organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4-(2-nitro­benzene­sulfonamido)­pyridinium] hexa­fluoro­silicate

aSchool of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, People's Republic of China
*Correspondence e-mail: airong_wang@yahoo.cn

(Received 12 November 2008; accepted 17 November 2008; online 22 November 2008)

In the title compound, 2C11H10N3O4S+·SiF62−, the short C—N distance [1.386 (2) Å] is indicative of a slight conjugation of N with the π electrons of the pyridinium ring, and with those of the sulfonyl group. The dihedral angle between the benzene and pyridinium rings is 77.48 (7)°. The crystal structure is stabilized by N—H⋯F and C—H⋯F hydrogen bonds. The Si atom of the anion lies on a special position.

Related literature

For zwitterionic forms of N-aryl­benzene­sulfonamides, see: Li et al. (2007[Li, J. S., Chen, L. G., Zhang, Y. Y., Xu, Y. J., Deng, Y. & Huang, P. M. (2007). J. Chem. Res. 6, 350-352.]); Yu & Li (2007[Yu, H.-J. & Li, J.-S. (2007). Acta Cryst. E63, o3399.]). For reference geometric data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). Damiano et al. (2007[Damiano, T., Morton, D. & Nelson, A. (2007). Org. Biomol. Chem. 5, 2735—2752.]) describe the use of pyridinium derivatives for the construction of supra­molecular architectures.

[Scheme 1]

Experimental

Crystal data
  • 2C11H10N3O4S+·SiF62−

  • Mr = 702.65

  • Monoclinic, C 2/c

  • a = 22.691 (5) Å

  • b = 8.524 (2) Å

  • c = 14.776 (3) Å

  • β = 110.95 (3)°

  • V = 2669 (1) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 113 (2) K

  • 0.22 × 0.16 × 0.04 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.927, Tmax = 0.986

  • 10620 measured reflections

  • 3064 independent reflections

  • 2456 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.111

  • S = 1.06

  • 3064 reflections

  • 212 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯F1i 0.86 (3) 1.96 (3) 2.789 (2) 162 (3)
N2—H2N⋯F1ii 0.73 (3) 1.97 (3) 2.690 (2) 171 (3)
C4—H4⋯F2i 0.95 2.35 3.141 (2) 141
C5—H5⋯F3ii 0.95 2.50 3.426 (3) 165
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organic pyridinium salts have been widely used in the construction of supramolecular architectures (Damiano et al., 2007). As part of our ongoing studies of supramolecular chemistry involving the pyridinium rings (Li et al., 2007), herein we report the crystal structure of the title compound, 4-(2-nitrophenylsulfonylamino)pyridinium hexafluorosilicate (Fig. 1).

In the cations of the title compound the short C—N distance [N2—C1 = 1.386 (2) Å] has a value between those of a typical CN double and C—N single bond (1.47–1.50 Å and 1.34–1.38 Å, respectively; Allen et al., 1987). This might be indicative of a slight conjugation of N with π electrons of the pyridinium ring, and with those of the sulfonyl group. The dihedral angle between the benzene ring and the pyridinium ring is 77.48 (7)°. The crystal structure is stabilized by N—H···F and C—H···F hydrogen bonds (Table 1).

Related literature top

For zwitterionic forms of N-arylbenzenesulfonamides, see: Li et al. (2007); Yu & Li (2007). For reference geometric data, see: Allen et al. (1987). Damiano et al. (2007) describe the use of pyridinium derivatives for the construction of supramolecular architectures.

Experimental top

A solution of 2-nitrobenzenesulfonyl chloride (2.2 g, 10 mmol) in CH2Cl2 (10 ml) was added dropwise to a suspension of 4-aminopyridine (0.9 g, 10 mmol) in CH2Cl2 (10 ml) at room temperature with stirring. The reaction mixture was stirred overnight. The yellow solid obtained was washed with warm water to obtain the title compound in a yield of 55.3%. A colorless single crystal suitable for X-ray analysis was obtained by slow evaporation of a fluorosilicic acid (10%) solution at room temperature over a period of a week.

Refinement top

The N-bound H atoms were located in a difference density Fourier map and freely refined. The C-bound H atoms were positioned geometrically (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of one molecule of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level (arbitrary spheres for the H atoms). [Symmetry code: (i) -x + 2, y, -z + 3/2.]
Bis[4-(2-nitrobenzenesulfonamido)pyridinium] hexafluorosilicate top
Crystal data top
2C11H10N3O4S+·SiF62F(000) = 1432
Mr = 702.65Dx = 1.749 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3772 reflections
a = 22.691 (5) Åθ = 1.9–27.5°
b = 8.524 (2) ŵ = 0.35 mm1
c = 14.776 (3) ÅT = 113 K
β = 110.95 (3)°Block, colourless
V = 2669 (1) Å30.22 × 0.16 × 0.04 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3064 independent reflections
Radiation source: rotating anode2456 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.053
Detector resolution: 7.31 pixels mm-1θmax = 27.5°, θmin = 1.9°
ω and ϕ scansh = 2229
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1011
Tmin = 0.927, Tmax = 0.986l = 1819
10620 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: difference Fourier map
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0513P)2 + 1.0092P]
where P = (Fo2 + 2Fc2)/3
3064 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
2C11H10N3O4S+·SiF62V = 2669 (1) Å3
Mr = 702.65Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.691 (5) ŵ = 0.35 mm1
b = 8.524 (2) ÅT = 113 K
c = 14.776 (3) Å0.22 × 0.16 × 0.04 mm
β = 110.95 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3064 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2456 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.986Rint = 0.053
10620 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.38 e Å3
3064 reflectionsΔρmin = 0.49 e Å3
212 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.61983 (2)0.29097 (5)0.52758 (4)0.01969 (15)
O10.58452 (8)0.32136 (18)0.42794 (11)0.0273 (4)
O20.63133 (8)0.13308 (16)0.56235 (12)0.0282 (4)
O30.69576 (9)0.3188 (2)0.75056 (13)0.0473 (5)
O40.78705 (10)0.2230 (3)0.7737 (2)0.0843 (10)
N10.56160 (8)0.8430 (2)0.63088 (13)0.0192 (4)
H1N0.5583 (14)0.942 (3)0.639 (2)0.052 (9)*
N20.58416 (9)0.3725 (2)0.59405 (14)0.0194 (4)
H2N0.5795 (14)0.315 (3)0.628 (2)0.043 (9)*
N30.74149 (10)0.3008 (2)0.72703 (15)0.0363 (5)
C10.57577 (9)0.5317 (2)0.60418 (14)0.0167 (4)
C20.57532 (9)0.6398 (2)0.53308 (14)0.0177 (4)
H20.58000.60580.47480.021*
C30.56798 (9)0.7955 (2)0.54852 (15)0.0193 (4)
H30.56740.87040.50060.023*
C40.56074 (9)0.7410 (2)0.70051 (14)0.0195 (4)
H40.55550.77840.75770.023*
C50.56742 (9)0.5837 (2)0.68832 (14)0.0185 (4)
H50.56640.51090.73640.022*
C60.69299 (10)0.3905 (2)0.55358 (15)0.0192 (4)
C70.70103 (11)0.4743 (2)0.47788 (16)0.0258 (5)
H70.66750.47950.41690.031*
C80.75749 (12)0.5503 (3)0.49066 (18)0.0309 (5)
H80.76200.60780.43850.037*
C90.80672 (11)0.5435 (3)0.57748 (19)0.0307 (5)
H90.84510.59650.58540.037*
C100.80059 (10)0.4591 (3)0.65379 (18)0.0295 (5)
H100.83470.45300.71410.035*
C110.74405 (10)0.3839 (3)0.64084 (16)0.0249 (5)
Si1.00000.65155 (9)0.75000.01731 (19)
F10.94232 (7)0.64561 (14)0.79977 (10)0.0303 (3)
F20.96119 (6)0.51233 (14)0.67115 (9)0.0265 (3)
F30.96052 (7)0.79039 (14)0.67359 (9)0.0333 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0207 (3)0.0158 (3)0.0229 (3)0.0010 (2)0.0083 (2)0.00471 (19)
O10.0294 (9)0.0304 (8)0.0199 (8)0.0032 (7)0.0060 (6)0.0071 (6)
O20.0324 (9)0.0145 (7)0.0426 (10)0.0012 (7)0.0196 (8)0.0020 (7)
O30.0360 (11)0.0728 (14)0.0333 (11)0.0026 (10)0.0127 (8)0.0205 (10)
O40.0312 (11)0.112 (2)0.104 (2)0.0222 (13)0.0172 (12)0.0855 (17)
N10.0217 (9)0.0125 (8)0.0228 (10)0.0012 (7)0.0073 (7)0.0012 (7)
N20.0221 (9)0.0136 (8)0.0242 (10)0.0014 (7)0.0104 (7)0.0011 (7)
N30.0227 (10)0.0443 (13)0.0350 (12)0.0019 (9)0.0019 (9)0.0175 (10)
C10.0135 (9)0.0149 (9)0.0205 (10)0.0005 (8)0.0045 (7)0.0011 (8)
C20.0195 (10)0.0196 (10)0.0138 (10)0.0015 (8)0.0060 (8)0.0017 (8)
C30.0184 (10)0.0182 (10)0.0195 (10)0.0009 (8)0.0048 (8)0.0026 (8)
C40.0178 (10)0.0244 (10)0.0165 (10)0.0018 (9)0.0064 (8)0.0008 (8)
C50.0177 (10)0.0195 (10)0.0182 (10)0.0008 (8)0.0063 (8)0.0003 (8)
C60.0202 (10)0.0168 (9)0.0219 (11)0.0020 (8)0.0092 (8)0.0028 (8)
C70.0293 (12)0.0270 (11)0.0237 (12)0.0011 (10)0.0126 (9)0.0029 (9)
C80.0367 (14)0.0297 (12)0.0359 (14)0.0016 (11)0.0247 (11)0.0002 (10)
C90.0225 (11)0.0292 (11)0.0457 (15)0.0018 (10)0.0184 (10)0.0011 (11)
C100.0187 (11)0.0289 (11)0.0377 (14)0.0019 (10)0.0060 (9)0.0040 (10)
C110.0216 (11)0.0230 (10)0.0295 (12)0.0044 (9)0.0083 (9)0.0044 (9)
Si0.0263 (4)0.0132 (4)0.0144 (4)0.0000.0098 (3)0.000
F10.0431 (8)0.0202 (6)0.0393 (8)0.0036 (6)0.0292 (7)0.0010 (5)
F20.0306 (7)0.0222 (6)0.0233 (7)0.0018 (6)0.0056 (5)0.0054 (5)
F30.0505 (9)0.0225 (7)0.0248 (7)0.0093 (6)0.0110 (6)0.0072 (5)
Geometric parameters (Å, º) top
S—O11.426 (2)C4—H40.9500
S—O21.431 (2)C5—H50.9500
S—N21.634 (2)C6—C111.393 (3)
S—C61.779 (2)C6—C71.393 (3)
O3—N31.216 (3)C7—C81.387 (3)
O4—N31.214 (3)C7—H70.9500
N1—C31.338 (3)C8—C91.368 (3)
N1—C41.353 (3)C8—H80.9500
N1—H1N0.86 (3)C9—C101.385 (3)
N2—C11.386 (2)C9—H90.9500
N2—H2N0.73 (3)C10—C111.385 (3)
N3—C111.477 (3)C10—H100.9500
C1—C21.395 (3)Si—F3i1.6597 (14)
C1—C51.395 (3)Si—F31.6597 (14)
C2—C31.367 (3)Si—F21.6756 (13)
C2—H20.9500Si—F2i1.6756 (13)
C3—H30.9500Si—F1i1.7161 (13)
C4—C51.368 (3)Si—F11.7161 (13)
O1—S—O2120.30 (10)C7—C6—S116.81 (16)
O1—S—N2109.10 (10)C8—C7—C6120.7 (2)
O2—S—N2104.47 (10)C8—C7—H7119.7
O1—S—C6105.83 (10)C6—C7—H7119.7
O2—S—C6109.54 (10)C9—C8—C7120.8 (2)
N2—S—C6106.98 (10)C9—C8—H8119.6
C3—N1—C4122.20 (18)C7—C8—H8119.6
C3—N1—H1N118 (2)C8—C9—C10119.9 (2)
C4—N1—H1N120 (2)C8—C9—H9120.0
C1—N2—S126.70 (16)C10—C9—H9120.0
C1—N2—H2N122 (2)C11—C10—C9119.0 (2)
S—N2—H2N110 (2)C11—C10—H10120.5
O4—N3—O3123.2 (2)C9—C10—H10120.5
O4—N3—C11117.7 (2)C10—C11—C6122.2 (2)
O3—N3—C11119.09 (19)C10—C11—N3115.0 (2)
N2—C1—C2122.01 (19)C6—C11—N3122.8 (2)
N2—C1—C5118.34 (18)F3i—Si—F389.03 (10)
C2—C1—C5119.64 (18)F3i—Si—F2178.59 (7)
C3—C2—C1118.97 (19)F3—Si—F290.59 (7)
C3—C2—H2120.5F3i—Si—F2i90.59 (7)
C1—C2—H2120.5F3—Si—F2i178.59 (7)
N1—C3—C2120.30 (19)F2—Si—F2i89.82 (9)
N1—C3—H3119.8F3i—Si—F1i90.21 (7)
C2—C3—H3119.8F3—Si—F1i92.20 (7)
N1—C4—C5119.82 (19)F2—Si—F1i88.45 (7)
N1—C4—H4120.1F2i—Si—F1i89.16 (7)
C5—C4—H4120.1F3i—Si—F192.20 (7)
C4—C5—C1119.02 (19)F3—Si—F190.21 (7)
C4—C5—H5120.5F2—Si—F189.16 (7)
C1—C5—H5120.5F2i—Si—F188.45 (7)
C11—C6—C7117.3 (2)F1i—Si—F1176.62 (9)
C11—C6—S125.73 (17)
O1—S—N2—C165.8 (2)O2—S—C6—C7131.78 (16)
O2—S—N2—C1164.31 (18)N2—S—C6—C7115.54 (17)
C6—S—N2—C148.2 (2)C11—C6—C7—C81.3 (3)
S—N2—C1—C224.9 (3)S—C6—C7—C8177.48 (17)
S—N2—C1—C5155.30 (16)C6—C7—C8—C90.6 (3)
N2—C1—C2—C3178.80 (19)C7—C8—C9—C100.4 (3)
C5—C1—C2—C31.4 (3)C8—C9—C10—C110.6 (3)
C4—N1—C3—C21.5 (3)C9—C10—C11—C60.1 (3)
C1—C2—C3—N10.3 (3)C9—C10—C11—N3178.4 (2)
C3—N1—C4—C50.9 (3)C7—C6—C11—C101.0 (3)
N1—C4—C5—C10.7 (3)S—C6—C11—C10176.86 (17)
N2—C1—C5—C4178.30 (18)C7—C6—C11—N3179.2 (2)
C2—C1—C5—C41.9 (3)S—C6—C11—N35.0 (3)
O1—S—C6—C11175.15 (18)O4—N3—C11—C1043.6 (3)
O2—S—C6—C1144.1 (2)O3—N3—C11—C10132.9 (2)
N2—S—C6—C1168.6 (2)O4—N3—C11—C6138.1 (3)
O1—S—C6—C70.70 (18)O3—N3—C11—C645.4 (3)
Symmetry code: (i) x+2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···F1ii0.86 (3)1.96 (3)2.789 (2)162 (3)
N2—H2N···F1iii0.73 (3)1.97 (3)2.690 (2)171 (3)
C4—H4···F2ii0.952.353.141 (2)141
C5—H5···F3iii0.952.503.426 (3)165
Symmetry codes: (ii) x+3/2, y+1/2, z+3/2; (iii) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula2C11H10N3O4S+·SiF62
Mr702.65
Crystal system, space groupMonoclinic, C2/c
Temperature (K)113
a, b, c (Å)22.691 (5), 8.524 (2), 14.776 (3)
β (°) 110.95 (3)
V3)2669 (1)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.22 × 0.16 × 0.04
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.927, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
10620, 3064, 2456
Rint0.053
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.111, 1.06
No. of reflections3064
No. of parameters212
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.49

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···F1i0.86 (3)1.96 (3)2.789 (2)162 (3)
N2—H2N···F1ii0.73 (3)1.97 (3)2.690 (2)171 (3)
C4—H4···F2i0.952.353.141 (2)140.8
C5—H5···F3ii0.952.503.426 (3)164.7
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+3/2, y1/2, z+3/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationDamiano, T., Morton, D. & Nelson, A. (2007). Org. Biomol. Chem. 5, 2735—2752.  Web of Science CrossRef Google Scholar
First citationLi, J. S., Chen, L. G., Zhang, Y. Y., Xu, Y. J., Deng, Y. & Huang, P. M. (2007). J. Chem. Res. 6, 350–352.  CrossRef Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, H.-J. & Li, J.-S. (2007). Acta Cryst. E63, o3399.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds