organic compounds
A bi-TTF with a bipyridine spacer: 4,4′-bis[(3,6,7-trimethylsulfanyltetrathiafulvalen-2-yl)sulfanylmethyl]-2,2′-bipyridine
aLaboratoire de Chimie des Matériaux Organiques, Centre Universitaire de Tébessa, Route de Constantine, 12000 Tébessa, Algeria, bInstitut Charles Gerhardt, UMR CNRS 5253, AM2N, ENSCM, 8 rue de l'Ecole Normale, F-34296 Montpellier cedex 5, France, cCNRS; LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, F-31077 Toulouse, France, and dUniversité de Toulouse; UPS,INPT; LCC, F-31077 Toulouse, France
*Correspondence e-mail: jean-pierre.legros@lcc-toulouse.fr
The title compound, C30H28N2S16, is a precursor to hybrid magnetic materials. The complete molecule is generated by a crystallographic inversion centre. In the the TTF core is not planar and adopts a chair conformation; the two C3S2 rings are folded around the S⋯S hinges, the dihedral angles being 17.14 (8) and 13.46 (7)°. There is a short S⋯S contact [3.4863 (14) Å] in the crystal structure.
Related literature
For general background, see: Yagubskii (1993); Williams et al. (1992); Sakata et al. (1998); Fabre (2002). For coordination complexes of TTF with nitrogen aromatic substituents, see: Setifi et al. (2003); Liu et al. (2003); Boudiba et al. (2005). For the double Wittig coupling reaction used in the synthesis of the bi-TTF(bipyridine), see: Ikeda et al. (1993); Gonzales et al. (2000). For the synthesis of the precursors, see: Doria et al. (1986); Hudhomme et al. (2006); Blanchard et al. (1993).
Experimental
Crystal data
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), CAMERON (Watkin et al., 1993) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808039111/nc2124sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808039111/nc2124Isup2.hkl
The bi-TTF(bipyridine) 1 was synthesized (37% yield) by using a double Wittig coupling reaction (Ikeda, 1993; Gonzalez, 2000) between two appropriate formyl-TTF units and 4,4'-bis(methyltripenylphosphonium)-2,2'-bipyridinedibromide previously obtained as described in the literature (Doria, 1986). Red crystals (m.p.: 158°C) of 1 were obtained as thin platelets by slow evaporation of a solution of 1 in a mixture of dichloromethane-acetonitrile.
H atoms were located in a difference map then positioned geometrically and refined using a riding model with C—H distances set to 0.96 Å (sp3) and 0.93 Å (sp2), and Uiso(H) egal to 1.2 times the equivalent Uiso of the atom of attachment.
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), CAMERON (Watkin et al., 1993) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms. Symmetry code: i = -x+1, -y+1, -z+1. |
C30H28N2S16 | Z = 1 |
Mr = 929.50 | F(000) = 478 |
Triclinic, P1 | Dx = 1.599 Mg m−3 |
Hall symbol: -P 1 | Melting point: 431 K |
a = 7.4840 (12) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.7691 (11) Å | Cell parameters from 1223 reflections |
c = 17.707 (3) Å | θ = 2.9–25.0° |
α = 88.973 (12)° | µ = 0.92 mm−1 |
β = 80.071 (13)° | T = 293 K |
γ = 72.245 (13)° | Block, red |
V = 965.2 (3) Å3 | 0.19 × 0.11 × 0.06 mm |
Oxford Diffraction XCalibur diffractometer with CCD detector | 3391 independent reflections |
Radiation source: fine-focus sealed tube | 1942 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.9° |
Absorption correction: multi-scan (Blessing, 1995) | h = −8→8 |
Tmin = 0.884, Tmax = 0.937 | k = −9→9 |
6690 measured reflections | l = −18→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.071 | H-atom parameters constrained |
S = 0.83 | w = 1/[σ2(Fo2) + (0.0277P)2] where P = (Fo2 + 2Fc2)/3 |
3391 reflections | (Δ/σ)max = 0.013 |
220 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
C30H28N2S16 | γ = 72.245 (13)° |
Mr = 929.50 | V = 965.2 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.4840 (12) Å | Mo Kα radiation |
b = 7.7691 (11) Å | µ = 0.92 mm−1 |
c = 17.707 (3) Å | T = 293 K |
α = 88.973 (12)° | 0.19 × 0.11 × 0.06 mm |
β = 80.071 (13)° |
Oxford Diffraction XCalibur diffractometer with CCD detector | 3391 independent reflections |
Absorption correction: multi-scan (Blessing, 1995) | 1942 reflections with I > 2σ(I) |
Tmin = 0.884, Tmax = 0.937 | Rint = 0.039 |
6690 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.071 | H-atom parameters constrained |
S = 0.83 | Δρmax = 0.23 e Å−3 |
3391 reflections | Δρmin = −0.22 e Å−3 |
220 parameters |
Experimental. Excalibur (Oxford Diffraction) four-circle Kappa geometry diffractometer equipped with an area CCD detector. Crystal-detector distance (mm): 70.0 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | −0.3976 (5) | 0.7011 (5) | 0.9533 (2) | 0.0573 (11) | |
H1A | −0.3692 | 0.6081 | 0.9142 | 0.069* | |
H1B | −0.5251 | 0.7212 | 0.9806 | 0.069* | |
H1C | −0.3095 | 0.6642 | 0.9884 | 0.069* | |
C2 | 0.0146 (6) | 1.2151 (5) | 0.9481 (2) | 0.0681 (13) | |
H2A | −0.0135 | 1.1531 | 0.9938 | 0.082* | |
H2B | −0.0070 | 1.3402 | 0.9609 | 0.082* | |
H2C | 0.1455 | 1.1612 | 0.9247 | 0.082* | |
C3 | −0.1411 (4) | 0.8506 (4) | 0.86485 (17) | 0.0307 (8) | |
C4 | −0.0438 (4) | 0.9702 (4) | 0.85327 (17) | 0.0300 (8) | |
C5 | 0.1986 (4) | 0.6686 (4) | 0.79718 (18) | 0.0339 (8) | |
C6 | 0.3591 (4) | 0.5317 (4) | 0.77605 (17) | 0.0325 (8) | |
C7 | 0.6075 (4) | 0.2257 (4) | 0.72586 (16) | 0.0271 (8) | |
C8 | 0.7017 (4) | 0.3475 (4) | 0.71193 (17) | 0.0277 (8) | |
C9 | 0.5564 (5) | −0.0019 (4) | 0.62192 (17) | 0.0366 (8) | |
H9A | 0.5827 | −0.1235 | 0.6028 | 0.044* | |
H9B | 0.4232 | 0.0432 | 0.6433 | 0.044* | |
C10 | 0.9345 (5) | 0.4866 (5) | 0.6095 (2) | 0.0711 (13) | |
H10A | 0.8469 | 0.4962 | 0.5748 | 0.085* | |
H10B | 1.0597 | 0.4718 | 0.5809 | 0.085* | |
H10C | 0.8944 | 0.5944 | 0.6417 | 0.085* | |
C11 | 0.6020 (4) | 0.1130 (4) | 0.55723 (17) | 0.0296 (8) | |
C12 | 0.5025 (4) | 0.2947 (4) | 0.55804 (17) | 0.0308 (8) | |
H12 | 0.4020 | 0.3454 | 0.5979 | 0.037* | |
C13 | 0.5516 (4) | 0.4015 (4) | 0.49995 (17) | 0.0276 (8) | |
C14 | 0.7883 (5) | 0.1602 (4) | 0.44029 (19) | 0.0381 (9) | |
H14 | 0.8869 | 0.1118 | 0.3995 | 0.046* | |
C15 | 0.7491 (4) | 0.0458 (4) | 0.49646 (17) | 0.0351 (8) | |
H15 | 0.8209 | −0.0757 | 0.4935 | 0.042* | |
N1 | 0.6944 (4) | 0.3353 (3) | 0.44078 (14) | 0.0343 (7) | |
S1 | −0.37725 (13) | 0.90564 (13) | 0.91017 (6) | 0.0500 (3) | |
S2 | −0.13591 (13) | 1.19803 (12) | 0.88259 (5) | 0.0442 (3) | |
S3 | −0.02471 (12) | 0.63191 (11) | 0.82438 (5) | 0.0408 (2) | |
S4 | 0.18635 (13) | 0.89647 (12) | 0.79792 (5) | 0.0451 (3) | |
S5 | 0.37241 (12) | 0.30319 (11) | 0.77697 (5) | 0.0419 (3) | |
S6 | 0.58066 (12) | 0.56994 (11) | 0.74683 (5) | 0.0409 (3) | |
S7 | 0.69659 (12) | −0.00222 (11) | 0.69692 (5) | 0.0333 (2) | |
S8 | 0.93880 (12) | 0.29726 (12) | 0.66720 (5) | 0.0453 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.051 (2) | 0.054 (3) | 0.064 (3) | −0.026 (2) | 0.017 (2) | −0.008 (2) |
C2 | 0.108 (4) | 0.050 (3) | 0.059 (3) | −0.032 (3) | −0.034 (3) | 0.001 (2) |
C3 | 0.0287 (19) | 0.033 (2) | 0.0275 (19) | −0.0055 (15) | −0.0035 (15) | 0.0019 (15) |
C4 | 0.0294 (19) | 0.0278 (19) | 0.0287 (19) | −0.0028 (15) | −0.0052 (15) | −0.0004 (15) |
C5 | 0.0280 (19) | 0.0282 (19) | 0.045 (2) | −0.0107 (16) | −0.0004 (16) | 0.0009 (16) |
C6 | 0.0274 (19) | 0.0291 (19) | 0.038 (2) | −0.0093 (16) | 0.0030 (16) | −0.0033 (16) |
C7 | 0.0237 (18) | 0.0235 (19) | 0.0299 (19) | −0.0010 (14) | −0.0044 (15) | −0.0019 (14) |
C8 | 0.0224 (18) | 0.0268 (19) | 0.0293 (18) | −0.0038 (15) | 0.0014 (15) | −0.0034 (15) |
C9 | 0.042 (2) | 0.031 (2) | 0.041 (2) | −0.0131 (16) | −0.0135 (18) | 0.0027 (16) |
C10 | 0.046 (3) | 0.083 (3) | 0.079 (3) | −0.027 (2) | 0.011 (2) | 0.025 (3) |
C11 | 0.0317 (19) | 0.0278 (19) | 0.033 (2) | −0.0109 (15) | −0.0132 (16) | 0.0020 (15) |
C12 | 0.0281 (18) | 0.033 (2) | 0.0307 (19) | −0.0090 (15) | −0.0052 (15) | 0.0016 (15) |
C13 | 0.0264 (18) | 0.0279 (18) | 0.0290 (18) | −0.0063 (14) | −0.0098 (15) | 0.0016 (15) |
C14 | 0.031 (2) | 0.038 (2) | 0.041 (2) | −0.0062 (17) | −0.0012 (17) | −0.0046 (17) |
C15 | 0.036 (2) | 0.0276 (19) | 0.040 (2) | −0.0027 (16) | −0.0142 (18) | −0.0004 (17) |
N1 | 0.0322 (16) | 0.0298 (17) | 0.0366 (17) | −0.0053 (13) | −0.0019 (14) | 0.0005 (13) |
S1 | 0.0310 (5) | 0.0449 (6) | 0.0615 (7) | −0.0045 (4) | 0.0131 (5) | −0.0036 (5) |
S2 | 0.0453 (6) | 0.0301 (5) | 0.0517 (6) | −0.0035 (4) | −0.0073 (5) | −0.0098 (4) |
S3 | 0.0268 (5) | 0.0278 (5) | 0.0627 (6) | −0.0086 (4) | 0.0076 (5) | −0.0077 (4) |
S4 | 0.0335 (5) | 0.0282 (5) | 0.0667 (7) | −0.0098 (4) | 0.0105 (5) | −0.0042 (5) |
S5 | 0.0310 (5) | 0.0280 (5) | 0.0620 (7) | −0.0109 (4) | 0.0086 (5) | −0.0017 (4) |
S6 | 0.0281 (5) | 0.0266 (5) | 0.0636 (7) | −0.0094 (4) | 0.0061 (5) | −0.0077 (4) |
S7 | 0.0382 (5) | 0.0230 (5) | 0.0360 (5) | −0.0030 (4) | −0.0107 (4) | 0.0023 (4) |
S8 | 0.0246 (5) | 0.0390 (5) | 0.0627 (7) | −0.0041 (4) | 0.0075 (5) | −0.0003 (5) |
C1—S1 | 1.788 (3) | C8—S8 | 1.741 (3) |
C1—H1A | 0.9599 | C8—S6 | 1.755 (3) |
C1—H1B | 0.9599 | C9—C11 | 1.497 (4) |
C1—H1C | 0.9599 | C9—S7 | 1.828 (3) |
C2—S2 | 1.783 (4) | C9—H9A | 0.9600 |
C2—H2A | 0.9599 | C9—H9B | 0.9600 |
C2—H2B | 0.9599 | C10—S8 | 1.771 (3) |
C2—H2C | 0.9599 | C10—H10A | 0.9599 |
C3—C4 | 1.338 (4) | C10—H10B | 0.9599 |
C3—S1 | 1.736 (3) | C10—H10C | 0.9599 |
C3—S3 | 1.756 (3) | C11—C12 | 1.380 (4) |
C4—S2 | 1.744 (3) | C11—C15 | 1.380 (4) |
C4—S4 | 1.758 (3) | C12—C13 | 1.381 (4) |
C5—C6 | 1.340 (4) | C12—H12 | 0.9300 |
C5—S4 | 1.744 (3) | C13—N1 | 1.342 (4) |
C5—S3 | 1.765 (3) | C13—C13i | 1.489 (6) |
C6—S5 | 1.747 (3) | C14—N1 | 1.327 (4) |
C6—S6 | 1.762 (3) | C14—C15 | 1.376 (4) |
C7—C8 | 1.339 (4) | C14—H14 | 0.9300 |
C7—S7 | 1.743 (3) | C15—H15 | 0.9300 |
C7—S5 | 1.761 (3) | ||
S1—C1—H1A | 109.5 | C11—C9—H9B | 109.4 |
S1—C1—H1B | 109.5 | S7—C9—H9B | 109.4 |
H1A—C1—H1B | 109.5 | H9A—C9—H9B | 108.0 |
S1—C1—H1C | 109.5 | S8—C10—H10A | 109.5 |
H1A—C1—H1C | 109.5 | S8—C10—H10B | 109.5 |
H1B—C1—H1C | 109.5 | H10A—C10—H10B | 109.5 |
S2—C2—H2A | 109.5 | S8—C10—H10C | 109.5 |
S2—C2—H2B | 109.5 | H10A—C10—H10C | 109.5 |
H2A—C2—H2B | 109.5 | H10B—C10—H10C | 109.5 |
S2—C2—H2C | 109.5 | C12—C11—C15 | 117.1 (3) |
H2A—C2—H2C | 109.5 | C12—C11—C9 | 120.7 (3) |
H2B—C2—H2C | 109.5 | C15—C11—C9 | 122.2 (3) |
C4—C3—S1 | 123.6 (2) | C11—C12—C13 | 120.3 (3) |
C4—C3—S3 | 116.7 (2) | C11—C12—H12 | 119.9 |
S1—C3—S3 | 119.55 (18) | C13—C12—H12 | 119.9 |
C3—C4—S2 | 124.6 (2) | N1—C13—C12 | 122.5 (3) |
C3—C4—S4 | 117.5 (2) | N1—C13—C13i | 116.2 (3) |
S2—C4—S4 | 117.70 (18) | C12—C13—C13i | 121.3 (4) |
C6—C5—S4 | 124.5 (2) | N1—C14—C15 | 124.1 (3) |
C6—C5—S3 | 121.8 (2) | N1—C14—H14 | 118.0 |
S4—C5—S3 | 113.67 (18) | C15—C14—H14 | 118.0 |
C5—C6—S5 | 124.6 (2) | C14—C15—C11 | 119.3 (3) |
C5—C6—S6 | 121.5 (2) | C14—C15—H15 | 120.3 |
S5—C6—S6 | 113.88 (18) | C11—C15—H15 | 120.3 |
C8—C7—S7 | 125.6 (2) | C14—N1—C13 | 116.8 (3) |
C8—C7—S5 | 117.1 (2) | C3—S1—C1 | 104.34 (16) |
S7—C7—S5 | 117.26 (17) | C4—S2—C2 | 101.90 (17) |
C7—C8—S8 | 124.6 (2) | C3—S3—C5 | 94.78 (15) |
C7—C8—S6 | 117.1 (2) | C5—S4—C4 | 94.69 (15) |
S8—C8—S6 | 118.20 (17) | C6—S5—C7 | 95.17 (14) |
C11—C9—S7 | 111.1 (2) | C8—S6—C6 | 95.04 (15) |
C11—C9—H9A | 109.4 | C7—S7—C9 | 99.50 (14) |
S7—C9—H9A | 109.4 | C8—S8—C10 | 102.28 (16) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C30H28N2S16 |
Mr | 929.50 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.4840 (12), 7.7691 (11), 17.707 (3) |
α, β, γ (°) | 88.973 (12), 80.071 (13), 72.245 (13) |
V (Å3) | 965.2 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.92 |
Crystal size (mm) | 0.19 × 0.11 × 0.06 |
Data collection | |
Diffractometer | Oxford Diffraction XCalibur diffractometer with CCD detector |
Absorption correction | Multi-scan (Blessing, 1995) |
Tmin, Tmax | 0.884, 0.937 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6690, 3391, 1942 |
Rint | 0.039 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.071, 0.83 |
No. of reflections | 3391 |
No. of parameters | 220 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.23, −0.22 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), CAMERON (Watkin et al., 1993) and ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).
Acknowledgements
The authors are grateful to Dr Laure Vendier for collecting the data. This work was in part achieved in the framework of a Franco-Algerian Cooperation Programme (PROFAS); we warmly thank the participating organizations.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Blanchard, P., Dugauy, G., Cousseau, J., Sallé, M., Jubault, M., Gorgues, A., Boubekeur, K. & Batail, P. (1993). Synth. Met. 55–57, 2113–2117. CrossRef Web of Science Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Boudiba, L., Gouasmia, A. K., Kaboub, L., Cador, O., Ouahab, L. & Fabre, J.-M. (2005). Synth. Met. 150, 317–320. Web of Science CSD CrossRef CAS Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Doria, G., Passarotti, C., Sala, R., Magrini, R., Sberze, P., Tibolla, M., Ceserani, R. & Castello, R. (1986). Farm. Ed. Sci. 41, 417–428. CAS Google Scholar
Fabre, J.-M. (2002). J. Solid State Chem. 168, 367–383. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gonzalez, A., Segura, J. L. & Martin, N. (2000). Tetrahedron Lett. 41, 3083–3086. Web of Science CrossRef CAS Google Scholar
Hudhomme, P., Sallé, M., Gautier, N., Belyasmine, A. & Gorgues, A. (2006). Arkoivoc, iv, 49–72. CrossRef Google Scholar
Ikeda, K., Kawabata, K., Tanaka, K. & Mizutani, M. (1993). Synth. Met. 55–57, 2007–2012. CrossRef Web of Science Google Scholar
Liu, H.-X., Dolder, S., Franz, P., Neels, A., Stoeckli-Evans, H. & Decurtins, S. (2003). Inorg. Chem. 42, 4801–4803. Web of Science CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Sakata, J. I., Sato, H., Misayaki, A., Enoki, T., Okano, Y. & Kato, R. (1998). Solid State Commun. 108, 377–381. Web of Science CrossRef CAS Google Scholar
Setifi, F., Ouahab, L., Gohlen, S., Yoshida, Y. & Saito, G. (2003). Inorg. Chem. 42, 1791–1793. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Watkin, D. M., Pearce, L. & Prout, C. K. A. (1993). CAMERON. University of Oxford, England. Google Scholar
Williams, J. M., Ferraro, J. R., Thorn, R. I., Carlson, K. D., Geiser, U., Wang, H. H. A. M., Kini, A. M. & Wangbo, M. H. (1992). Organic Superconductors (including Fullerenes), Synthesis, Structure, Properties and Theory. Englewood Cliffs, NJ: Prentice Hall. Google Scholar
Yagubskii, E. B. (1993). Mol. Cryst. Liq. Cryst. 230, 139–156. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
To date the search for solids presenting two physical properties such as magnetism and electrical conductivity inside a same material has expanded greatly, particularly with materials involving tetrathiafulvalene (TTF) derivatives well known to provide conducting and even superconducting salts (Williams et al., 1992; Yagubskii,1993; Sakata et al., 1998: Fabre, 2002). To introduce a magnetic network, involving localized spins, inside such conducting salts, a particularly promising way is to build a coordination complex between a transition metal (Cu, Co ···) and a pyridine or bipyridine moiety bonded to a TTF core (Setifi et al., 2003; Liu et al., 2003; Boudiba et al., 2005). Following this strategy we synthesized the title precursor: bi-TTF(bipyridine) 1 and studied its crystal structure to verify if the molecular geometry could allow a subsequent easy formation of the target coordinating complex. The molecular structure is shown in Fig. 1. A s expected two TTF cores bearing methylsulfanyl substituents are connected by a bipyridine spacer. The molecule lies on a crystallographic centre of symmetry located at the centre of the bipyridine moiety, the asymmetric unit is thus composed of half a molecule. As a result the bipyridine spacer is in the trans conformation. The TTF cores deviate strongly from planarity and take a chair conformation. The two C3S2 rings are folded around the S···S hinges: the central group S3/S4/C5/C6/S5/S6 is planar and the external planes S3/S4/C3/C4 and S5/S6/C7/C8 make dihedral angles of 17.14 (8)° and 13.46 (7)° respectively. There is a short S⋯S contact [3.4863 (14) Å] in the crystal structure.