Fc2)/3
2094 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C22H8F14N2O4γ = 89.115 (7)°
Mr = 630.30V = 549.64 (11) Å3
Triclinic, P1Z = 1
a = 5.1910 (5) ÅMo Kα radiation
b = 10.1459 (12) ŵ = 0.21 mm1
c = 11.5988 (15) ÅT = 293 K
α = 66.693 (4)°0.15 × 0.10 × 0.05 mm
β = 79.064 (4)°
Data collection top
Nonius KappaCCD
diffractometer
909 reflections with I > 2σ(I)
3049 measured reflectionsRint = 0.057
2094 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.223H-atom parameters constrained
S = 0.93Δρmax = 0.23 e Å3
2094 reflectionsΔρmin = 0.23 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.1050 (6)0.4145 (3)0.7561 (3)0.0814 (11)
F20.1713 (6)0.5174 (3)0.8788 (3)0.0828 (12)
F30.5849 (6)0.3623 (4)0.9393 (3)0.0873 (12)
F40.5572 (7)0.2684 (3)0.8049 (3)0.0883 (12)
F50.3622 (7)0.0974 (4)1.0537 (3)0.0931 (12)
F60.0806 (7)0.2472 (4)1.0654 (4)0.1050 (15)
F70.0800 (9)0.1477 (4)0.9346 (4)0.1234 (17)
O10.2493 (8)0.6081 (4)0.4924 (4)0.0742 (12)
O20.5194 (8)0.8024 (4)0.7439 (4)0.0725 (12)
N10.3566 (7)0.6967 (4)0.6298 (4)0.0484 (11)
C10.2325 (10)0.7037 (5)0.5308 (5)0.0528 (14)
C20.0799 (9)0.8305 (5)0.4790 (5)0.0467 (12)
C30.0607 (10)0.8401 (5)0.3865 (5)0.0562 (14)
H30.05570.76790.35590.067*
C40.2109 (10)0.9584 (5)0.3386 (5)0.0541 (14)
H40.30580.96370.27670.065*
C50.0752 (9)0.9387 (5)0.5243 (4)0.0440 (12)
C60.2199 (9)0.9345 (5)0.6184 (5)0.0482 (13)
C70.3779 (10)0.8079 (5)0.6691 (5)0.0523 (14)
C80.4892 (9)0.5658 (5)0.6912 (5)0.0537 (14)
H8A0.63550.58910.72240.064*
H8B0.55800.52570.62920.064*
C90.2958 (10)0.4562 (6)0.8023 (5)0.0544 (14)
C100.4188 (10)0.3238 (5)0.8827 (5)0.0550 (14)
C110.2281 (13)0.2022 (6)0.9871 (6)0.0676 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.061 (2)0.082 (2)0.086 (2)0.0057 (16)0.0279 (18)0.0114 (19)
F20.091 (2)0.063 (2)0.074 (2)0.0213 (17)0.0167 (18)0.0222 (18)
F30.074 (2)0.098 (3)0.083 (3)0.0005 (18)0.0340 (18)0.021 (2)
F40.108 (3)0.077 (2)0.070 (2)0.0396 (19)0.0012 (19)0.0278 (19)
F50.107 (3)0.071 (2)0.078 (2)0.025 (2)0.018 (2)0.0064 (19)
F60.101 (3)0.087 (3)0.082 (3)0.023 (2)0.026 (2)0.007 (2)
F70.147 (4)0.081 (3)0.125 (4)0.039 (3)0.057 (3)0.008 (3)
O10.095 (3)0.070 (3)0.073 (3)0.031 (2)0.024 (2)0.042 (2)
O20.079 (3)0.067 (3)0.080 (3)0.0131 (19)0.038 (2)0.029 (2)
N10.054 (2)0.040 (2)0.051 (3)0.0061 (18)0.010 (2)0.018 (2)
C10.059 (3)0.046 (3)0.052 (3)0.009 (3)0.006 (3)0.021 (3)
C20.049 (3)0.048 (3)0.044 (3)0.003 (2)0.002 (2)0.023 (3)
C30.068 (3)0.051 (3)0.057 (3)0.006 (3)0.015 (3)0.028 (3)
C40.064 (3)0.058 (3)0.047 (3)0.005 (3)0.016 (2)0.026 (3)
C50.045 (3)0.044 (3)0.038 (3)0.001 (2)0.002 (2)0.014 (2)
C60.046 (3)0.051 (3)0.041 (3)0.003 (2)0.003 (2)0.014 (3)
C70.051 (3)0.052 (3)0.044 (3)0.000 (2)0.004 (3)0.012 (3)
C80.050 (3)0.055 (3)0.051 (3)0.009 (2)0.010 (2)0.017 (3)
C90.053 (3)0.056 (3)0.057 (4)0.010 (3)0.010 (3)0.026 (3)
C100.060 (3)0.058 (3)0.054 (3)0.014 (3)0.011 (3)0.031 (3)
C110.085 (4)0.056 (4)0.058 (4)0.003 (3)0.024 (4)0.015 (3)
Geometric parameters (Å, º) top
F1—C91.357 (6)C2—C51.389 (6)
F2—C91.341 (6)C3—C41.402 (7)
F3—C101.325 (6)C3—H30.9300
F4—C101.338 (6)C4—C6i1.360 (7)
F5—C111.321 (6)C4—H40.9300
F6—C111.294 (7)C5—C61.425 (6)
F7—C111.314 (6)C5—C5i1.435 (9)
O1—C11.213 (6)C6—C4i1.360 (7)
O2—C71.223 (6)C6—C71.491 (7)
N1—C71.387 (6)C8—C91.522 (7)
N1—C11.398 (6)C8—H8A0.9700
N1—C81.467 (6)C8—H8B0.9700
C1—C21.477 (7)C9—C101.513 (7)
C2—C31.380 (7)C10—C111.539 (8)
C7—N1—C1124.8 (4)N1—C8—C9109.7 (4)
C7—N1—C8117.3 (5)N1—C8—H8A109.7
C1—N1—C8117.8 (4)C9—C8—H8A109.7
O1—C1—N1120.4 (5)N1—C8—H8B109.7
O1—C1—C2123.0 (5)C9—C8—H8B109.7
N1—C1—C2116.6 (5)H8A—C8—H8B108.2
C3—C2—C5120.2 (5)F2—C9—F1105.5 (4)
C3—C2—C1119.6 (5)F2—C9—C10108.6 (4)
C5—C2—C1120.2 (5)F1—C9—C10108.7 (4)
C2—C3—C4120.1 (5)F2—C9—C8110.1 (4)
C2—C3—H3119.9F1—C9—C8109.2 (4)
C4—C3—H3119.9C10—C9—C8114.3 (4)
C6i—C4—C3120.9 (5)F3—C10—F4107.7 (4)
C6i—C4—H4119.6F3—C10—C9109.0 (4)
C3—C4—H4119.6F4—C10—C9108.5 (4)
C2—C5—C6122.3 (5)F3—C10—C11107.7 (5)
C2—C5—C5i120.6 (6)F4—C10—C11107.2 (5)
C6—C5—C5i117.2 (6)C9—C10—C11116.4 (5)
C4i—C6—C5121.0 (5)F6—C11—F7109.6 (6)
C4i—C6—C7121.4 (5)F6—C11—F5108.2 (5)
C5—C6—C7117.7 (5)F7—C11—F5107.3 (5)
O2—C7—N1121.5 (5)F6—C11—C10111.6 (5)
O2—C7—C6120.7 (5)F7—C11—C10110.2 (5)
N1—C7—C6117.8 (5)F5—C11—C10109.8 (5)
C7—N1—C1—O1171.2 (4)C4i—C6—C7—N1173.8 (4)
C8—N1—C1—O14.5 (7)C5—C6—C7—N15.4 (6)
C7—N1—C1—C29.8 (7)C7—N1—C8—C995.1 (5)
C8—N1—C1—C2174.5 (4)C1—N1—C8—C988.9 (5)
O1—C1—C2—C32.8 (8)N1—C8—C9—F250.4 (6)
N1—C1—C2—C3176.1 (4)N1—C8—C9—F165.0 (6)
O1—C1—C2—C5178.0 (5)N1—C8—C9—C10173.0 (5)
N1—C1—C2—C53.1 (7)F2—C9—C10—F359.0 (5)
C5—C2—C3—C40.6 (7)F1—C9—C10—F3173.3 (4)
C1—C2—C3—C4178.6 (4)C8—C9—C10—F364.4 (6)
C2—C3—C4—C6i0.4 (8)F2—C9—C10—F4176.0 (4)
C3—C2—C5—C6179.1 (4)F1—C9—C10—F469.7 (5)
C1—C2—C5—C61.7 (7)C8—C9—C10—F452.6 (6)
C3—C2—C5—C5i0.0 (8)F2—C9—C10—C1163.0 (6)
C1—C2—C5—C5i179.2 (5)F1—C9—C10—C1151.3 (7)
C2—C5—C6—C4i179.8 (4)C8—C9—C10—C11173.5 (5)
C5i—C5—C6—C4i1.1 (8)F3—C10—C11—F665.9 (6)
C2—C5—C6—C70.6 (7)F4—C10—C11—F6178.4 (5)
C5i—C5—C6—C7179.7 (5)C9—C10—C11—F656.8 (7)
C1—N1—C7—O2169.7 (5)F3—C10—C11—F7172.1 (5)
C8—N1—C7—O26.0 (7)F4—C10—C11—F756.4 (6)
C1—N1—C7—C611.0 (7)C9—C10—C11—F765.2 (7)
C8—N1—C7—C6173.3 (4)F3—C10—C11—F554.1 (7)
C4i—C6—C7—O25.5 (7)F4—C10—C11—F561.6 (6)
C5—C6—C7—O2175.3 (4)C9—C10—C11—F5176.8 (5)
Symmetry code: (i) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC22H8F14N2O4
Mr630.30
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.1910 (5), 10.1459 (12), 11.5988 (15)
α, β, γ (°)66.693 (4), 79.064 (4), 89.115 (7)
V3)549.64 (11)
Z1
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.15 × 0.10 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3049, 2094, 909
Rint0.057
(sin θ/λ)max1)0.630
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.223, 0.93
No. of reflections2094
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.23

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXTL (Sheldrick, 2008) and Materials Studio (Accelrys, 2002), publCIF (Westrip, 2008).

 

Acknowledgements

The authors thank Dr Thomas R. Welter and Thomas N. Blanton of Eastman Kodak Company for their help in the preparation of this material and crystals of this material, respectively.

References

First citationAccelrys (2002). Materials Studio. Accelrys Inc., San Diego, California.  Google Scholar
First citationChesterfield, R. J., McKeen, J. C., Newman, C. R., Ewbank, P. C., da SilvaFilho, D. A., Brédas, J. L., Miller, L. L., Mann, K. R. & Frisbie, C. D. (2004a). J. Phys. Chem. B, 108, 19281–19292.  Web of Science CrossRef CAS Google Scholar
First citationChesterfield, R. J., McKeen, J. C., Newman, C. R., Frisbie, C. D., Ewbank, P. C., Mann, K. R. & Miller, L. L. (2004b). Appl. Phys. Lett. 95, 6396–6405.  CAS Google Scholar
First citationFacceti, A., Yoon, M.-H. & Marks, T. J. (2008). Adv. Mater. 17, 1705–1725.  Google Scholar
First citationJones, B. A., Ahrens, M. J., Yoon, M.-H., Facchetti, A., Marks, T. J. & Wasielewski, M. R. (2004). Angew. Chem. Int. Ed. 43, 6363–6366.  Web of Science CSD CrossRef CAS Google Scholar
First citationKatz, H. E., Johnson, J., Lovinger, A. J. & Li, W. (2000a). J. Am. Chem. Soc. 122, 7787–7792.  Web of Science CrossRef CAS Google Scholar
First citationKatz, H. E., Lovinger, A. J., Johnson, J., Kloc, C., Siegrist, T., Li, W., Lin, Y.-Y. & Dodabalapur, A. (2000b). Nature (London), 404, 478–481.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKazmaier, P. M. & Hoffmann, R. (1994). J. Am. Chem. Soc. 116, 9684–9691.  CrossRef CAS Web of Science Google Scholar
First citationKlebe, G., Graser, F., Hädicke, E. & Berndt, J. (1989). Acta Cryst. B45, 69–77.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShukla, D., Nelson, S. F., Freeman, D. C., Rajeswaran, M., Ahearn, W. G., Meyer, D. M. & Carey, J. T. (2008). Chem. Mater. In the press.  Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar
First citationWurthner, F. (2004). Chem. Commun. pp. 1564–1579.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds