metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1519-m1520

Hexa­kis­(μ2-2-amino­ethane­thiol­ato)­triiron(III) tris­(perchlorate)

aDepartment of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
*Correspondence e-mail: igashira@chem.sci.osaka-u.ac.jp

(Received 21 October 2008; accepted 4 November 2008; online 8 November 2008)

In the title salt, [Fe3(C2H6NS)6](ClO4)3, the trinuclear cation lies on a special position of [\overline{3}] site symmetry; the central Fe atom is coordinated by six thiol­ate groups from the two flanking fac-(S)-[Fe(C2H6NS)3] units. In the flanking units, the three C2H6NS groups each chelate to the metal atom. The cations inter­act with the perchlorate anions through weak N—H⋯O hydrogen bonds resulting in a three-dimensional network. In the asymmetric unit two cations are present, one of which is disordered over two positions with occupancies of 0.75 and 0.25.

Related literature

For related structures, see: Busch & Jicha (1962[Busch, D. C. & Jicha, D. C. (1962). Inorg. Chem. 1, 884-887.]); Heeg et al. (1985[Heeg, M. J., Blinn, E. L. & Deutsch, E. (1985). Inorg. Chem. 24, 1118-1120.]); Mahboob et al. (2004[Mahboob, N., Miyashita, Y., Yamada, Y., Fujisawa, K. & Okamoto, K. (2004). Inorg. Chim. Acta, 357, 75-82.]); Marsh et al. (1986[Marsh, R. E., Heeg, M. J. & Deutsch, E. (1986). Inorg. Chem. 25, 118.]); Matsuura et al. (2006[Matsuura, N., Igashira-Kamiyama, A., Kawamoto, T. & Konno, T. (2006). Inorg. Chem. 45, 401-408.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe3(C2H6NS)6](ClO4)3

  • Mr = 922.73

  • Trigonal, [R \overline 3]

  • a = 14.2852 (6) Å

  • c = 26.2187 (8) Å

  • V = 4633.6 (2) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 2.12 mm−1

  • T = 200 (2) K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.677, Tmax = 0.816

  • 15327 measured reflections

  • 2365 independent reflections

  • 2144 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.100

  • S = 1.39

  • 2365 reflections

  • 165 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 1.09 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Selected bond lengths (Å)

Fe1—S1 2.2764 (5)
Fe2—N1 2.0482 (18)
Fe2—S1 2.2434 (6)
Fe3—S2B 2.281 (2)
Fe3—S2 2.2869 (7)
Fe4—N2 2.026 (4)
Fe4—N2B 2.059 (11)
Fe4—S2B 2.229 (2)
Fe4—S2 2.2535 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.92 2.28 3.130 (3) 154
N1—H2⋯O3iii 0.92 2.40 3.162 (3) 140
N2—H7⋯O1ii 0.92 2.30 3.110 (4) 147
N2—H8⋯O2 0.92 2.39 3.274 (4) 161
N2B—H13⋯O2 0.92 2.41 2.984 (12) 121
N2B—H14⋯O1 0.92 2.27 3.112 (11) 152
Symmetry codes: (ii) -x+y, -x+1, z; (iii) [x-y+{\script{1\over 3}}, x+{\script{2\over 3}}, -z+{\script{2\over 3}}].

Data collection:PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. ]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: Yadokari-XG (Wakita, 2000[Wakita, K. (2000). Yadokari-XG. Department of Chemistry, Graduate School of Science, The University of Tokyo, Japan.]).

Supporting information


Comment top

Due to the high Lewis basicity of thiolate groups, a great number of thiolate-bridged complexes have been synthesized up to now. 2-Aminoethanethiolate (aet) is the simplest N,S-chelating ligand that has been used for the formation of S-bridged polynuclear structures. For example, it has been shown that the aet ligand reacts with the octahedral metal ions to give linear-type S-bridged trinuclear structures, such as CoIII3 (Busch and Jicha, 1962; Heeg et al., 1985; Marsh et al., 1986), RhIII3 (Mahboob et al., 2004), and RuIII3 (Matsuura et al., 2006). In this paper, we report on the crystal structure of the title compound (I), which was obtained by the reaction of aet and Fe(ClO4)3. The asymmetric unit of the compound (I) contains two complex cations having a threefold rotation-inversion axis and one perchlorate anion. One of the complex cations is disordered over two positions with occupancies of 0.75 and 0.25. In the complex cation of (I), two fac(S)-[Fe(aet)3] units coordinate to a central Fe atom through thiolato bridges to form a linear-type trinuclear structure. Each terminal Fe atom is in an N3S3 octahedral environment, whereas the central Fe atom is in an S6 octahedral environment. Considering the charge balance, it is assumed that all Fe atoms have a +III oxidation state.

Related literature top

For related structures, see: Busch & Jicha (1962); Heeg et al. (1985); Mahboob et al. (2004); Marsh et al. (1986); Matsuura et al. (2006).

Experimental top

To a solution containing 2-aminoethanethiol hydrochloride (0.11 g, 1 mmol) in 20 ml of methanol/CH2Cl2 (1:1) was added a solution of Et3N (0.10 g, 1 mmol) in 10 ml of methanol and a solution of Fe(ClO4)3.6H2O (0.09 g, 0.2 mmol) in 2 ml of methanol. The resulting dark brown solution was stood at room temperature overnight to give black crystals, which was filtered and washed with methanol. Yield: 31 mg (50% based on Fe). Anal. Calcd for [Fe3(aet)6](ClO4)3 = C12H36Cl3Fe3N6O12S6: C, 15.62; H, 3.93; N, 9.11%. Found: C, 15.82; H, 3.88; N, 9.00%.

Refinement top

H atoms bonded to C and N atoms were placed at calculated positions [C—H = 0.99 and N—H = 0.92 Å] and refined as riding with Uiso(H) = 1.2Ueq (C,N). One cationic part was disordered over two positions (S2, N2, C3, C4 and S2B, N2B, C3B, C4B) and refined with site occupancies of 0.75 and 0.25. The C3B atom in a minor component was restrained based on ISOR.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: Yadokari-XG (Wakita, 2000).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. The cation units of (I). The molecule with open bonds is the minor component of the disordered unit. Symmetry codes: (i) -y + 1, x-y + 1, z; (ii) -x + y, -x + 1, z; (iii) -x + 2/3, -y + 4/3, -z + 1/3; (iv) y - 1/3, -x + y+1/3, -z + 1/3; (v) x-y + 2/3, x + 1/3, -z + 1/3; (vi) -x + 2/3, -y + 4/3, -z + 4/3; (vii) y - 1/3, -x + y+1/3, -z + 4/3; (viii) x-y + 2/3, x + 1/3, -z + 4/3.
Hexakis(µ2-2-aminoethanethiolato)triiron(III) tris(perchlorate) top
Crystal data top
[Fe3(C2H6NS)6](ClO4)3Dx = 1.984 Mg m3
Mr = 922.73Mo Kα radiation, λ = 0.71075 Å
Trigonal, R3Cell parameters from 12827 reflections
Hall symbol: -R 3θ = 3.4–27.4°
a = 14.2852 (6) ŵ = 2.12 mm1
c = 26.2187 (8) ÅT = 200 K
V = 4633.6 (2) Å3Prism, black
Z = 60.20 × 0.20 × 0.10 mm
F(000) = 2826
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2365 independent reflections
Radiation source: fine-focus sealed tube2144 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 10.00 pixels mm-1θmax = 27.4°, θmin = 3.4°
ω scansh = 1816
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1817
Tmin = 0.677, Tmax = 0.816l = 3333
15327 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.39 w = 1/[σ2(Fo2) + (0.0456P)2 + 3.0528P]
where P = (Fo2 + 2Fc2)/3
2365 reflections(Δ/σ)max = 0.001
165 parametersΔρmax = 1.09 e Å3
6 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Fe3(C2H6NS)6](ClO4)3Z = 6
Mr = 922.73Mo Kα radiation
Trigonal, R3µ = 2.12 mm1
a = 14.2852 (6) ÅT = 200 K
c = 26.2187 (8) Å0.20 × 0.20 × 0.10 mm
V = 4633.6 (2) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2365 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2144 reflections with I > 2σ(I)
Tmin = 0.677, Tmax = 0.816Rint = 0.053
15327 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0326 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.39Δρmax = 1.09 e Å3
2365 reflectionsΔρmin = 0.31 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The 2-aminoethanethiolate ligand of one unit containing Fe3 and Fe4 atoms is disordered over two positions with the occupancies of 0.75 and 0.25. The C3B atom in the minor component is restrained based on ISOR.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.33330.66670.16670.01712 (18)
Fe20.33330.66670.269870 (17)0.01673 (15)
S10.21510 (4)0.53292 (4)0.219319 (19)0.02149 (15)
N10.20358 (15)0.64420 (15)0.31253 (7)0.0255 (4)
H10.21510.63360.34600.031*
H20.19860.70590.31100.031*
C10.09906 (18)0.5506 (2)0.29524 (9)0.0308 (5)
H30.03820.55950.30710.037*
H40.09030.48280.31000.037*
C20.09795 (17)0.5441 (2)0.23732 (9)0.0302 (5)
H50.10260.60980.22220.036*
H60.03060.48020.22530.036*
Fe30.33330.66670.66670.02171 (19)
Fe40.33330.66670.563330 (19)0.02155 (16)
S20.20595 (6)0.53902 (6)0.61393 (3)0.02341 (18)0.75
N20.2103 (3)0.6563 (3)0.52058 (14)0.0300 (8)0.75
H70.21630.72340.51930.036*0.75
H80.21760.63770.48780.036*0.75
C30.0975 (3)0.5650 (4)0.59679 (17)0.0394 (9)0.75
H90.02670.50410.60760.047*0.75
H100.10830.63190.61350.047*0.75
C40.1011 (4)0.5773 (4)0.5393 (2)0.0425 (11)0.75
H110.07760.50620.52330.051*0.75
H120.04960.60110.52890.051*0.75
S2B0.2622 (3)0.7412 (2)0.61334 (10)0.0335 (5)0.25
N2B0.1951 (9)0.6067 (9)0.5199 (5)0.035 (3)0.25
H130.21270.63720.48790.041*0.25
H140.16550.53320.51630.041*0.25
C3B0.1180 (11)0.6301 (17)0.5950 (6)0.065 (4)0.25
H150.10360.55890.60780.078*0.25
H160.06380.64620.60980.078*0.25
C4B0.1130 (14)0.6295 (15)0.5432 (8)0.060 (5)0.25
H170.12570.70060.53110.072*0.25
H180.03990.57370.53210.072*0.25
Cl10.17461 (5)0.41937 (4)0.42062 (2)0.03377 (17)
O10.12758 (17)0.38390 (16)0.47031 (7)0.0460 (5)
O20.20389 (18)0.53133 (14)0.41480 (8)0.0492 (5)
O30.0981 (2)0.35574 (17)0.38241 (8)0.0604 (6)
O40.26978 (18)0.41114 (19)0.41632 (9)0.0583 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0171 (2)0.0171 (2)0.0173 (4)0.00853 (12)0.0000.000
Fe20.01850 (19)0.01850 (19)0.0132 (3)0.00925 (9)0.0000.000
S10.0233 (3)0.0207 (3)0.0166 (3)0.0081 (2)0.00003 (18)0.00068 (17)
N10.0293 (10)0.0302 (10)0.0174 (9)0.0151 (8)0.0022 (7)0.0004 (7)
C10.0224 (11)0.0387 (13)0.0235 (12)0.0094 (10)0.0051 (8)0.0034 (9)
C20.0180 (10)0.0410 (13)0.0235 (11)0.0088 (10)0.0020 (8)0.0009 (9)
Fe30.0190 (2)0.0190 (2)0.0272 (4)0.00950 (12)0.0000.000
Fe40.0229 (2)0.0229 (2)0.0189 (3)0.01145 (10)0.0000.000
S20.0220 (4)0.0236 (4)0.0205 (4)0.0082 (3)0.0005 (3)0.0008 (3)
N20.0387 (19)0.033 (2)0.0200 (15)0.0197 (19)0.0061 (12)0.0045 (16)
C30.0233 (18)0.052 (2)0.040 (2)0.0165 (19)0.0008 (14)0.001 (2)
C40.031 (2)0.060 (3)0.036 (2)0.023 (3)0.0093 (15)0.007 (2)
S2B0.0387 (15)0.0385 (14)0.0369 (14)0.0294 (14)0.0028 (11)0.0001 (11)
N2B0.034 (5)0.030 (6)0.037 (5)0.014 (6)0.011 (4)0.014 (5)
C3B0.026 (6)0.124 (13)0.053 (8)0.043 (9)0.010 (5)0.014 (10)
C4B0.033 (7)0.066 (12)0.082 (12)0.026 (9)0.018 (7)0.014 (11)
Cl10.0459 (4)0.0229 (3)0.0229 (3)0.0100 (2)0.0001 (2)0.00124 (19)
O10.0606 (13)0.0428 (11)0.0322 (10)0.0239 (10)0.0109 (9)0.0091 (8)
O20.0767 (15)0.0243 (9)0.0382 (12)0.0188 (9)0.0039 (10)0.0027 (7)
O30.0780 (16)0.0390 (11)0.0502 (13)0.0188 (11)0.0270 (11)0.0113 (9)
O40.0501 (12)0.0571 (13)0.0655 (15)0.0252 (11)0.0103 (10)0.0076 (11)
Geometric parameters (Å, º) top
Fe1—S1i2.2763 (5)Fe4—N2iii2.026 (4)
Fe1—S1ii2.2763 (5)Fe4—N2iv2.026 (4)
Fe1—S1iii2.2764 (5)Fe4—N2B2.059 (11)
Fe1—S12.2764 (5)Fe4—N2Biii2.059 (11)
Fe1—S1iv2.2764 (5)Fe4—N2Biv2.059 (11)
Fe1—S1v2.2764 (5)Fe4—S2B2.229 (2)
Fe2—N12.0482 (18)Fe4—S2Biii2.229 (2)
Fe2—N1iii2.0482 (18)Fe4—S2Biv2.229 (2)
Fe2—N1iv2.0482 (18)Fe4—S2iii2.2535 (7)
Fe2—S1iii2.2434 (6)Fe4—S22.2535 (8)
Fe2—S12.2434 (6)Fe4—S2iv2.2535 (7)
Fe2—S1iv2.2434 (6)S2—C31.821 (4)
S1—C21.821 (2)N2—C41.480 (7)
N1—C11.492 (3)N2—H70.9200
N1—H10.9200N2—H80.9200
N1—H20.9200C3—C41.514 (7)
C1—C21.521 (3)C3—H90.9900
C1—H30.9900C3—H100.9900
C1—H40.9900C4—H110.9900
C2—H50.9900C4—H120.9900
C2—H60.9900S2B—C3B1.929 (16)
Fe3—S2Bvi2.281 (2)N2B—C4B1.49 (2)
Fe3—S2B2.281 (2)N2B—H130.9200
Fe3—S2Biv2.281 (2)N2B—H140.9200
Fe3—S2Biii2.281 (2)C3B—C4B1.36 (3)
Fe3—S2Bvii2.281 (2)C3B—H150.9900
Fe3—S2Bviii2.281 (2)C3B—H160.9900
Fe3—S2viii2.2869 (7)C4B—H170.9900
Fe3—S2iii2.2869 (7)C4B—H180.9900
Fe3—S22.2869 (7)Cl1—O31.425 (2)
Fe3—S2iv2.2869 (7)Cl1—O41.426 (2)
Fe3—S2vi2.2870 (7)Cl1—O11.4369 (18)
Fe3—S2vii2.2870 (7)Cl1—O21.4447 (18)
Fe4—N22.026 (4)
S1i—Fe1—S1ii87.042 (18)N2—Fe4—N2iii92.34 (15)
S1i—Fe1—S1iii180.00 (3)N2—Fe4—N2iv92.34 (15)
S1ii—Fe1—S1iii92.959 (18)N2iii—Fe4—N2iv92.34 (15)
S1i—Fe1—S192.960 (18)N2B—Fe4—N2Biii92.4 (5)
S1ii—Fe1—S1180.0N2—Fe4—N2Biv103.6 (3)
S1iii—Fe1—S187.039 (18)N2iii—Fe4—N2Biv78.4 (3)
S1i—Fe1—S1iv92.961 (18)N2iv—Fe4—N2Biv17.7 (3)
S1ii—Fe1—S1iv92.961 (18)N2B—Fe4—N2Biv92.4 (5)
S1iii—Fe1—S1iv87.039 (18)N2Biii—Fe4—N2Biv92.4 (5)
S1—Fe1—S1iv87.039 (18)N2B—Fe4—S2B87.3 (3)
S1i—Fe1—S1v87.041 (18)N2Biii—Fe4—S2B91.5 (4)
S1ii—Fe1—S1v87.040 (18)N2Biv—Fe4—S2B176.1 (3)
S1iii—Fe1—S1v92.959 (18)N2B—Fe4—S2Biii176.1 (3)
S1—Fe1—S1v92.960 (18)N2Biii—Fe4—S2Biii87.3 (3)
S1iv—Fe1—S1v180.0N2Biv—Fe4—S2Biii91.5 (4)
N1—Fe2—N1iii93.02 (7)S2B—Fe4—S2Biii88.91 (9)
N1—Fe2—N1iv93.02 (7)N2B—Fe4—S2Biv91.5 (4)
N1iii—Fe2—N1iv93.02 (7)N2Biii—Fe4—S2Biv176.1 (3)
N1—Fe2—S1iii91.05 (5)N2Biv—Fe4—S2Biv87.3 (3)
N1iii—Fe2—S1iii87.26 (5)S2B—Fe4—S2Biv88.91 (9)
N1iv—Fe2—S1iii175.90 (5)S2Biii—Fe4—S2Biv88.91 (9)
N1—Fe2—S187.26 (5)N2—Fe4—S2iii91.91 (11)
N1iii—Fe2—S1175.90 (5)N2iii—Fe4—S2iii86.94 (11)
N1iv—Fe2—S191.05 (5)N2iv—Fe4—S2iii175.71 (11)
S1iii—Fe2—S188.65 (2)N2—Fe4—S286.94 (11)
N1—Fe2—S1iv175.90 (5)N2iii—Fe4—S2175.71 (11)
N1iii—Fe2—S1iv91.05 (5)N2iv—Fe4—S291.91 (11)
N1iv—Fe2—S1iv87.26 (5)S2iii—Fe4—S288.86 (3)
S1iii—Fe2—S1iv88.65 (2)N2—Fe4—S2iv175.71 (11)
S1—Fe2—S1iv88.65 (2)N2iii—Fe4—S2iv91.91 (11)
C2—S1—Fe296.07 (8)N2iv—Fe4—S2iv86.94 (11)
C2—S1—Fe1114.36 (8)S2iii—Fe4—S2iv88.86 (3)
Fe2—S1—Fe173.546 (18)S2—Fe4—S2iv88.86 (3)
C1—N1—Fe2113.33 (14)C3—S2—Fe496.60 (14)
C1—N1—H1108.9C3—S2—Fe3113.93 (15)
Fe2—N1—H1108.9Fe4—S2—Fe373.27 (2)
C1—N1—H2108.9C4—N2—Fe4114.7 (3)
Fe2—N1—H2108.9C4—N2—H7108.6
H1—N1—H2107.7Fe4—N2—H7108.6
N1—C1—C2109.46 (17)C4—N2—H8108.6
N1—C1—H3109.8Fe4—N2—H8108.6
C2—C1—H3109.8H7—N2—H8107.6
N1—C1—H4109.8C4—C3—S2106.6 (3)
C2—C1—H4109.8C4—C3—H9110.4
H3—C1—H4108.2S2—C3—H9110.4
C1—C2—S1106.38 (15)C4—C3—H10110.4
C1—C2—H5110.5S2—C3—H10110.4
S1—C2—H5110.5H9—C3—H10108.6
C1—C2—H6110.5N2—C4—C3112.4 (4)
S1—C2—H6110.5N2—C4—H11109.1
H5—C2—H6108.6C3—C4—H11109.1
S2Bvi—Fe3—S2B179.998 (1)N2—C4—H12109.1
S2Bvi—Fe3—S2Biv93.64 (9)C3—C4—H12109.1
S2B—Fe3—S2Biv86.37 (9)H11—C4—H12107.9
S2Bvi—Fe3—S2Biii93.64 (9)C3B—S2B—Fe490.9 (5)
S2B—Fe3—S2Biii86.37 (9)C3B—S2B—Fe3108.1 (6)
S2Biv—Fe3—S2Biii86.37 (9)Fe4—S2B—Fe373.83 (7)
S2Bvi—Fe3—S2Bvii86.36 (9)C4B—N2B—Fe4112.1 (9)
S2B—Fe3—S2Bvii93.63 (9)C4B—N2B—H13109.2
S2Biv—Fe3—S2Bvii180.00 (10)Fe4—N2B—H13109.2
S2Biii—Fe3—S2Bvii93.64 (9)C4B—N2B—H14109.2
S2Bvi—Fe3—S2Bviii86.36 (9)Fe4—N2B—H14109.2
S2B—Fe3—S2Bviii93.63 (9)H13—N2B—H14107.9
S2Biv—Fe3—S2Bviii93.64 (9)C4B—C3B—S2B106.6 (13)
S2Biii—Fe3—S2Bviii179.998 (1)C4B—C3B—H15110.4
S2Bvii—Fe3—S2Bviii86.36 (9)S2B—C3B—H15110.4
S2viii—Fe3—S2iii180.00 (5)C4B—C3B—H16110.4
S2viii—Fe3—S292.77 (3)S2B—C3B—H16110.4
S2iii—Fe3—S287.23 (3)H15—C3B—H16108.6
S2viii—Fe3—S2iv92.77 (3)C3B—C4B—N2B111.5 (14)
S2iii—Fe3—S2iv87.23 (3)C3B—C4B—H17109.3
S2—Fe3—S2iv87.23 (3)N2B—C4B—H17109.3
S2viii—Fe3—S2vi87.23 (3)C3B—C4B—H18109.3
S2iii—Fe3—S2vi92.77 (3)N2B—C4B—H18109.3
S2—Fe3—S2vi180.0H17—C4B—H18108.0
S2iv—Fe3—S2vi92.77 (3)O3—Cl1—O4110.49 (15)
S2viii—Fe3—S2vii87.23 (3)O3—Cl1—O1109.78 (14)
S2iii—Fe3—S2vii92.77 (3)O4—Cl1—O1109.85 (13)
S2—Fe3—S2vii92.77 (3)O3—Cl1—O2109.71 (13)
S2iv—Fe3—S2vii179.999 (1)O4—Cl1—O2108.82 (14)
S2vi—Fe3—S2vii87.23 (3)O1—Cl1—O2108.16 (12)
N1—Fe2—S1—C221.81 (10)S2viii—Fe3—S2—Fe4136.322 (12)
N1iv—Fe2—S1—C2114.79 (9)S2iii—Fe3—S2—Fe443.680 (12)
S1iii—Fe2—S1—C269.30 (8)S2iv—Fe3—S2—Fe443.680 (12)
S1iv—Fe2—S1—C2157.98 (8)S2vii—Fe3—S2—Fe4136.320 (12)
N1—Fe2—S1—Fe1135.45 (5)N2iii—Fe4—N2—C4175.7 (3)
N1iv—Fe2—S1—Fe1131.57 (5)N2iv—Fe4—N2—C491.9 (4)
S1iii—Fe2—S1—Fe144.341 (11)S2iii—Fe4—N2—C488.6 (3)
S1iv—Fe2—S1—Fe144.341 (11)S2—Fe4—N2—C40.1 (3)
S1i—Fe1—S1—C2134.32 (9)Fe4—S2—C3—C444.5 (3)
S1iii—Fe1—S1—C245.68 (9)Fe3—S2—C3—C4119.0 (3)
S1iv—Fe1—S1—C2132.87 (8)Fe4—N2—C4—C330.6 (5)
S1v—Fe1—S1—C247.13 (8)S2—C3—C4—N251.4 (5)
S1i—Fe1—S1—Fe2136.408 (8)N2B—Fe4—S2B—C3B27.4 (7)
S1iii—Fe1—S1—Fe243.592 (8)N2Biii—Fe4—S2B—C3B119.7 (7)
S1iv—Fe1—S1—Fe243.592 (8)S2Biii—Fe4—S2B—C3B153.1 (6)
S1v—Fe1—S1—Fe2136.406 (8)S2Biv—Fe4—S2B—C3B64.1 (6)
N1iii—Fe2—N1—C1179.13 (15)N2B—Fe4—S2B—Fe3136.0 (4)
N1iv—Fe2—N1—C185.94 (19)N2Biii—Fe4—S2B—Fe3131.7 (3)
S1iii—Fe2—N1—C193.56 (15)S2Biii—Fe4—S2B—Fe344.47 (4)
S1—Fe2—N1—C14.96 (15)S2Biv—Fe4—S2B—Fe344.47 (4)
Fe2—N1—C1—C237.5 (2)S2Biv—Fe3—S2B—C3B42.2 (5)
N1—C1—C2—S157.4 (2)S2Biii—Fe3—S2B—C3B128.8 (5)
Fe2—S1—C2—C146.89 (16)S2Bvii—Fe3—S2B—C3B137.8 (5)
Fe1—S1—C2—C1121.55 (14)S2Bviii—Fe3—S2B—C3B51.2 (5)
N2—Fe4—S2—C323.37 (18)S2Biv—Fe3—S2B—Fe443.29 (4)
N2iv—Fe4—S2—C3115.61 (18)S2Biii—Fe3—S2B—Fe443.29 (4)
S2iii—Fe4—S2—C368.61 (15)S2Bvii—Fe3—S2B—Fe4136.71 (4)
S2iv—Fe4—S2—C3157.50 (15)S2Bviii—Fe3—S2B—Fe4136.71 (4)
N2—Fe4—S2—Fe3136.42 (10)N2Biii—Fe4—N2B—C4B96.9 (14)
N2iv—Fe4—S2—Fe3131.34 (11)N2Biv—Fe4—N2B—C4B170.6 (12)
S2iii—Fe4—S2—Fe344.441 (14)S2B—Fe4—N2B—C4B5.5 (11)
S2iv—Fe4—S2—Fe344.441 (14)S2Biv—Fe4—N2B—C4B83.3 (11)
S2viii—Fe3—S2—C3133.80 (16)Fe4—S2B—C3B—C4B54.2 (13)
S2iii—Fe3—S2—C346.20 (16)Fe3—S2B—C3B—C4B127.5 (12)
S2iv—Fe3—S2—C3133.55 (16)S2B—C3B—C4B—N2B59.4 (18)
S2vii—Fe3—S2—C346.45 (16)Fe4—N2B—C4B—C3B32.3 (19)
Symmetry codes: (i) xy+2/3, x+1/3, z+1/3; (ii) x+2/3, y+4/3, z+1/3; (iii) x+y, x+1, z; (iv) y+1, xy+1, z; (v) y1/3, x+y+1/3, z+1/3; (vi) x+2/3, y+4/3, z+4/3; (vii) y1/3, x+y+1/3, z+4/3; (viii) xy+2/3, x+1/3, z+4/3.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.922.283.130 (3)154
N1—H2···O3ix0.922.403.162 (3)140
N2—H7···O1iii0.922.303.110 (4)147
N2—H8···O20.922.393.274 (4)161
N2B—H13···O20.922.412.984 (12)121
N2B—H14···O10.922.273.112 (11)152
Symmetry codes: (iii) x+y, x+1, z; (ix) xy+1/3, x+2/3, z+2/3.

Experimental details

Crystal data
Chemical formula[Fe3(C2H6NS)6](ClO4)3
Mr922.73
Crystal system, space groupTrigonal, R3
Temperature (K)200
a, c (Å)14.2852 (6), 26.2187 (8)
V3)4633.6 (2)
Z6
Radiation typeMo Kα
µ (mm1)2.12
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.677, 0.816
No. of measured, independent and
observed [I > 2σ(I)] reflections
15327, 2365, 2144
Rint0.053
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.100, 1.39
No. of reflections2365
No. of parameters165
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.09, 0.31

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), Yadokari-XG (Wakita, 2000).

Selected geometric parameters (Å, º) top
Fe1—S12.2764 (5)Fe4—N22.026 (4)
Fe2—N12.0482 (18)Fe4—N2B2.059 (11)
Fe2—S12.2434 (6)Fe4—S2B2.229 (2)
Fe3—S2B2.281 (2)Fe4—S22.2535 (8)
Fe3—S22.2869 (7)
N1—Fe2—S1i175.90 (5)N2—Fe4—S2i175.71 (11)
Fe2—S1—Fe173.546 (18)Fe4—S2—Fe373.27 (2)
N2B—Fe4—S2Bii176.1 (3)Fe4—S2B—Fe373.83 (7)
Symmetry codes: (i) y+1, xy+1, z; (ii) x+y, x+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.922.283.130 (3)154.3
N1—H2···O3iii0.922.403.162 (3)140.3
N2—H7···O1ii0.922.303.110 (4)146.7
N2—H8···O20.922.393.274 (4)161.0
N2B—H13···O20.922.412.984 (12)120.8
N2B—H14···O10.922.273.112 (11)152.4
Symmetry codes: (ii) x+y, x+1, z; (iii) xy+1/3, x+2/3, z+2/3.
 

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (grant No. 20750047) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBusch, D. C. & Jicha, D. C. (1962). Inorg. Chem. 1, 884–887.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHeeg, M. J., Blinn, E. L. & Deutsch, E. (1985). Inorg. Chem. 24, 1118–1120.  CSD CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMahboob, N., Miyashita, Y., Yamada, Y., Fujisawa, K. & Okamoto, K. (2004). Inorg. Chim. Acta, 357, 75–82.  Web of Science CSD CrossRef CAS Google Scholar
First citationMarsh, R. E., Heeg, M. J. & Deutsch, E. (1986). Inorg. Chem. 25, 118.  CSD CrossRef Google Scholar
First citationMatsuura, N., Igashira-Kamiyama, A., Kawamoto, T. & Konno, T. (2006). Inorg. Chem. 45, 401–408.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWakita, K. (2000). Yadokari-XG. Department of Chemistry, Graduate School of Science, The University of Tokyo, Japan.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1519-m1520
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds