organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Allyl-3-amino-1H-pyrazole-4-carboxylic acid

aCollege of Chemistry and Chemical Engineering, Xuchang University, Xuchang, Henan Province 461000, People's Republic of China, and bState Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: yfling2000cn@yahoo.com.cn

(Received 17 October 2008; accepted 30 October 2008; online 8 November 2008)

The title compound, C7H9N3O2, was prepared by alkaline hydrolysis of ethyl 1-allyl-3-amino-1H-pyrazole-4-carboxyl­ate. The crystal structure is stabilized by three types of inter­molecular hydrogen bond (N—H⋯O, N—H⋯N and O—H⋯N).

Related literature

For details of the biological activities of pyrazole derivatives, see: Malhotra et al. (1997[Malhotra, S., Parmar, V. S. & Errington, W. (1997). Acta Cryst. C53, 1885-1887.]); Takao et al. (1994[Takao, H., Wakisaka, S. & Murai, K. (1994). Japanese Patent No. 06329633.]); Wang et al. (2005[Wang, J.-G., Li, Z.-M., Ma, N., Wang, B.-L., Jiang, L., Pang, S.-S., Lee, Y.-T., Guddat, L. W. & Duggleby, R. G. (2005). J. Comput. Aided Mol. Des. 19, 801-820.]).

[Scheme 1]

Experimental

Crystal data
  • C7H9N3O2

  • Mr = 167.17

  • Monoclinic, P 21 /c

  • a = 8.966 (2) Å

  • b = 8.531 (2) Å

  • c = 10.266 (2) Å

  • β = 95.57 (3)°

  • V = 781.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 113 (2) K

  • 0.20 × 0.18 × 0.14 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.979, Tmax = 0.985

  • 5773 measured reflections

  • 1852 independent reflections

  • 1631 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.085

  • S = 1.06

  • 1852 reflections

  • 121 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.894 (16) 2.073 (16) 2.9652 (13) 175.7 (14)
N1—H1B⋯N2ii 0.905 (17) 2.457 (16) 3.2187 (14) 142.1 (13)
O2—H2A⋯N1iii 0.92 (2) 1.82 (2) 2.7232 (14) 166.8 (18)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]).

Supporting information


Comment top

Pyrazole ring derivatives are very important substances in biology and have many application in the field of pesticide and pharmaceutical agents (Malhotra et al., 1997; Takao et al., 1994). Some of these compounds such as pyrazosufuron have been sold as agrochemicals (Wang et al., 2005).

Here we report the synthesis and crystal structure of the title compound, 1-allyl-3-amino-1H-pyrazole-4-carboxylic acid (Fig. 1). The crystal packing (Fig. 2) is stabilized by the intermolecular hydrogen bonds (Fig. 2 & Table 1).

Related literature top

For details of the biological activities of pyrazole derivatives, see: Malhotra et al. (1997); Takao et al. (1994); Wang et al., 2005).

Experimental top

The mixture of ethyl 1-allyl-3-amino-1H-pyrazole-4-carboxylate (1.95 g, 10 mmol) in THF-MeOH (50 ml, v/v = 1/1) with 2.5N NaOH(25 ml) was heated at 333 K for 4 h. The solvent was removed under reduced pressure and the residue was acidified with 6N HCl at 273 K. A gray solid was precipitated, filtered, and washed with water. Single crystals suitable for X-ray diffraction were obtained by recrystallization of the title compound in ethanol.

Refinement top

H atoms of N1 and O2 were positioned in a difference Fourier maps and their parameters were freely refined. The other H atoms were placed in calculated positions, with C—H = 0.95 or 0.99 Å, and and O—H = 0.82 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Hydrogenbonds interactions (dotted lines) in the title compound. [symmetry code; (i) -x+1, y-1/2, -z+3/2; (ii) -x+1, y+1/2, -z+3/2; (iii) x, -y+3/2, z-1/2.]
1-Allyl-3-amino-1H-pyrazole-4-carboxylic acid top
Crystal data top
C7H9N3O2F(000) = 352
Mr = 167.17Dx = 1.421 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2299 reflections
a = 8.966 (2) Åθ = 2.4–27.9°
b = 8.531 (2) ŵ = 0.11 mm1
c = 10.266 (2) ÅT = 113 K
β = 95.57 (3)°Prism, colorless
V = 781.5 (3) Å30.20 × 0.18 × 0.14 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
1852 independent reflections
Radiation source: rotating anode1631 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.025
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 3.1°
ω and ϕ scansh = 711
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1111
Tmin = 0.979, Tmax = 0.985l = 1313
5773 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0353P)2 + 0.3376P]
where P = (Fo2 + 2Fc2)/3
1852 reflections(Δ/σ)max < 0.001
121 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C7H9N3O2V = 781.5 (3) Å3
Mr = 167.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.966 (2) ŵ = 0.11 mm1
b = 8.531 (2) ÅT = 113 K
c = 10.266 (2) Å0.20 × 0.18 × 0.14 mm
β = 95.57 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
1852 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1631 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.985Rint = 0.025
5773 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.29 e Å3
1852 reflectionsΔρmin = 0.26 e Å3
121 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.64833 (12)0.69316 (12)0.51583 (10)0.0123 (2)
C20.68026 (12)0.53444 (13)0.56126 (10)0.0122 (2)
C30.63332 (12)0.46275 (12)0.67507 (10)0.0116 (2)
C40.75001 (12)0.41422 (13)0.49875 (10)0.0134 (2)
H40.79350.42170.41820.016*
C50.79757 (13)0.12954 (13)0.54567 (11)0.0149 (2)
H5A0.82120.12410.45360.018*
H5B0.71690.05290.55700.018*
C60.93408 (13)0.08629 (14)0.63419 (11)0.0177 (2)
H61.02040.15080.63400.021*
C70.94070 (15)0.03654 (16)0.71224 (12)0.0238 (3)
H7A0.85600.10300.71430.029*
H7B1.03020.05870.76650.029*
N10.55906 (11)0.53395 (11)0.77249 (9)0.0132 (2)
H1A0.5169 (17)0.4628 (18)0.8213 (15)0.024 (4)*
H1B0.4929 (18)0.6087 (19)0.7423 (15)0.025 (4)*
N20.67310 (10)0.31234 (11)0.68348 (9)0.0128 (2)
N30.74458 (10)0.28673 (11)0.57279 (9)0.0128 (2)
O10.57152 (9)0.78485 (9)0.57215 (8)0.01648 (19)
O20.70880 (9)0.72908 (10)0.40620 (8)0.01749 (19)
H2A0.663 (2)0.818 (2)0.3719 (19)0.049 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0129 (5)0.0125 (5)0.0113 (5)0.0016 (4)0.0006 (4)0.0004 (4)
C20.0130 (5)0.0122 (5)0.0114 (5)0.0000 (4)0.0007 (4)0.0000 (4)
C30.0118 (5)0.0113 (5)0.0114 (5)0.0008 (4)0.0001 (4)0.0012 (4)
C40.0141 (5)0.0142 (5)0.0119 (5)0.0006 (4)0.0016 (4)0.0012 (4)
C50.0187 (5)0.0114 (5)0.0151 (5)0.0026 (4)0.0029 (4)0.0025 (4)
C60.0151 (5)0.0168 (6)0.0215 (5)0.0026 (4)0.0032 (4)0.0032 (4)
C70.0237 (6)0.0262 (7)0.0216 (6)0.0075 (5)0.0021 (5)0.0031 (5)
N10.0170 (5)0.0104 (4)0.0127 (4)0.0009 (4)0.0043 (4)0.0006 (3)
N20.0148 (4)0.0124 (5)0.0114 (4)0.0007 (3)0.0032 (3)0.0012 (3)
N30.0146 (4)0.0124 (5)0.0116 (4)0.0015 (3)0.0027 (3)0.0010 (3)
O10.0215 (4)0.0125 (4)0.0160 (4)0.0026 (3)0.0048 (3)0.0005 (3)
O20.0216 (4)0.0160 (4)0.0160 (4)0.0043 (3)0.0077 (3)0.0058 (3)
Geometric parameters (Å, º) top
C1—O11.2238 (13)C5—H5A0.9900
C1—O21.3316 (13)C5—H5B0.9900
C1—C21.4516 (15)C6—C71.3170 (17)
C2—C41.3902 (15)C6—H60.9500
C2—C31.4182 (14)C7—H7A0.9500
C3—N21.3323 (14)C7—H7B0.9500
C3—N11.3936 (14)N1—H1A0.894 (16)
C4—N31.3305 (14)N1—H1B0.905 (17)
C4—H40.9500N2—N31.3752 (13)
C5—N31.4585 (14)O2—H2A0.92 (2)
C5—C61.4980 (16)
O1—C1—O2123.11 (10)C6—C5—H5B109.2
O1—C1—C2123.16 (10)H5A—C5—H5B107.9
O2—C1—C2113.73 (9)C7—C6—C5123.43 (11)
C4—C2—C3104.18 (9)C7—C6—H6118.3
C4—C2—C1128.56 (10)C5—C6—H6118.3
C3—C2—C1127.00 (10)C6—C7—H7A120.0
N2—C3—N1121.12 (10)C6—C7—H7B120.0
N2—C3—C2111.70 (9)H7A—C7—H7B120.0
N1—C3—C2127.15 (10)C3—N1—H1A111.3 (10)
N3—C4—C2107.24 (9)C3—N1—H1B113.8 (10)
N3—C4—H4126.4H1A—N1—H1B111.8 (14)
C2—C4—H4126.4C3—N2—N3104.05 (9)
N3—C5—C6111.89 (9)C4—N3—N2112.83 (9)
N3—C5—H5A109.2C4—N3—C5127.73 (9)
C6—C5—H5A109.2N2—N3—C5119.37 (9)
N3—C5—H5B109.2C1—O2—H2A108.1 (12)
O1—C1—C2—C4171.64 (11)N3—C5—C6—C7121.64 (12)
O2—C1—C2—C47.54 (16)N1—C3—N2—N3178.90 (9)
O1—C1—C2—C31.60 (17)C2—C3—N2—N30.81 (12)
O2—C1—C2—C3179.22 (10)C2—C4—N3—N20.52 (12)
C4—C2—C3—N21.12 (12)C2—C4—N3—C5177.29 (10)
C1—C2—C3—N2175.67 (10)C3—N2—N3—C40.18 (12)
C4—C2—C3—N1179.07 (10)C3—N2—N3—C5176.89 (9)
C1—C2—C3—N16.38 (18)C6—C5—N3—C4109.64 (12)
C3—C2—C4—N30.95 (12)C6—C5—N3—N273.77 (12)
C1—C2—C4—N3175.38 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.894 (16)2.073 (16)2.9652 (13)175.7 (14)
N1—H1B···N2ii0.905 (17)2.457 (16)3.2187 (14)142.1 (13)
O2—H2A···N1iii0.92 (2)1.82 (2)2.7232 (14)166.8 (18)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2; (iii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC7H9N3O2
Mr167.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)8.966 (2), 8.531 (2), 10.266 (2)
β (°) 95.57 (3)
V3)781.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.18 × 0.14
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.979, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
5773, 1852, 1631
Rint0.025
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.085, 1.06
No. of reflections1852
No. of parameters121
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.26

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998), CrystalStructure (Rigaku/MSC, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.894 (16)2.073 (16)2.9652 (13)175.7 (14)
N1—H1B···N2ii0.905 (17)2.457 (16)3.2187 (14)142.1 (13)
O2—H2A···N1iii0.92 (2)1.82 (2)2.7232 (14)166.8 (18)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2; (iii) x, y+3/2, z1/2.
 

Acknowledgements

This work was supported by the Program for New Century Excellent Talents in Universities of Henan Province (grant No. 2005HANCET-17), the Natural Science Foundation of Henan Province (grant No. 082300420110) and the Natural Science Foundation of Henan Province Eduation Department (grant No. 2007150036).

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMalhotra, S., Parmar, V. S. & Errington, W. (1997). Acta Cryst. C53, 1885–1887.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakao, H., Wakisaka, S. & Murai, K. (1994). Japanese Patent No. 06329633.  Google Scholar
First citationWang, J.-G., Li, Z.-M., Ma, N., Wang, B.-L., Jiang, L., Pang, S.-S., Lee, Y.-T., Guddat, L. W. & Duggleby, R. G. (2005). J. Comput. Aided Mol. Des. 19, 801–820.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds