organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages o2484-o2485

A bi-TTF with a bi­pyridine spacer: 4,4′-bis­­[(3,6,7-tri­methyl­sulfanyltetra­thia­fulvalen-2-yl)sulfanylmeth­yl]-2,2′-bi­pyridine

aLaboratoire de Chimie des Matériaux Organiques, Centre Universitaire de Tébessa, Route de Constantine, 12000 Tébessa, Algeria, bInstitut Charles Gerhardt, UMR CNRS 5253, AM2N, ENSCM, 8 rue de l'Ecole Normale, F-34296 Montpellier cedex 5, France, cCNRS; LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, F-31077 Toulouse, France, and dUniversité de Toulouse; UPS,INPT; LCC, F-31077 Toulouse, France
*Correspondence e-mail: jean-pierre.legros@lcc-toulouse.fr

(Received 17 November 2008; accepted 21 November 2008; online 29 November 2008)

The title compound, C30H28N2S16, is a precursor to hybrid magnetic materials. The complete molecule is generated by a crystallographic inversion centre. In the crystal structure, the TTF core is not planar and adopts a chair conformation; the two C3S2 rings are folded around the S⋯S hinges, the dihedral angles being 17.14 (8) and 13.46 (7)°. There is a short S⋯S contact [3.4863  (14) Å] in the crystal structure.

Related literature

For general background, see: Yagubskii (1993[Yagubskii, E. B. (1993). Mol. Cryst. Liq. Cryst. 230, 139-156.]); Williams et al. (1992[Williams, J. M., Ferraro, J. R., Thorn, R. I., Carlson, K. D., Geiser, U., Wang, H. H. A. M., Kini, A. M. & Wangbo, M. H. (1992). Organic Superconductors (including Fullerenes), Synthesis, Structure, Properties and Theory. Englewood Cliffs, NJ: Prentice Hall.]); Sakata et al. (1998[Sakata, J. I., Sato, H., Misayaki, A., Enoki, T., Okano, Y. & Kato, R. (1998). Solid State Commun. 108, 377-381.]); Fabre (2002[Fabre, J.-M. (2002). J. Solid State Chem. 168, 367-383.]). For coordination complexes of TTF with nitro­gen aromatic substituents, see: Setifi et al. (2003[Setifi, F., Ouahab, L., Gohlen, S., Yoshida, Y. & Saito, G. (2003). Inorg. Chem. 42, 1791-1793.]); Liu et al. (2003[Liu, H.-X., Dolder, S., Franz, P., Neels, A., Stoeckli-Evans, H. & Decurtins, S. (2003). Inorg. Chem. 42, 4801-4803.]); Boudiba et al. (2005[Boudiba, L., Gouasmia, A. K., Kaboub, L., Cador, O., Ouahab, L. & Fabre, J.-M. (2005). Synth. Met. 150, 317-320.]). For the double Wittig coupling reaction used in the synthesis of the bi-TTF(bipyridine), see: Ikeda et al. (1993[Ikeda, K., Kawabata, K., Tanaka, K. & Mizutani, M. (1993). Synth. Met. 55-57, 2007-2012.]); Gonzales et al. (2000[Gonzalez, A., Segura, J. L. & Martin, N. (2000). Tetrahedron Lett. 41, 3083-3086.]). For the synthesis of the precursors, see: Doria et al. (1986[Doria, G., Passarotti, C., Sala, R., Magrini, R., Sberze, P., Tibolla, M., Ceserani, R. & Castello, R. (1986). Farm. Ed. Sci. 41, 417-428.]); Hudhomme et al. (2006[Hudhomme, P., Sallé, M., Gautier, N., Belyasmine, A. & Gorgues, A. (2006). Arkoivoc, iv, 49-72.]); Blanchard et al. (1993[Blanchard, P., Dugauy, G., Cousseau, J., Sallé, M., Jubault, M., Gorgues, A., Boubekeur, K. & Batail, P. (1993). Synth. Met. 55-57, 2113-2117.]).

[Scheme 1]

Experimental

Crystal data
  • C30H28N2S16

  • Mr = 929.50

  • Triclinic, [P \overline 1]

  • a = 7.4840 (12) Å

  • b = 7.7691 (11) Å

  • c = 17.707 (3) Å

  • α = 88.973 (12)°

  • β = 80.071 (13)°

  • γ = 72.245 (13)°

  • V = 965.2 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 293 (2) K

  • 0.19 × 0.11 × 0.06 mm

Data collection
  • Oxford Diffraction XCalibur diffractometer with CCD detector

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.884, Tmax = 0.937

  • 6690 measured reflections

  • 3391 independent reflections

  • 1942 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.070

  • S = 0.83

  • 3391 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), CAMERON (Watkin et al., 1993[Watkin, D. M., Pearce, L. & Prout, C. K. A. (1993). CAMERON. University of Oxford, England.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

To date the search for solids presenting two physical properties such as magnetism and electrical conductivity inside a same material has expanded greatly, particularly with materials involving tetrathiafulvalene (TTF) derivatives well known to provide conducting and even superconducting salts (Williams et al., 1992; Yagubskii,1993; Sakata et al., 1998: Fabre, 2002). To introduce a magnetic network, involving localized spins, inside such conducting salts, a particularly promising way is to build a coordination complex between a transition metal (Cu, Co ···) and a pyridine or bipyridine moiety bonded to a TTF core (Setifi et al., 2003; Liu et al., 2003; Boudiba et al., 2005). Following this strategy we synthesized the title precursor: bi-TTF(bipyridine) 1 and studied its crystal structure to verify if the molecular geometry could allow a subsequent easy formation of the target coordinating complex. The molecular structure is shown in Fig. 1. A s expected two TTF cores bearing methylsulfanyl substituents are connected by a bipyridine spacer. The molecule lies on a crystallographic centre of symmetry located at the centre of the bipyridine moiety, the asymmetric unit is thus composed of half a molecule. As a result the bipyridine spacer is in the trans conformation. The TTF cores deviate strongly from planarity and take a chair conformation. The two C3S2 rings are folded around the S···S hinges: the central group S3/S4/C5/C6/S5/S6 is planar and the external planes S3/S4/C3/C4 and S5/S6/C7/C8 make dihedral angles of 17.14 (8)° and 13.46 (7)° respectively. There is a short S⋯S contact [3.4863 (14) Å] in the crystal structure.

Related literature top

For general background, see: Yagubskii (1993); Williams et al. (1992); Sakata et al. (1998); Fabre (2002). For coordination complexes of TTF with nitrogen aromatic substituents, see: Setifi et al. (2003); Liu et al. (2003); Boudiba et al. (2005). For the double Wittig coupling reaction used in the synthesis of the bi-TTF(bipyridine), see: Ikeda et al. (1993); Gonzales et al. (2000). For the synthesis of the precursors, see Doria et al. (1986); Hudhomme et al. (2006); Blanchard et al. (1993).

Experimental top

The bi-TTF(bipyridine) 1 was synthesized (37% yield) by using a double Wittig coupling reaction (Ikeda, 1993; Gonzalez, 2000) between two appropriate formyl-TTF units and 4,4'-bis(methyltripenylphosphonium)-2,2'-bipyridinedibromide previously obtained as described in the literature (Doria, 1986). Red crystals (m.p.: 158°C) of 1 were obtained as thin platelets by slow evaporation of a solution of 1 in a mixture of dichloromethane-acetonitrile.

Refinement top

H atoms were located in a difference map then positioned geometrically and refined using a riding model with C—H distances set to 0.96 Å (sp3) and 0.93 Å (sp2), and Uiso(H) egal to 1.2 times the equivalent Uiso of the atom of attachment.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), CAMERON (Watkin et al., 1993) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms. Symmetry code: i = -x+1, -y+1, -z+1.
4,4'-bis[(3,6,7-trimethylsulfanyltetrathiafulvalen-2-yl)sulfanylmethyl]- 2,2'-bipyridine top
Crystal data top
C30H28N2S16Z = 1
Mr = 929.50F(000) = 478
Triclinic, P1Dx = 1.599 Mg m3
Hall symbol: -P 1Melting point: 431 K
a = 7.4840 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.7691 (11) ÅCell parameters from 1223 reflections
c = 17.707 (3) Åθ = 2.9–25.0°
α = 88.973 (12)°µ = 0.92 mm1
β = 80.071 (13)°T = 293 K
γ = 72.245 (13)°Block, red
V = 965.2 (3) Å30.19 × 0.11 × 0.06 mm
Data collection top
Oxford Diffraction XCalibur
diffractometer with CCD detector
3391 independent reflections
Radiation source: fine-focus sealed tube1942 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(Blessing, 1995)
h = 88
Tmin = 0.884, Tmax = 0.937k = 99
6690 measured reflectionsl = 1821
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 0.83 w = 1/[σ2(Fo2) + (0.0277P)2]
where P = (Fo2 + 2Fc2)/3
3391 reflections(Δ/σ)max = 0.013
220 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C30H28N2S16γ = 72.245 (13)°
Mr = 929.50V = 965.2 (3) Å3
Triclinic, P1Z = 1
a = 7.4840 (12) ÅMo Kα radiation
b = 7.7691 (11) ŵ = 0.92 mm1
c = 17.707 (3) ÅT = 293 K
α = 88.973 (12)°0.19 × 0.11 × 0.06 mm
β = 80.071 (13)°
Data collection top
Oxford Diffraction XCalibur
diffractometer with CCD detector
3391 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
1942 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.937Rint = 0.039
6690 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 0.83Δρmax = 0.23 e Å3
3391 reflectionsΔρmin = 0.22 e Å3
220 parameters
Special details top

Experimental. Excalibur (Oxford Diffraction) four-circle Kappa geometry diffractometer equipped with an area CCD detector. Crystal-detector distance (mm): 70.0

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3976 (5)0.7011 (5)0.9533 (2)0.0573 (11)
H1A0.36920.60810.91420.069*
H1B0.52510.72120.98060.069*
H1C0.30950.66420.98840.069*
C20.0146 (6)1.2151 (5)0.9481 (2)0.0681 (13)
H2A0.01351.15310.99380.082*
H2B0.00701.34020.96090.082*
H2C0.14551.16120.92470.082*
C30.1411 (4)0.8506 (4)0.86485 (17)0.0307 (8)
C40.0438 (4)0.9702 (4)0.85327 (17)0.0300 (8)
C50.1986 (4)0.6686 (4)0.79718 (18)0.0339 (8)
C60.3591 (4)0.5317 (4)0.77605 (17)0.0325 (8)
C70.6075 (4)0.2257 (4)0.72586 (16)0.0271 (8)
C80.7017 (4)0.3475 (4)0.71193 (17)0.0277 (8)
C90.5564 (5)0.0019 (4)0.62192 (17)0.0366 (8)
H9A0.58270.12350.60280.044*
H9B0.42320.04320.64330.044*
C100.9345 (5)0.4866 (5)0.6095 (2)0.0711 (13)
H10A0.84690.49620.57480.085*
H10B1.05970.47180.58090.085*
H10C0.89440.59440.64170.085*
C110.6020 (4)0.1130 (4)0.55723 (17)0.0296 (8)
C120.5025 (4)0.2947 (4)0.55804 (17)0.0308 (8)
H120.40200.34540.59790.037*
C130.5516 (4)0.4015 (4)0.49995 (17)0.0276 (8)
C140.7883 (5)0.1602 (4)0.44029 (19)0.0381 (9)
H140.88690.11180.39950.046*
C150.7491 (4)0.0458 (4)0.49646 (17)0.0351 (8)
H150.82090.07570.49350.042*
N10.6944 (4)0.3353 (3)0.44078 (14)0.0343 (7)
S10.37725 (13)0.90564 (13)0.91017 (6)0.0500 (3)
S20.13591 (13)1.19803 (12)0.88259 (5)0.0442 (3)
S30.02471 (12)0.63191 (11)0.82438 (5)0.0408 (2)
S40.18635 (13)0.89647 (12)0.79792 (5)0.0451 (3)
S50.37241 (12)0.30319 (11)0.77697 (5)0.0419 (3)
S60.58066 (12)0.56994 (11)0.74683 (5)0.0409 (3)
S70.69659 (12)0.00222 (11)0.69692 (5)0.0333 (2)
S80.93880 (12)0.29726 (12)0.66720 (5)0.0453 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.051 (2)0.054 (3)0.064 (3)0.026 (2)0.017 (2)0.008 (2)
C20.108 (4)0.050 (3)0.059 (3)0.032 (3)0.034 (3)0.001 (2)
C30.0287 (19)0.033 (2)0.0275 (19)0.0055 (15)0.0035 (15)0.0019 (15)
C40.0294 (19)0.0278 (19)0.0287 (19)0.0028 (15)0.0052 (15)0.0004 (15)
C50.0280 (19)0.0282 (19)0.045 (2)0.0107 (16)0.0004 (16)0.0009 (16)
C60.0274 (19)0.0291 (19)0.038 (2)0.0093 (16)0.0030 (16)0.0033 (16)
C70.0237 (18)0.0235 (19)0.0299 (19)0.0010 (14)0.0044 (15)0.0019 (14)
C80.0224 (18)0.0268 (19)0.0293 (18)0.0038 (15)0.0014 (15)0.0034 (15)
C90.042 (2)0.031 (2)0.041 (2)0.0131 (16)0.0135 (18)0.0027 (16)
C100.046 (3)0.083 (3)0.079 (3)0.027 (2)0.011 (2)0.025 (3)
C110.0317 (19)0.0278 (19)0.033 (2)0.0109 (15)0.0132 (16)0.0020 (15)
C120.0281 (18)0.033 (2)0.0307 (19)0.0090 (15)0.0052 (15)0.0016 (15)
C130.0264 (18)0.0279 (18)0.0290 (18)0.0063 (14)0.0098 (15)0.0016 (15)
C140.031 (2)0.038 (2)0.041 (2)0.0062 (17)0.0012 (17)0.0046 (17)
C150.036 (2)0.0276 (19)0.040 (2)0.0027 (16)0.0142 (18)0.0004 (17)
N10.0322 (16)0.0298 (17)0.0366 (17)0.0053 (13)0.0019 (14)0.0005 (13)
S10.0310 (5)0.0449 (6)0.0615 (7)0.0045 (4)0.0131 (5)0.0036 (5)
S20.0453 (6)0.0301 (5)0.0517 (6)0.0035 (4)0.0073 (5)0.0098 (4)
S30.0268 (5)0.0278 (5)0.0627 (6)0.0086 (4)0.0076 (5)0.0077 (4)
S40.0335 (5)0.0282 (5)0.0667 (7)0.0098 (4)0.0105 (5)0.0042 (5)
S50.0310 (5)0.0280 (5)0.0620 (7)0.0109 (4)0.0086 (5)0.0017 (4)
S60.0281 (5)0.0266 (5)0.0636 (7)0.0094 (4)0.0061 (5)0.0077 (4)
S70.0382 (5)0.0230 (5)0.0360 (5)0.0030 (4)0.0107 (4)0.0023 (4)
S80.0246 (5)0.0390 (5)0.0627 (7)0.0041 (4)0.0075 (5)0.0003 (5)
Geometric parameters (Å, º) top
C1—S11.788 (3)C8—S81.741 (3)
C1—H1A0.9599C8—S61.755 (3)
C1—H1B0.9599C9—C111.497 (4)
C1—H1C0.9599C9—S71.828 (3)
C2—S21.783 (4)C9—H9A0.9600
C2—H2A0.9599C9—H9B0.9600
C2—H2B0.9599C10—S81.771 (3)
C2—H2C0.9599C10—H10A0.9599
C3—C41.338 (4)C10—H10B0.9599
C3—S11.736 (3)C10—H10C0.9599
C3—S31.756 (3)C11—C121.380 (4)
C4—S21.744 (3)C11—C151.380 (4)
C4—S41.758 (3)C12—C131.381 (4)
C5—C61.340 (4)C12—H120.9300
C5—S41.744 (3)C13—N11.342 (4)
C5—S31.765 (3)C13—C13i1.489 (6)
C6—S51.747 (3)C14—N11.327 (4)
C6—S61.762 (3)C14—C151.376 (4)
C7—C81.339 (4)C14—H140.9300
C7—S71.743 (3)C15—H150.9300
C7—S51.761 (3)
S1—C1—H1A109.5C11—C9—H9B109.4
S1—C1—H1B109.5S7—C9—H9B109.4
H1A—C1—H1B109.5H9A—C9—H9B108.0
S1—C1—H1C109.5S8—C10—H10A109.5
H1A—C1—H1C109.5S8—C10—H10B109.5
H1B—C1—H1C109.5H10A—C10—H10B109.5
S2—C2—H2A109.5S8—C10—H10C109.5
S2—C2—H2B109.5H10A—C10—H10C109.5
H2A—C2—H2B109.5H10B—C10—H10C109.5
S2—C2—H2C109.5C12—C11—C15117.1 (3)
H2A—C2—H2C109.5C12—C11—C9120.7 (3)
H2B—C2—H2C109.5C15—C11—C9122.2 (3)
C4—C3—S1123.6 (2)C11—C12—C13120.3 (3)
C4—C3—S3116.7 (2)C11—C12—H12119.9
S1—C3—S3119.55 (18)C13—C12—H12119.9
C3—C4—S2124.6 (2)N1—C13—C12122.5 (3)
C3—C4—S4117.5 (2)N1—C13—C13i116.2 (3)
S2—C4—S4117.70 (18)C12—C13—C13i121.3 (4)
C6—C5—S4124.5 (2)N1—C14—C15124.1 (3)
C6—C5—S3121.8 (2)N1—C14—H14118.0
S4—C5—S3113.67 (18)C15—C14—H14118.0
C5—C6—S5124.6 (2)C14—C15—C11119.3 (3)
C5—C6—S6121.5 (2)C14—C15—H15120.3
S5—C6—S6113.88 (18)C11—C15—H15120.3
C8—C7—S7125.6 (2)C14—N1—C13116.8 (3)
C8—C7—S5117.1 (2)C3—S1—C1104.34 (16)
S7—C7—S5117.26 (17)C4—S2—C2101.90 (17)
C7—C8—S8124.6 (2)C3—S3—C594.78 (15)
C7—C8—S6117.1 (2)C5—S4—C494.69 (15)
S8—C8—S6118.20 (17)C6—S5—C795.17 (14)
C11—C9—S7111.1 (2)C8—S6—C695.04 (15)
C11—C9—H9A109.4C7—S7—C999.50 (14)
S7—C9—H9A109.4C8—S8—C10102.28 (16)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC30H28N2S16
Mr929.50
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.4840 (12), 7.7691 (11), 17.707 (3)
α, β, γ (°)88.973 (12), 80.071 (13), 72.245 (13)
V3)965.2 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.19 × 0.11 × 0.06
Data collection
DiffractometerOxford Diffraction XCalibur
diffractometer with CCD detector
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.884, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
6690, 3391, 1942
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.071, 0.83
No. of reflections3391
No. of parameters220
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.22

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), CAMERON (Watkin et al., 1993) and ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors are grateful to Dr Laure Vendier for collecting the data. This work was in part achieved in the framework of a Franco-Algerian Cooperation Programme (PROFAS); we warmly thank the participating organizations.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlanchard, P., Dugauy, G., Cousseau, J., Sallé, M., Jubault, M., Gorgues, A., Boubekeur, K. & Batail, P. (1993). Synth. Met. 55–57, 2113–2117.  CrossRef Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBoudiba, L., Gouasmia, A. K., Kaboub, L., Cador, O., Ouahab, L. & Fabre, J.-M. (2005). Synth. Met. 150, 317–320.  Web of Science CSD CrossRef CAS Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDoria, G., Passarotti, C., Sala, R., Magrini, R., Sberze, P., Tibolla, M., Ceserani, R. & Castello, R. (1986). Farm. Ed. Sci. 41, 417–428.  CAS Google Scholar
First citationFabre, J.-M. (2002). J. Solid State Chem. 168, 367–383.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGonzalez, A., Segura, J. L. & Martin, N. (2000). Tetrahedron Lett. 41, 3083–3086.  Web of Science CrossRef CAS Google Scholar
First citationHudhomme, P., Sallé, M., Gautier, N., Belyasmine, A. & Gorgues, A. (2006). Arkoivoc, iv, 49–72.  CrossRef Google Scholar
First citationIkeda, K., Kawabata, K., Tanaka, K. & Mizutani, M. (1993). Synth. Met. 55–57, 2007–2012.  CrossRef Web of Science Google Scholar
First citationLiu, H.-X., Dolder, S., Franz, P., Neels, A., Stoeckli-Evans, H. & Decurtins, S. (2003). Inorg. Chem. 42, 4801–4803.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSakata, J. I., Sato, H., Misayaki, A., Enoki, T., Okano, Y. & Kato, R. (1998). Solid State Commun. 108, 377–381.  Web of Science CrossRef CAS Google Scholar
First citationSetifi, F., Ouahab, L., Gohlen, S., Yoshida, Y. & Saito, G. (2003). Inorg. Chem. 42, 1791–1793.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. M., Pearce, L. & Prout, C. K. A. (1993). CAMERON. University of Oxford, England.  Google Scholar
First citationWilliams, J. M., Ferraro, J. R., Thorn, R. I., Carlson, K. D., Geiser, U., Wang, H. H. A. M., Kini, A. M. & Wangbo, M. H. (1992). Organic Superconductors (including Fullerenes), Synthesis, Structure, Properties and Theory. Englewood Cliffs, NJ: Prentice Hall.  Google Scholar
First citationYagubskii, E. B. (1993). Mol. Cryst. Liq. Cryst. 230, 139–156.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages o2484-o2485
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds