organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages o2345-o2346

3-(3-Meth­oxy­benz­yl)-4-(2-meth­oxy­phen­yl)-1H-1,2,4-triazole-5(4H)-thione

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii' 565, 53210 Pardubice, Czech Republic
*Correspondence e-mail: qadeerqau@yahoo.com

(Received 1 November 2008; accepted 10 November 2008; online 13 November 2008)

In the title compound, C17H17N3O2S, the five-membered ring forms dihedral angles of 53.02 (3) and 78.57 (3)° with the 3-meth­oxy-substituted and 2-meth­oxy-substituted benzene rings, respectively. In the crystal structure, mol­ecules are linked into centrosymmetric dimers via inter­molecular N—H⋯S hydrogen bonds.

Related literature

For background information on the biological activity of substituted triazole derivatives, see: Demirbas et al. (2002[Demirbas, N., Ugurluoglu, R. & Demirbas, A. (2002). Bioorg. Med. Chem. 10, 3717-3723.]); Holla et al. (1998[Holla, B. S., Gonsalves, R. & Shenoy, S. (1998). Farmaco, 53, 574-578.]); Omar et al. (1986[Omar, A., Mohsen, M. E. & Wafa, O. A. (1986). Heterocycl. Chem. 23, 1339-1341.]); Paulvannan et al. (2000[Paulvannan, K., Chen, T. & Hale, R. (2000). Tetrahedron, 56, 8071-8076.]); Turan-Zitouni et al. (1999[Turan-Zitouni, G., Kaplancikli, Z. A., Erol, K. & Kilic, F. S. (1999). Farmaco, 54, 218-223.]); Kritsanida et al. (2002[Kritsanida, M., Mouroutsou, A., Marakos, P., Pouli, N., Papakonstantinou- Garoufalias, S., Pannecouque, C., Witvrouw, M. & Clercq, E. D. (2002). Farmaco, 57, 253-257.]). For related structures, see: Öztürk et al. (2004a[Öztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. & Heinemann, F. W. (2004a). Acta Cryst. E60, o425-o427.],b[Öztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. & Heinemann, F. W. (2004b). Acta Cryst. E60, o642-o644.]); Zhang et al. (2004[Zhang, L.-X., Zhang, A.-J., Lei, X.-X., Zou, K.-H. & Ng, S. W. (2004). Acta Cryst. E60, o613-o615.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17N3O2S

  • Mr = 327.40

  • Triclinic, [P \overline 1]

  • a = 7.3941 (3) Å

  • b = 10.6459 (5) Å

  • c = 12.1940 (8) Å

  • α = 68.841 (5)°

  • β = 74.317 (5)°

  • γ = 75.187 (5)°

  • V = 848.37 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 293 (2) K

  • 0.40 × 0.24 × 0.15 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • Absorption correction: integration (Gaussian; Coppens, 1970[Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.]) Tmin = 0.946, Tmax = 0.983

  • 10764 measured reflections

  • 3708 independent reflections

  • 2064 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.159

  • S = 1.10

  • 3708 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯S1i 0.86 2.42 3.277 (3) 172
Symmetry code: (i) -x-1, -y+1, -z+1.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]) and DENZO (Otwin­owski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: DIRAX/LSQ (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Substituted triazole derivatives display significant biological activity including antimicrobial (Holla et al., 1998), analgesic (Turan-Zitouni et al., 1999), antitumor (Demirbas et al., 2002), antihypertensive (Paulvannan et al., 2000) and antiviral activities (Kritsanida et al., 2002). The biological activity is closely related to structure, possibly being due to the presence of the —N—C=S unit (Omar et al., 1986). We are interested in the synthesis and biological activity of substituted triazole derivatives and report here the synthesis and crystal structure of the title compound, (I) (Fig. 1).

In the molecluar structure of (I), the bond lengths and angles are within normal ranges (Allen et al., 1987) and comparable with those observed in related structures (Öztürk et al., 2004a,b). The C7-S1 bond length [1.679 (3) A °] compares with 1.6773 (19) A ° in 4-(4-chlorophenyl)-3-(furan-2-yl)-1H-1,2,4-triazole-5(4H)-thione (Ozturk et al., 2004a) and 1.668 (5) A ° in 4-amino-3-(1,2,3,4,5- pentahydroxypentyl)-1H-1,2,4-triazole-5(4H)-thione (Zhang et al., 2004). In the triazole ring, the N3-C8 bond [1.294 (4)] bond shows the expected double bond character.

The rings A (N1—N3/C7/C8), B (C1—C6) and C (C10—C15) are eesentially planar and dihedral angles between them are A/B = 78.57 (3)°, A/C = 53.02 (3)° and B/C = 16.23 (3)°. In the crystal structure, molecules are linked into centrosymmetric dimers via intermolecular N–H···S hydrogen bonds.

Related literature top

For background information on the biological activity of substituted triazole derivatives, see: Demirbas et al. (2002); Holla et al. (1998); Omar et al. (1986); Paulvannan et al. (2000); Turan-Zitouni et al. (1999); Kritsanida et al. (2002). For related structure, see: Öztürk et al. (2004a,b); Zhang et al. (2004). For bond-length data, see: Allen et al. (1987).

Experimental top

The synthesis of the title compound was carried out by refluxing a solution of 4-(2-methoxyphenyl)-1-(2-(3-methoxyphenyl)acetyl)thiosemicarbazide (3.45 g, 10 mmol) in 2 M NaOH for 5 h. Single crystals suitable for X-ray measurements were obtained by recrystallization from an aqeous ethanol solution at room temperature (yield: 75%; m.p. 469–470 K).

Refinement top

H atoms were placed in calculated positions with C-H = 0.93-0.97Å and N-H = 0.86Å and included in the refinement with Uiso(H) = 1.2Ueq(C,N). Although the atoms of substituted methoxy have larger than normal anisotropic displacement parameters, attempts to create disorder models did not improve the precision of the structure.

Computing details top

Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); cell refinement: DIRAX/LSQ (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 50% probability displacement ellipsoids (arbitrary spheres for H atoms).
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing hydrogen bonds as dashed lines.
[Figure 3] Fig. 3. The reaction scheme.
3-(3-Methoxybenzyl)-4-(2-methoxyphenyl)-1H-1,2,4-triazole-5(4H)- thione top
Crystal data top
C17H17N3O2SZ = 2
Mr = 327.40F(000) = 344
Triclinic, P1Dx = 1.282 Mg m3
Hall symbol: -P 1Melting point: 469(1) K
a = 7.3941 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6459 (5) ÅCell parameters from 10808 reflections
c = 12.1940 (8) Åθ = 1–27.5°
α = 68.841 (5)°µ = 0.20 mm1
β = 74.317 (5)°T = 293 K
γ = 75.187 (5)°Plate, colourless
V = 848.37 (8) Å30.40 × 0.24 × 0.15 mm
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
3708 independent reflections
Radiation source: fine-focus sealed tube2064 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 1.8°
ϕ and ω scans to fill the Ewald sphereh = 99
Absorption correction: integration
(Gaussian; Coppens, 1970)
k = 1313
Tmin = 0.946, Tmax = 0.983l = 1515
10764 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0364P)2 + 0.6393P]
where P = (Fo2 + 2Fc2)/3
3708 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C17H17N3O2Sγ = 75.187 (5)°
Mr = 327.40V = 848.37 (8) Å3
Triclinic, P1Z = 2
a = 7.3941 (3) ÅMo Kα radiation
b = 10.6459 (5) ŵ = 0.20 mm1
c = 12.1940 (8) ÅT = 293 K
α = 68.841 (5)°0.40 × 0.24 × 0.15 mm
β = 74.317 (5)°
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
3708 independent reflections
Absorption correction: integration
(Gaussian; Coppens, 1970)
2064 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.983Rint = 0.079
10764 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.10Δρmax = 0.32 e Å3
3708 reflectionsΔρmin = 0.24 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.37112 (12)0.55979 (11)0.30006 (8)0.0515 (3)
N20.2330 (4)0.4093 (3)0.5026 (2)0.0410 (7)
H20.34250.41500.54990.049*
N10.0166 (3)0.4302 (3)0.3462 (2)0.0379 (6)
N30.0666 (4)0.3402 (3)0.5425 (2)0.0444 (7)
C70.2087 (4)0.4659 (3)0.3847 (3)0.0362 (7)
C100.3280 (4)0.1679 (3)0.4006 (3)0.0416 (8)
C10.0831 (4)0.4687 (4)0.2239 (3)0.0460 (9)
C80.0625 (4)0.3535 (3)0.4452 (3)0.0374 (7)
C110.4677 (5)0.1629 (4)0.3017 (3)0.0535 (9)
H110.52590.23850.25660.064*
O10.0235 (4)0.2702 (3)0.2152 (3)0.0745 (8)
C140.2995 (6)0.0616 (4)0.4330 (4)0.0700 (12)
H140.24330.13800.47890.084*
C90.2686 (4)0.2945 (3)0.4391 (3)0.0446 (8)
H9A0.29880.27230.51730.054*
H9B0.34240.36300.38290.054*
C150.2434 (5)0.0546 (4)0.4662 (4)0.0591 (11)
H150.14770.05740.53330.071*
C20.1052 (5)0.3814 (5)0.1581 (3)0.0543 (10)
C30.2031 (6)0.4167 (6)0.0396 (4)0.0767 (15)
H30.22090.36010.00670.092*
C130.4385 (6)0.0674 (4)0.3336 (4)0.0634 (11)
H130.47430.14600.31070.076*
C60.1539 (5)0.5894 (4)0.1775 (3)0.0605 (11)
H60.13740.64590.22370.073*
C120.5230 (6)0.0434 (4)0.2686 (4)0.0639 (11)
C50.2519 (6)0.6227 (6)0.0573 (4)0.0808 (15)
H50.30110.70340.02170.097*
O20.6618 (5)0.0512 (4)0.1674 (3)0.1103 (13)
C160.0674 (8)0.1673 (6)0.1580 (5)0.106 (2)
H16A0.02310.20460.08370.127*
H16B0.00550.09150.20940.127*
H16C0.20290.13660.14260.127*
C40.2727 (6)0.5350 (7)0.0064 (4)0.0838 (17)
H40.33870.55820.08550.101*
C170.7351 (12)0.0684 (7)0.1341 (7)0.181 (4)
H17A0.78030.14010.20070.217*
H17B0.83900.05200.06660.217*
H17C0.63750.09520.11340.217*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0403 (5)0.0619 (7)0.0415 (5)0.0027 (4)0.0018 (4)0.0162 (4)
N20.0386 (15)0.0399 (17)0.0390 (16)0.0030 (12)0.0016 (12)0.0155 (13)
N10.0363 (14)0.0392 (17)0.0346 (15)0.0026 (12)0.0005 (11)0.0154 (13)
N30.0486 (16)0.0385 (17)0.0425 (17)0.0052 (13)0.0046 (13)0.0135 (14)
C70.0415 (17)0.0327 (19)0.0339 (17)0.0070 (14)0.0042 (13)0.0180 (15)
C100.0378 (17)0.035 (2)0.052 (2)0.0009 (14)0.0134 (15)0.0141 (16)
C10.0340 (17)0.059 (2)0.0374 (18)0.0044 (16)0.0034 (14)0.0182 (18)
C80.0442 (18)0.0298 (18)0.0399 (19)0.0055 (14)0.0060 (15)0.0152 (15)
C110.063 (2)0.039 (2)0.054 (2)0.0098 (17)0.0022 (18)0.0157 (18)
O10.086 (2)0.076 (2)0.076 (2)0.0040 (17)0.0174 (16)0.0474 (18)
C140.062 (2)0.041 (2)0.099 (3)0.0095 (19)0.010 (2)0.017 (2)
C90.0454 (19)0.039 (2)0.050 (2)0.0018 (15)0.0128 (16)0.0164 (17)
C150.046 (2)0.044 (2)0.077 (3)0.0036 (18)0.0007 (19)0.020 (2)
C20.040 (2)0.075 (3)0.047 (2)0.0079 (19)0.0101 (16)0.030 (2)
C30.049 (2)0.124 (5)0.050 (3)0.015 (3)0.007 (2)0.041 (3)
C130.072 (3)0.040 (2)0.082 (3)0.003 (2)0.022 (2)0.029 (2)
C60.041 (2)0.068 (3)0.053 (2)0.0121 (19)0.0062 (17)0.003 (2)
C120.066 (3)0.057 (3)0.062 (3)0.002 (2)0.000 (2)0.027 (2)
C50.052 (2)0.102 (4)0.061 (3)0.021 (2)0.005 (2)0.007 (3)
O20.142 (3)0.076 (2)0.094 (3)0.024 (2)0.042 (2)0.049 (2)
C160.129 (5)0.094 (4)0.130 (5)0.021 (3)0.062 (4)0.077 (4)
C40.047 (2)0.137 (5)0.047 (3)0.002 (3)0.000 (2)0.020 (3)
C170.222 (8)0.116 (6)0.175 (7)0.045 (5)0.100 (6)0.102 (6)
Geometric parameters (Å, º) top
S1—C71.679 (3)C9—H9A0.9700
N2—C71.324 (4)C9—H9B0.9700
N2—N31.377 (4)C15—H150.9300
N2—H20.8600C2—C31.390 (6)
N1—C71.369 (4)C3—C41.353 (7)
N1—C81.375 (4)C3—H30.9300
N1—C11.434 (4)C13—C121.358 (6)
N3—C81.294 (4)C13—H130.9300
C10—C111.367 (5)C6—C51.407 (6)
C10—C151.380 (5)C6—H60.9300
C10—C91.507 (5)C12—O21.366 (5)
C1—C61.380 (5)C5—C41.372 (7)
C1—C21.387 (5)C5—H50.9300
C8—C91.485 (4)O2—C171.407 (6)
C11—C121.402 (5)C16—H16A0.9599
C11—H110.9300C16—H16B0.9601
O1—C21.340 (5)C16—H16C0.9600
O1—C161.428 (5)C4—H40.9300
C14—C151.370 (5)C17—H17A0.9600
C14—C131.370 (6)C17—H17B0.9600
C14—H140.9299C17—H17C0.9599
C7—N2—N3113.7 (3)O1—C2—C1115.7 (3)
C7—N2—H2123.2O1—C2—C3125.5 (4)
N3—N2—H2123.1C1—C2—C3118.7 (5)
C7—N1—C8108.1 (2)C4—C3—C2118.4 (5)
C7—N1—C1125.4 (3)C4—C3—H3120.8
C8—N1—C1126.5 (2)C2—C3—H3120.8
C8—N3—N2103.9 (3)C12—C13—C14119.2 (4)
N2—C7—N1103.5 (3)C12—C13—H13120.3
N2—C7—S1129.2 (2)C14—C13—H13120.5
N1—C7—S1127.3 (2)C1—C6—C5116.9 (5)
C11—C10—C15119.2 (3)C1—C6—H6121.3
C11—C10—C9120.7 (3)C5—C6—H6121.7
C15—C10—C9120.1 (3)C13—C12—O2124.9 (4)
C6—C1—C2123.1 (4)C13—C12—C11120.6 (4)
C6—C1—N1118.8 (3)O2—C12—C11114.5 (4)
C2—C1—N1118.1 (4)C4—C5—C6119.1 (5)
N3—C8—N1110.8 (3)C4—C5—H5120.7
N3—C8—C9125.4 (3)C6—C5—H5120.1
N1—C8—C9123.8 (3)C12—O2—C17117.6 (4)
C10—C11—C12119.8 (4)O1—C16—H16A109.5
C10—C11—H11120.1O1—C16—H16B109.4
C12—C11—H11120.1H16A—C16—H16B109.5
C2—O1—C16117.5 (4)O1—C16—H16C109.5
C15—C14—C13120.9 (4)H16A—C16—H16C109.5
C15—C14—H14119.6H16B—C16—H16C109.5
C13—C14—H14119.5C3—C4—C5123.7 (5)
C8—C9—C10113.6 (3)C3—C4—H4118.3
C8—C9—H9A108.9C5—C4—H4118.1
C10—C9—H9A108.9O2—C17—H17A108.6
C8—C9—H9B108.8O2—C17—H17B109.5
C10—C9—H9B108.7H17A—C17—H17B109.5
H9A—C9—H9B107.7O2—C17—H17C110.4
C14—C15—C10120.4 (4)H17A—C17—H17C109.5
C14—C15—H15119.9H17B—C17—H17C109.5
C10—C15—H15119.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.862.423.277 (3)172
Symmetry code: (i) x1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H17N3O2S
Mr327.40
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.3941 (3), 10.6459 (5), 12.1940 (8)
α, β, γ (°)68.841 (5), 74.317 (5), 75.187 (5)
V3)848.37 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.40 × 0.24 × 0.15
Data collection
DiffractometerBruker–Nonius KappaCCD area-detector
diffractometer
Absorption correctionIntegration
(Gaussian; Coppens, 1970)
Tmin, Tmax0.946, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
10764, 3708, 2064
Rint0.079
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.159, 1.10
No. of reflections3708
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.24

Computer programs: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997), DIRAX/LSQ (Duisenberg, 1992), EVALCCD (Duisenberg et al., 2003), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.862.423.277 (3)171.8
Symmetry code: (i) x1, y+1, z+1.
 

Acknowledgements

The authors gratefully acknowledge funds from the Higher Education Commission, Islamabad, Pakistan.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCoppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.  Google Scholar
First citationDemirbas, N., Ugurluoglu, R. & Demirbas, A. (2002). Bioorg. Med. Chem. 10, 3717–3723.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHolla, B. S., Gonsalves, R. & Shenoy, S. (1998). Farmaco, 53, 574–578.  CrossRef PubMed CAS Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKritsanida, M., Mouroutsou, A., Marakos, P., Pouli, N., Papakonstantinou- Garoufalias, S., Pannecouque, C., Witvrouw, M. & Clercq, E. D. (2002). Farmaco, 57, 253–257.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOmar, A., Mohsen, M. E. & Wafa, O. A. (1986). Heterocycl. Chem. 23, 1339–1341.  CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationÖztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. & Heinemann, F. W. (2004a). Acta Cryst. E60, o425–o427.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. & Heinemann, F. W. (2004b). Acta Cryst. E60, o642–o644.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPaulvannan, K., Chen, T. & Hale, R. (2000). Tetrahedron, 56, 8071–8076.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTuran-Zitouni, G., Kaplancikli, Z. A., Erol, K. & Kilic, F. S. (1999). Farmaco, 54, 218–223.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, L.-X., Zhang, A.-J., Lei, X.-X., Zou, K.-H. & Ng, S. W. (2004). Acta Cryst. E60, o613–o615.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages o2345-o2346
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds