organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Methyl­sulfon­yl-4-nitro­benzene

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: hgf1000@163.com

(Received 29 October 2008; accepted 1 November 2008; online 8 November 2008)

In the title compound, C7H7NO4S, the nitro group is twisted by 10.2 (5) ° out of the plane of the benzene ring. Inversion-related mol­ecules are linked by non-classical C—H⋯O hydrogen bonds into dimers featuring an R22(10) motif.

Related literature

For the synthesis, see: Nobles & Thompson (1965[Nobles, W. L. & Thompson, B. B. (1965). J. Pharm. Sci. 54, 709-713.]). For the supra­molecular patterns of nitro­phenyl compounds, see Glidewell et al. (2002[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2002). Acta Cryst. C58, o201-o203.]); Ma (2007[Ma, D.-S. (2007). Acta Cryst. E63, o658-o659.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7NO4S

  • Mr = 201.20

  • Monoclinic, P 21 /c

  • a = 6.3765 (13) Å

  • b = 8.0411 (16) Å

  • c = 16.426 (3) Å

  • β = 91.67 (3)°

  • V = 841.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 291 (2) K

  • 0.21 × 0.19 × 0.16 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.926, Tmax = 0.942

  • 7967 measured reflections

  • 1933 independent reflections

  • 1045 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.152

  • S = 1.11

  • 1933 reflections

  • 119 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H2⋯O4i 0.93 2.65 3.462 (5) 147
Symmetry code: (i) -x-1, -y+1, -z.

Data collection: RAPID-AUTO (Rigaku Corporation, 1998[Rigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Simple carboxylic acids containing the nitrophenyl group exhibit a variety of supramolecular aggregation patterns (Glidewell et al., 2002). We had reported the crystal structure of (2-nitrophenylsulfinyl)acetic acid in our previous work (Ma, 2007). In our attempt to synthesize the homologous compound of it, we unexpectedly obtain the title compound, (I), which is prepared by the decarboxylated reaction of (4-nitrophenylsulfonyl)acetic acid.

In (Fig. 1), all bond lengths and angles are normal. The nitro group is twisted out the phenylene ring by 10.2 (5) °.

A centrosymmetric dimer, containing an R22(10) motif, is built up by C—H···O hydrogen bonding interactions between the phenyl and nitryl (Fig.2; table 1).

Related literature top

For the synthesis, see: Nobles & Thompson (1965). For the supramolecular patterns of nitrophenyl compounds, see Glidewell et al. (2002); Ma (2007).

Experimental top

4-Nitrophenylthioacetic acid was prepared by nucleophilic reaction of chloroacetic acid (9.4 g, 0.1 mol) and 4-nitrothiophenol (15.5 g, 0.1 mol) under basic conditions. 4-Nitrophenylthioacetic acid (21.3 g, 0.1 mol) was then oxidized using 30% aqueous hydrogen peroxide (30 ml)in acetic anhydride solution (50 ml) (Nobles et al., 1965). Unexpectedly product was obtained, namely 1-(methylsulfonyl)-4-nitrobenzene, which formed by the (4-nitrophenylsulfonyl)acetic acid decarboxylation under excessive hydrogen peroxide conditions.

Refinement top

All H atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic), Uiso(H) = 1.2Ueq(C); C—H = 0.96 Å (methyl), Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku Corporation, 1998); cell refinement: RAPID-AUTO (Rigaku Corporation, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 30% probability level for non-H atoms.
[Figure 2] Fig. 2. A view of the hydrogen-bonded (dashed lines) dimer.
1-Methylsulfonyl-4-nitrobenzene top
Crystal data top
C7H7NO4SF(000) = 416
Mr = 201.20Dx = 1.587 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4509 reflections
a = 6.3765 (13) Åθ = 3.2–27.5°
b = 8.0411 (16) ŵ = 0.36 mm1
c = 16.426 (3) ÅT = 291 K
β = 91.67 (3)°Block, yellow
V = 841.9 (3) Å30.21 × 0.19 × 0.16 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1933 independent reflections
Radiation source: fine-focus sealed tube1045 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scanθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 88
Tmin = 0.926, Tmax = 0.942k = 109
7967 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0576P)2 + 0.5194P]
where P = (Fo2 + 2Fc2)/3
1933 reflections(Δ/σ)max < 0.001
119 parametersΔρmax = 0.32 e Å3
6 restraintsΔρmin = 0.45 e Å3
Crystal data top
C7H7NO4SV = 841.9 (3) Å3
Mr = 201.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.3765 (13) ŵ = 0.36 mm1
b = 8.0411 (16) ÅT = 291 K
c = 16.426 (3) Å0.21 × 0.19 × 0.16 mm
β = 91.67 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1933 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1045 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.942Rint = 0.042
7967 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0426 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.12Δρmax = 0.32 e Å3
1933 reflectionsΔρmin = 0.45 e Å3
119 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1240 (5)0.8495 (4)0.09033 (17)0.0426 (7)
C20.0744 (5)0.7940 (5)0.1076 (2)0.0546 (9)
H10.12680.80940.15930.066*
C30.1953 (6)0.7154 (4)0.0478 (2)0.0548 (9)
H20.32970.67770.05840.066*
C40.1117 (5)0.6945 (4)0.02732 (18)0.0444 (8)
C50.0841 (5)0.7492 (4)0.04584 (19)0.0523 (9)
H30.13550.73400.09770.063*
C60.2042 (5)0.8273 (4)0.01402 (18)0.0480 (8)
H40.33840.86480.00300.058*
C70.3546 (7)0.7850 (5)0.2321 (2)0.0716 (12)
H50.43920.82780.27670.107*
H60.43420.70530.20240.107*
H70.23200.73230.25280.107*
N10.2387 (6)0.6099 (3)0.09136 (19)0.0586 (8)
O10.4601 (4)1.0152 (3)0.13042 (15)0.0703 (8)
O20.1478 (4)1.0591 (3)0.21070 (16)0.0754 (8)
O30.1539 (5)0.5713 (4)0.15365 (18)0.0873 (10)
O40.4225 (5)0.5820 (4)0.07856 (17)0.0822 (9)
S10.27883 (14)0.94820 (10)0.16746 (5)0.0497 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0461 (18)0.0391 (16)0.0423 (16)0.0029 (13)0.0008 (13)0.0050 (13)
C20.051 (2)0.068 (2)0.0453 (17)0.0034 (17)0.0038 (15)0.0008 (16)
C30.046 (2)0.063 (2)0.0553 (19)0.0115 (17)0.0019 (16)0.0019 (17)
C40.0487 (19)0.0360 (15)0.0475 (17)0.0011 (14)0.0129 (14)0.0033 (14)
C50.055 (2)0.061 (2)0.0411 (16)0.0026 (17)0.0005 (15)0.0022 (16)
C60.0415 (18)0.0573 (19)0.0452 (17)0.0024 (15)0.0016 (14)0.0034 (15)
C70.096 (3)0.065 (2)0.053 (2)0.004 (2)0.025 (2)0.0075 (18)
N10.074 (2)0.0427 (15)0.0574 (18)0.0008 (15)0.0218 (16)0.0021 (14)
O10.0643 (17)0.0840 (18)0.0619 (14)0.0326 (14)0.0080 (12)0.0045 (14)
O20.083 (2)0.0676 (16)0.0756 (17)0.0135 (15)0.0062 (14)0.0285 (14)
O30.104 (2)0.086 (2)0.0707 (18)0.0009 (17)0.0156 (17)0.0348 (16)
O40.073 (2)0.093 (2)0.0790 (18)0.0289 (16)0.0244 (15)0.0059 (16)
S10.0566 (6)0.0457 (5)0.0461 (5)0.0040 (4)0.0074 (4)0.0011 (4)
Geometric parameters (Å, º) top
C1—C21.378 (5)C5—H30.9300
C1—C61.379 (4)C6—H40.9300
C1—S11.771 (3)C7—S11.747 (4)
C2—C31.384 (5)C7—H50.9600
C2—H10.9300C7—H60.9600
C3—C41.369 (5)C7—H70.9600
C3—H20.9300N1—O31.212 (4)
C4—C51.367 (5)N1—O41.218 (4)
C4—N11.475 (4)O1—S11.427 (3)
C5—C61.380 (4)O2—S11.425 (3)
C2—C1—C6120.8 (3)C5—C6—H4120.2
C2—C1—S1119.6 (2)S1—C7—H5109.5
C6—C1—S1119.6 (2)S1—C7—H6109.5
C1—C2—C3119.8 (3)H5—C7—H6109.5
C1—C2—H1120.1S1—C7—H7109.5
C3—C2—H1120.1H5—C7—H7109.5
C4—C3—C2118.2 (3)H6—C7—H7109.5
C4—C3—H2120.9O3—N1—O4123.6 (3)
C2—C3—H2120.9O3—N1—C4118.1 (3)
C5—C4—C3122.9 (3)O4—N1—C4118.2 (3)
C5—C4—N1118.4 (3)O2—S1—O1118.03 (18)
C3—C4—N1118.6 (3)O2—S1—C7108.81 (19)
C4—C5—C6118.6 (3)O1—S1—C7109.2 (2)
C4—C5—H3120.7O2—S1—C1108.31 (16)
C6—C5—H3120.7O1—S1—C1107.79 (15)
C1—C6—C5119.6 (3)C7—S1—C1103.70 (16)
C1—C6—H4120.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H2···O4i0.932.653.462 (5)147
Symmetry code: (i) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC7H7NO4S
Mr201.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)6.3765 (13), 8.0411 (16), 16.426 (3)
β (°) 91.67 (3)
V3)841.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.21 × 0.19 × 0.16
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.926, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
7967, 1933, 1045
Rint0.042
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.152, 1.12
No. of reflections1933
No. of parameters119
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.45

Computer programs: RAPID-AUTO (Rigaku Corporation, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H2···O4i0.932.653.462 (5)146.9
Symmetry code: (i) x1, y+1, z.
 

Acknowledgements

The authors thank Heilongjiang University for supporting this study.

References

First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2002). Acta Cryst. C58, o201–o203.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMa, D.-S. (2007). Acta Cryst. E63, o658–o659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNobles, W. L. & Thompson, B. B. (1965). J. Pharm. Sci. 54, 709–713.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds