organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1,3-Dioxoisoindolin-2-yl)ethyl 4-methyl­benzene­sulfonate

aDepartment of Chemistry, Syracuse University, Syracuse, New York 13244, USA
*Correspondence e-mail: jazubiet@syr.edu

(Received 6 November 2008; accepted 14 November 2008; online 20 November 2008)

In the title mol­ecule, C17H15NO5S, the dihedral angle between the essentially planar atoms of the tosyl moiety (the S atom and the seven tolyl C atoms) and the phthalimide moiety is 6.089 (3)°. The mol­ecule is folded about the ethyl­ene bridge, adopting a staggered conformation such that the benzene ring of the tosyl group and the five-membered ring of the phthalimide moiety have a face-to-face orientation with a centroid-to-centroid separation of 3.7454 (12) Å. The crystal structure is stabilized by weak inter­molecular ππ inter­actions between symmetry-related five-membered rings of the phthalimide groups, with a centroid-to-centroid distance of 3.3867 (11) Å. The compound is used for the attachment of a suitable chelate functionality for radiolabeling purposes.

Related literature

For general background, see: Eriksson et al. (2002[Eriksson, S., Munch-Petersen, B., Johansson, K. & Eklund, H. (2002). Cell. Mol. Life Sci. 59, 1327-1346.]); Arner & Eriksson (1995[Arner, E. S. J. & Eriksson, S. (1995). Pharmacol. Ther. 67, 155-186.]); Bello (1974[Bello, L. J. (1974). Exp. Cell Res. 89, 263-274.]); Wei et al. (2005[Wei, L., Babich, J., Eckelman, W. C. & Zubieta, J. (2005). Inorg. Chem. 44, 2198-2209.]); Welin et al. (2004[Welin, M., Kosinska, U., Mikkelsen, N.-E., Carnrot, C., Zhu, C., Wang, L., Eriksson, S., Munch-Petersen, B. & Eklund, H. (2004). Proc. Natl Acad. Sci. USA 101, 17970-17975.]). For reference bond distances, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15NO5S

  • Mr = 345.36

  • Monoclinic, C 2/c

  • a = 13.6817 (13) Å

  • b = 12.5642 (12) Å

  • c = 19.3194 (19) Å

  • β = 107.121 (2)°

  • V = 3173.8 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 90 (2) K

  • 0.40 × 0.35 × 0.30 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Brucker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.913, Tmax = 0.934

  • 16184 measured reflections

  • 3865 independent reflections

  • 3773 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.122

  • S = 1.25

  • 3865 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (Palmer, 2006[Palmer, D. (2006). CrystalMaker. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Nucleosides and nucleoside derivatives have become a target of interest as potential inhibitors and probes for tumor cell proliferation. One major targeted enzyme is the human cytosolic thymidine kinase (hTK-1), an enzyme of the pyrimidine salvage pathway which catalyzes the phosphorylation of nucleosides to their corresponding 5'-monophosphates (Welin et al., 2004). The hTK-1 activity is closely related to DNA synthesis and the corresponding monophosphates are important precursors for DNA incorporation. Interestingly, hTK-1 shows a dramatically increased activity in proliferating cells compared to quiescent cells which makes it an attractive target for radiolabeling applications (Bello, 1974). Nucleosides are taken up by proliferating cells through facilitated diffusion and get converted to their corresponding monophosphates by hTK-1. The cellular efflux of the corresponding monophosphate is hindered due to the negatively charged phosphate residue leading to a intracellular trapping of the corresponding nucleoside (Arner & Eriksson, 1995). Thus, a radiolabeled nucleoside analog could be used as probe for tumor cell proliferation since the trapping results in an accumulation in tissue with elevated hTK-1 activity. Much effort has been put in the development of radiolabeled nucleoside analogs but the narrow substrate specifity of hTK-1 remains hereby a problem which still has to be solved (Eriksson et al., 2002). The literature on the interaction of thymidine derivatives with hTK-1 is not totally unambiguous about the effects of various substitutions. Major modifications of thymidine or uridine, respectively, can result in inactivity. On the other hand, several derivatives modified at the ribose and the base site are reported which retain their activity. Therefore, we built up a library of several thymidine and uridine analogs modified at different positions of the sugar and base moiety to investigate the effects of various substitutions. 2-(1,3-dioxoisoindolin-2-yl)ethyl 4-methylbenzenesulfonate (Tosylethylphthalimide) is part of a series of tosylalkylphthalimide derivatives recently synthesized in our group. The series was prepared to expand the use of our SAAC concept (single amino acid chelate) on nucleosides for radioimaging and radiotherapeutic purposes (Bartholomä et al., unpublished results). The tosylalkylphthalimide derivatives are precursors for the attachment of a SAAC chelate at the N-3 and C-5 position of the base moiety of thymidine. The SAAC chelate allows thereby the radiolabeling of thymidine and uridine derivatives by the coordination of the [M(CO)3]+ core (M = 186/188Re, 99mTc) (Wei et al., 2005). 99mTc with its ideal decay properties, low cost and good availability can be used for imaging purposes while the corresponding rhenium complexes would be the therapeutic counterparts.

The title molecule shows a folded structure where the phthalimide residue and the tosyl moiety have a face-to-face orientation (see Fig. 1). Thereby, inter- as well as intramolecular aromatic interactions are observed. The intramolecular interactions are illustrated by the centroid-to-centroid distance between the five-membered ring of the phthalimide moiety and the benzene ring of the tosyl residue with Cg1···Cg2 = 3.7454 (3) Å, where Cg1 is the centroid of the ring atoms N1/C8/C9/C14/C15 and Cg2 is the centroid of the ring atoms C1–C7. Weak intermolecular interactions occur between two five-membered rings of the phthalimide moiety with a Cg1···Cg1i distance of 3.3867 (3) Å [symmetry code: (i) -x, y, 3/2 - z]. The ethylene bridge adopts a low-energy staggered conformation with the torsion angle N1—C16—C17—O3 = 61.829 (5)°. Obviously, this arrangement allows a more dense crystal packing as the fully planar conformation (see Fig. 2). The phthalimide (N1/O4/O5/C8–C16) and the tosyl (S1/C1–C7) moiety are essentially planar and have an approximately parallel orientation with respect to each other giving a dihedral angle of 6.089 (3)°. All bond lengths fall in the expected ranges (Allen et al., 1987).

Related literature top

For general background, see: Eriksson et al. (2002); Arner & Eriksson (1995); Bello (1974); Wei et al. (2005); Welin et al. (2004). For reference bond distances, see: Allen et al. (1987).

Experimental top

8.00 g (41.84 mmol) N-(2-Hydroxyethyl)phthalimide were dissolved in 80 ml anhydrous pyridine under an inert atmosphere followed by a dropwise addition of 11.97 g (62.76 mmol, 1.5 equiv.) p-Toluenesulfonyl chloride in 80 ml anhydrous pyridine. After the addition was completed, the reaction mixture was stirred for additional 16 h. The reaction was quenched by the addition of ice. The crude reaction mixture was poured into an ice/water mixture resulting in a white precipitate which was extracted with 3 × 80 ml chloroform. The combined organic layers were washed with saturated sodium bicarbonate solution (150 ml) and twice with water, dried over anhydrous MgSO4, and finally evaporated to dryness. The product was obtained in good yields as a colourless amorphous powder (12.99 g, 90%). Single crystals suitable for X-ray diffraction were obtained by dissolving the product in an ethylacetate/methanol mixture 20:1 and storing the solution at 273 K for several days. 1H NMR (d6-DMSO): δ = 2.19 (s, 3 H), 3.80 (t, J = 4.91 Hz, 2 H), 4.28 (t, J = 4.95 Hz, 2 H), 7.15 (d, J = 7.98 Hz, 2 H), 7.55 (d, J = 8.25 Hz, 2 H), 7.55–7.83 (m, 4 H) p.p.m.. IR: ν = 3466, 3063, 2970, 2942, 1773, 1756, 1711, 1614, 1594, 1463, 1428, 1392, 1355, 1320, 1190, 176, 1119, 1093, 1041, 992, 913, 859, 811, 796, 768, 722, 704, 693, 668, 578, 552, 526, 493 cm-1.

Refinement top

H atoms were placed in calculated positions with C—H = 0.95–0.99 Å and included in the riding-model approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of (I), with the atom numbering scheme and thermal ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed parallel to the ac plane.
2-(1,3-Dioxoisoindolin-2-yl)ethyl 4-methylbenzenesulfonate top
Crystal data top
C17H15NO5SF(000) = 1440
Mr = 345.36Dx = 1.446 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C2ycCell parameters from 9534 reflections
a = 13.6817 (13) Åθ = 2.2–28.3°
b = 12.5642 (12) ŵ = 0.23 mm1
c = 19.3194 (19) ÅT = 90 K
β = 107.121 (2)°Block, colourless
V = 3173.8 (5) Å30.40 × 0.35 × 0.30 mm
Z = 8
Data collection top
Bruker APEX CCD area-detector
diffractometer
3865 independent reflections
Radiation source: fine-focus sealed tube3773 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 512 pixels mm-1θmax = 28.1°, θmin = 2.2°
ϕ and ω scansh = 1818
Absorption correction: multi-scan
(SADABS in SHELXL97; Sheldrick, 2008)
k = 1616
Tmin = 0.913, Tmax = 0.934l = 2525
16184 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.25 w = 1/[σ2(Fo2) + (0.0413P)2 + 6.2623P]
where P = (Fo2 + 2Fc2)/3
3865 reflections(Δ/σ)max = 0.001
218 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C17H15NO5SV = 3173.8 (5) Å3
Mr = 345.36Z = 8
Monoclinic, C2/cMo Kα radiation
a = 13.6817 (13) ŵ = 0.23 mm1
b = 12.5642 (12) ÅT = 90 K
c = 19.3194 (19) Å0.40 × 0.35 × 0.30 mm
β = 107.121 (2)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
3865 independent reflections
Absorption correction: multi-scan
(SADABS in SHELXL97; Sheldrick, 2008)
3773 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.934Rint = 0.020
16184 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.25Δρmax = 0.48 e Å3
3865 reflectionsΔρmin = 0.41 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.24768 (3)0.05689 (4)1.04905 (2)0.01844 (13)
O10.27012 (11)0.16681 (11)1.06516 (7)0.0245 (3)
O20.26255 (12)0.01842 (12)1.10672 (7)0.0269 (3)
O30.13136 (10)0.04377 (10)1.00548 (7)0.0195 (3)
O40.12124 (10)0.09920 (11)0.78928 (7)0.0214 (3)
O50.01573 (11)0.16581 (11)0.91348 (8)0.0270 (3)
N10.05468 (11)0.01454 (12)0.85773 (8)0.0179 (3)
C10.31279 (13)0.01266 (16)0.98842 (10)0.0193 (4)
C20.35460 (15)0.08611 (17)0.95184 (11)0.0243 (4)
H20.34860.16030.95920.029*
C30.40571 (15)0.04904 (19)0.90397 (11)0.0287 (4)
H30.43500.09880.87880.034*
C40.41464 (15)0.0590 (2)0.89231 (11)0.0294 (5)
C50.46884 (19)0.0980 (2)0.83979 (13)0.0425 (6)
H5A0.50030.03760.82230.064*
H5B0.52200.14910.86410.064*
H5C0.41960.13280.79870.064*
C60.37176 (16)0.13104 (18)0.93012 (12)0.0286 (4)
H60.37730.20520.92260.034*
C70.32129 (15)0.09635 (16)0.97844 (11)0.0236 (4)
H70.29300.14601.00430.028*
C80.10819 (13)0.01011 (15)0.80845 (9)0.0169 (3)
C90.14229 (13)0.09383 (15)0.78653 (9)0.0180 (3)
C100.19546 (15)0.11612 (16)0.73773 (10)0.0218 (4)
H100.21580.06120.71110.026*
C110.21815 (16)0.22272 (17)0.72909 (11)0.0270 (4)
H110.25470.24100.69590.032*
C120.18807 (17)0.30273 (17)0.76836 (11)0.0276 (4)
H120.20550.37450.76200.033*
C130.13283 (15)0.27955 (16)0.81683 (10)0.0232 (4)
H130.11150.33410.84320.028*
C140.11061 (13)0.17402 (15)0.82475 (9)0.0182 (3)
C150.05463 (14)0.12411 (14)0.87179 (10)0.0186 (4)
C160.00646 (14)0.06579 (15)0.89112 (10)0.0191 (4)
H16A0.03020.11750.85380.023*
H16B0.04430.03120.91120.023*
C170.08415 (14)0.12402 (14)0.95089 (10)0.0191 (4)
H17A0.05050.17970.97200.023*
H17B0.13640.15810.93200.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0222 (2)0.0191 (2)0.0151 (2)0.00308 (16)0.00727 (16)0.00143 (16)
O10.0290 (7)0.0227 (7)0.0213 (7)0.0010 (6)0.0067 (5)0.0018 (5)
O20.0362 (8)0.0282 (7)0.0185 (6)0.0083 (6)0.0113 (6)0.0065 (6)
O30.0209 (6)0.0188 (6)0.0209 (6)0.0023 (5)0.0095 (5)0.0037 (5)
O40.0227 (7)0.0198 (6)0.0233 (6)0.0022 (5)0.0094 (5)0.0020 (5)
O50.0325 (8)0.0237 (7)0.0304 (7)0.0001 (6)0.0180 (6)0.0042 (6)
N10.0182 (7)0.0181 (7)0.0191 (7)0.0008 (6)0.0083 (6)0.0005 (6)
C10.0169 (8)0.0260 (9)0.0151 (8)0.0037 (7)0.0048 (6)0.0001 (7)
C20.0222 (9)0.0288 (10)0.0223 (9)0.0010 (8)0.0071 (7)0.0032 (8)
C30.0201 (9)0.0450 (13)0.0220 (9)0.0003 (8)0.0079 (7)0.0044 (9)
C40.0169 (9)0.0493 (13)0.0222 (9)0.0054 (8)0.0061 (7)0.0040 (9)
C50.0297 (11)0.0686 (18)0.0340 (12)0.0074 (11)0.0167 (10)0.0104 (12)
C60.0242 (10)0.0316 (11)0.0303 (10)0.0067 (8)0.0085 (8)0.0063 (8)
C70.0216 (9)0.0248 (10)0.0244 (9)0.0022 (7)0.0069 (7)0.0003 (7)
C80.0137 (7)0.0219 (9)0.0150 (8)0.0014 (6)0.0042 (6)0.0013 (6)
C90.0158 (8)0.0202 (8)0.0165 (8)0.0012 (6)0.0026 (6)0.0005 (7)
C100.0225 (9)0.0267 (10)0.0171 (8)0.0034 (7)0.0071 (7)0.0018 (7)
C110.0300 (10)0.0321 (11)0.0207 (9)0.0095 (8)0.0105 (8)0.0003 (8)
C120.0351 (11)0.0227 (9)0.0248 (9)0.0103 (8)0.0084 (8)0.0005 (8)
C130.0269 (10)0.0211 (9)0.0212 (9)0.0037 (7)0.0066 (7)0.0033 (7)
C140.0167 (8)0.0212 (9)0.0163 (8)0.0017 (7)0.0045 (6)0.0019 (7)
C150.0181 (8)0.0178 (8)0.0197 (8)0.0001 (6)0.0053 (7)0.0015 (7)
C160.0182 (8)0.0196 (8)0.0216 (9)0.0026 (7)0.0092 (7)0.0002 (7)
C170.0219 (8)0.0169 (8)0.0190 (8)0.0040 (7)0.0068 (7)0.0025 (7)
Geometric parameters (Å, º) top
S1—O11.4290 (15)C6—C71.385 (3)
S1—O21.4299 (14)C6—H60.9500
S1—O31.5747 (14)C7—H70.9500
S1—C11.7574 (18)C8—C91.489 (3)
O3—C171.465 (2)C9—C101.379 (3)
O4—C81.209 (2)C9—C141.392 (3)
O5—C151.208 (2)C10—C111.396 (3)
N1—C81.396 (2)C10—H100.9500
N1—C151.403 (2)C11—C121.393 (3)
N1—C161.456 (2)C11—H110.9500
C1—C21.384 (3)C12—C131.396 (3)
C1—C71.393 (3)C12—H120.9500
C2—C31.394 (3)C13—C141.379 (3)
C2—H20.9500C13—H130.9500
C3—C41.387 (3)C14—C151.488 (2)
C3—H30.9500C16—C171.509 (3)
C4—C61.396 (3)C16—H16A0.9900
C4—C51.504 (3)C16—H16B0.9900
C5—H5A0.9800C17—H17A0.9900
C5—H5B0.9800C17—H17B0.9900
C5—H5C0.9800
O1—S1—O2119.84 (9)O4—C8—C9129.65 (17)
O1—S1—O3109.64 (8)N1—C8—C9105.69 (15)
O2—S1—O3103.69 (8)C10—C9—C14121.68 (18)
O1—S1—C1109.41 (9)C10—C9—C8130.16 (17)
O2—S1—C1109.05 (9)C14—C9—C8108.15 (16)
O3—S1—C1103.97 (8)C9—C10—C11117.22 (18)
C17—O3—S1118.36 (11)C9—C10—H10121.4
C8—N1—C15112.32 (15)C11—C10—H10121.4
C8—N1—C16123.05 (15)C12—C11—C10121.04 (18)
C15—N1—C16124.62 (15)C12—C11—H11119.5
C2—C1—C7121.40 (18)C10—C11—H11119.5
C2—C1—S1119.74 (15)C11—C12—C13121.33 (19)
C7—C1—S1118.85 (15)C11—C12—H12119.3
C1—C2—C3118.6 (2)C13—C12—H12119.3
C1—C2—H2120.7C14—C13—C12117.10 (18)
C3—C2—H2120.7C14—C13—H13121.5
C4—C3—C2121.3 (2)C12—C13—H13121.5
C4—C3—H3119.3C13—C14—C9121.61 (17)
C2—C3—H3119.3C13—C14—C15130.00 (17)
C3—C4—C6118.61 (19)C9—C14—C15108.39 (16)
C3—C4—C5120.9 (2)O5—C15—N1125.45 (17)
C6—C4—C5120.5 (2)O5—C15—C14129.15 (17)
C4—C5—H5A109.5N1—C15—C14105.40 (15)
C4—C5—H5B109.5N1—C16—C17111.48 (15)
H5A—C5—H5B109.5N1—C16—H16A109.3
C4—C5—H5C109.5C17—C16—H16A109.3
H5A—C5—H5C109.5N1—C16—H16B109.3
H5B—C5—H5C109.5C17—C16—H16B109.3
C7—C6—C4121.2 (2)H16A—C16—H16B108.0
C7—C6—H6119.4O3—C17—C16106.23 (14)
C4—C6—H6119.4O3—C17—H17A110.5
C6—C7—C1118.77 (19)C16—C17—H17A110.5
C6—C7—H7120.6O3—C17—H17B110.5
C1—C7—H7120.6C16—C17—H17B110.5
O4—C8—N1124.67 (17)H17A—C17—H17B108.7
O1—S1—O3—C1738.67 (14)O4—C8—C9—C14178.67 (18)
O2—S1—O3—C17167.78 (12)N1—C8—C9—C141.69 (19)
C1—S1—O3—C1778.22 (14)C14—C9—C10—C111.2 (3)
O1—S1—C1—C214.61 (18)C8—C9—C10—C11179.09 (18)
O2—S1—C1—C2147.43 (15)C9—C10—C11—C120.0 (3)
O3—S1—C1—C2102.45 (16)C10—C11—C12—C131.0 (3)
O1—S1—C1—C7165.23 (15)C11—C12—C13—C140.8 (3)
O2—S1—C1—C732.41 (18)C12—C13—C14—C90.4 (3)
O3—S1—C1—C777.71 (16)C12—C13—C14—C15179.45 (18)
C7—C1—C2—C30.3 (3)C10—C9—C14—C131.4 (3)
S1—C1—C2—C3179.90 (15)C8—C9—C14—C13178.79 (17)
C1—C2—C3—C40.4 (3)C10—C9—C14—C15179.32 (16)
C2—C3—C4—C60.5 (3)C8—C9—C14—C150.45 (19)
C2—C3—C4—C5179.22 (19)C8—N1—C15—O5178.31 (18)
C3—C4—C6—C70.1 (3)C16—N1—C15—O50.7 (3)
C5—C4—C6—C7179.75 (19)C8—N1—C15—C142.1 (2)
C4—C6—C7—C10.7 (3)C16—N1—C15—C14178.90 (16)
C2—C1—C7—C60.8 (3)C13—C14—C15—O50.3 (3)
S1—C1—C7—C6179.38 (15)C9—C14—C15—O5179.49 (19)
C15—N1—C8—O4177.95 (17)C13—C14—C15—N1179.90 (19)
C16—N1—C8—O41.1 (3)C9—C14—C15—N10.95 (19)
C15—N1—C8—C92.38 (19)C8—N1—C16—C1776.8 (2)
C16—N1—C8—C9178.62 (15)C15—N1—C16—C17102.06 (19)
O4—C8—C9—C101.6 (3)S1—O3—C17—C16146.02 (12)
N1—C8—C9—C10178.05 (18)N1—C16—C17—O361.83 (18)

Experimental details

Crystal data
Chemical formulaC17H15NO5S
Mr345.36
Crystal system, space groupMonoclinic, C2/c
Temperature (K)90
a, b, c (Å)13.6817 (13), 12.5642 (12), 19.3194 (19)
β (°) 107.121 (2)
V3)3173.8 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.40 × 0.35 × 0.30
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS in SHELXL97; Sheldrick, 2008)
Tmin, Tmax0.913, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
16184, 3865, 3773
Rint0.020
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.122, 1.25
No. of reflections3865
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.41

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (Palmer, 2006), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors gratefully acknowledge the support of the National Science Foundation (grant No. CHE-0604527) and Molecular Insight Pharmaceuticals Inc.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationArner, E. S. J. & Eriksson, S. (1995). Pharmacol. Ther. 67, 155–186.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBello, L. J. (1974). Exp. Cell Res. 89, 263–274.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEriksson, S., Munch-Petersen, B., Johansson, K. & Eklund, H. (2002). Cell. Mol. Life Sci. 59, 1327–1346.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPalmer, D. (2006). CrystalMaker. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, L., Babich, J., Eckelman, W. C. & Zubieta, J. (2005). Inorg. Chem. 44, 2198–2209.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWelin, M., Kosinska, U., Mikkelsen, N.-E., Carnrot, C., Zhu, C., Wang, L., Eriksson, S., Munch-Petersen, B. & Eklund, H. (2004). Proc. Natl Acad. Sci. USA 101, 17970–17975.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds