metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[tri­aqua­[μ4-N-(4-carboxyl­ato­phenyl)­iminodi­acetato]sodium(I)zinc(II)] dihydrate]

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: hgf1000@163.com

(Received 3 November 2008; accepted 6 November 2008; online 13 November 2008)

In the title coordination polymer, {[NaZn(C11H8NO6)(H2O)3]·2H2O}n, the Zn atom is coordinated in a distorted tetra­hedral environment by three carboxyl­ate O atoms from two (4-carboxyl­atophenyl­imino)diacetate ligands and one water mol­ecule; the Na atom is in an distorted octa­hedral coordination environment formed by four carboxyl­ate O atoms from three (4-carboxyl­atophenyl­imino)diacetate ligands and two water mol­ecules. The Zn atoms and Na atoms are linked by (4-carboxyl­atophenyl­imino)diacetate ligands into a three-dimensional framework; the uncoordinated water mol­ecules fill the voids of the skeleton and stabilize it by O—H⋯O hydrogen bonds.

Related literature

For the synthesis of 2,2′-(4-carboxy­phenyl­azanedi­yl)diacetic acid, see: Young & Sweet (1958[Young, A. & Sweet, T. R. (1958). J. Am. Chem. Soc. 80, 800-803.]).

[Scheme 1]

Experimental

Crystal data
  • [NaZn(C11H8NO6)(H2O)3]·2H2O

  • Mr = 428.62

  • Triclinic, [P \overline 1]

  • a = 7.925 (4) Å

  • b = 8.989 (6) Å

  • c = 11.726 (6) Å

  • α = 96.28 (3)°

  • β = 98.63 (2)°

  • γ = 98.97 (2)°

  • V = 808.1 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.61 mm−1

  • T = 291 (2) K

  • 0.22 × 0.18 × 0.16 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.718, Tmax = 0.782

  • 8055 measured reflections

  • 3668 independent reflections

  • 3320 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.065

  • S = 1.10

  • 3668 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H10⋯O9i 0.85 1.87 2.716 (3) 174
O7—H9⋯O5ii 0.85 2.06 2.867 (2) 159
O8—H12⋯O5iii 0.85 1.90 2.748 (3) 173
O8—H11⋯O11i 0.85 1.97 2.798 (2) 163
O9—H14⋯O1iv 0.85 2.07 2.910 (2) 168
O9—H13⋯O8i 0.85 1.96 2.801 (2) 172
O10—H17⋯O1iv 0.85 1.92 2.762 (3) 174
O11—H15⋯O6vi 0.85 2.16 2.949 (3) 154
O11—H16⋯O10 0.85 1.89 2.721 (3) 165
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x, y, z-1; (iii) -x+2, -y+1, -z+2; (iv) -x+1, -y+1, -z+1; (v) -x+1, -y+1, -z; (vi) x, y+1, z-1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

2,2'-(4-Carboxyphenylazanediyl)diacetic acid is a multidentate flexible ligand with versatile binding abilities and capability of participating in hydrongen bonds, thus representing an excellent candidate for the construction of supramolecular complexe. In this paper, we report a novel title compound, (I), which is prepared by 2,2'-(4-carboxyphenylazanediyl)diacetic acid ligand and Zinc dinitrate under neutral aqueous conditions, which forms a three-dimensional framework structure.

The asymmetric unit of (1) consists of one Zn(II) ion, one Na(I) ion, one 4-carboxylatophenylimino)diacetate anion, three coordinated water molecules and two uncoordinated water molecules (Fig. 1). The Zn(II) ion is in a tetrahedral coordination environment, formed by three carboxylate O atoms from two 4-carboxylatophenylimino)diacetate ligands and one water molecules. The Na(I) ion exists in a distorted octahedral configuration with the equatorial plane being defined by the atoms O1, O2, O4II and O8, and with O9 and o4III occupy the axial sites. Each 4-carboxylatophenylimino)diacetate anion bridged two Zn(II) ions and three Na(I) ions to form a three-dimensional supramolecular framework network in which uncoordinated water molecules filled the space of the skelecton and stabilized by O—H···O hydrogen bonds(Fig. 2, Table 1).

Related literature top

For the synthesis of 2,2'-(4-carboxyphenylazanediyl)diacetic acid, see: Young & Sweet (1958).

Experimental top

2,2'-(4-Carboxyphenylazanediyl)diacetic acid was synthesized by the literature method (Young et al., 1958). The complex (I) was synthesized with znic(II) dinitrate (0.375 g, 2 mmol) and 2,2'-(4-Carboxyphenylazanediyl)diacetic acid (0.253 g, 1 mmol) were dissolved in methanol and the pH was adjusted to about 7 with 0.01M sodium hydroxide. Colorless crystals were separated from the filtered solution after several days.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å, 0.97 Å for aromatic and methylene H atoms respectively; Uiso(H) was set to = 1.2Ueq of the carrier atom. Water H atoms were placed in calculated positions, with O—H=0.85 Å, Uiso(H) = 1.Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 30% probability level for non-H atoms. Dashed lines indicate the hydrogen-bonding interactions [Symmetry code: (I) -x + 2, -y, -z + 2; (II) x, y + 1, z;(III) -x + 1, -y, z + 1].
[Figure 2] Fig. 2. Part of the polymeric structure of (I), showing a three-dimensional framework.Dashed lines indicate the hydrogen-bonding interactions
Poly[[triaqua[µ4-N-(4-carboxylatophenyl)iminodiacetato]sodium(I)zinc(II)] dihydrate] top
Crystal data top
[NaZn(C11H8NO6)(H2O)3]·2H2OZ = 2
Mr = 428.62F(000) = 440
Triclinic, P1Dx = 1.762 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.925 (4) ÅCell parameters from 7215 reflections
b = 8.989 (6) Åθ = 3.1–27.5°
c = 11.726 (6) ŵ = 1.61 mm1
α = 96.28 (3)°T = 291 K
β = 98.63 (2)°Block, colorless
γ = 98.97 (2)°0.22 × 0.18 × 0.16 mm
V = 808.1 (8) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3668 independent reflections
Radiation source: fine-focus sealed tube3320 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 109
Tmin = 0.718, Tmax = 0.782k = 1111
8055 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0288P)2 + 0.3237P]
where P = (Fo2 + 2Fc2)/3
3668 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[NaZn(C11H8NO6)(H2O)3]·2H2Oγ = 98.97 (2)°
Mr = 428.62V = 808.1 (8) Å3
Triclinic, P1Z = 2
a = 7.925 (4) ÅMo Kα radiation
b = 8.989 (6) ŵ = 1.61 mm1
c = 11.726 (6) ÅT = 291 K
α = 96.28 (3)°0.22 × 0.18 × 0.16 mm
β = 98.63 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3668 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3320 reflections with I > 2σ(I)
Tmin = 0.718, Tmax = 0.782Rint = 0.021
8055 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.11Δρmax = 0.28 e Å3
3668 reflectionsΔρmin = 0.44 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5758 (2)0.2908 (2)0.70951 (15)0.0234 (4)
C20.4639 (2)0.1504 (2)0.73561 (15)0.0228 (4)
H10.41960.17640.80660.027*
H20.36530.12000.67300.027*
C30.5765 (2)0.1842 (2)0.59130 (15)0.0225 (4)
C40.4695 (2)0.1219 (2)0.67581 (15)0.0249 (4)
H80.36140.10630.63180.030*
H70.44130.19790.72590.030*
C50.6392 (2)0.00980 (19)0.86167 (14)0.0189 (3)
C60.6706 (2)0.13196 (19)0.95095 (15)0.0223 (3)
H30.63190.22190.93720.027*
C70.7589 (2)0.1201 (2)1.05973 (15)0.0232 (4)
H40.77570.20141.11890.028*
C80.8230 (2)0.0111 (2)1.08227 (14)0.0210 (3)
C90.7931 (2)0.1318 (2)0.99287 (16)0.0247 (4)
H50.83500.22051.00630.030*
C100.7025 (2)0.1227 (2)0.88446 (15)0.0237 (4)
H60.68340.20530.82610.028*
C110.9258 (2)0.0177 (2)1.19854 (15)0.0223 (4)
N10.5524 (2)0.02088 (16)0.74928 (12)0.0218 (3)
Na10.70264 (10)0.49576 (8)0.57052 (7)0.02913 (17)
O10.52052 (19)0.41253 (16)0.71895 (12)0.0337 (3)
O20.71665 (17)0.27959 (15)0.67283 (12)0.0294 (3)
O30.70204 (18)0.09667 (16)0.56440 (12)0.0310 (3)
O40.53062 (19)0.31883 (15)0.54829 (12)0.0340 (3)
O50.9395 (2)0.08672 (16)1.28035 (11)0.0331 (3)
O61.00014 (17)0.13340 (15)1.21007 (11)0.0272 (3)
O70.9495 (2)0.17005 (17)0.52465 (12)0.0381 (3)
H90.95280.12360.45810.057*
H101.02760.24890.54430.057*
O80.9626 (2)0.60310 (17)0.69752 (13)0.0380 (3)
H120.99240.69930.71010.057*
H110.97280.57030.76300.057*
O90.81948 (19)0.56713 (17)0.40602 (13)0.0371 (3)
H130.87860.50730.37560.056*
H140.72500.56710.36090.056*
O100.6141 (3)0.4735 (3)0.09255 (19)0.0770 (7)
H151.00460.64010.12870.116*
H160.85410.53540.09510.116*
O110.9641 (2)0.54605 (19)0.10841 (14)0.0459 (4)
H170.56530.50640.14760.069*
H180.54120.40160.05050.069*
Zn10.81967 (3)0.09629 (2)0.651229 (17)0.02072 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0252 (9)0.0272 (9)0.0201 (8)0.0090 (7)0.0039 (7)0.0070 (7)
C20.0215 (8)0.0277 (9)0.0206 (8)0.0076 (7)0.0028 (7)0.0054 (7)
C30.0231 (9)0.0225 (8)0.0186 (8)0.0043 (7)0.0058 (7)0.0019 (6)
C40.0249 (9)0.0242 (9)0.0217 (8)0.0020 (7)0.0002 (7)0.0000 (7)
C50.0194 (8)0.0215 (8)0.0163 (7)0.0018 (6)0.0045 (6)0.0046 (6)
C60.0267 (9)0.0198 (8)0.0210 (8)0.0070 (7)0.0020 (7)0.0037 (6)
C70.0248 (9)0.0239 (9)0.0198 (8)0.0040 (7)0.0018 (7)0.0005 (7)
C80.0181 (8)0.0269 (9)0.0189 (8)0.0032 (7)0.0043 (7)0.0070 (7)
C90.0289 (9)0.0217 (8)0.0260 (9)0.0080 (7)0.0058 (8)0.0077 (7)
C100.0319 (9)0.0209 (8)0.0193 (8)0.0073 (7)0.0054 (7)0.0013 (6)
C110.0172 (8)0.0266 (9)0.0226 (8)0.0008 (7)0.0031 (7)0.0085 (7)
N10.0267 (8)0.0208 (7)0.0165 (6)0.0044 (6)0.0005 (6)0.0019 (5)
Na10.0296 (4)0.0250 (4)0.0319 (4)0.0013 (3)0.0037 (3)0.0070 (3)
O10.0411 (8)0.0296 (7)0.0385 (8)0.0181 (6)0.0157 (7)0.0107 (6)
O20.0273 (7)0.0265 (7)0.0412 (8)0.0108 (5)0.0144 (6)0.0143 (6)
O30.0303 (7)0.0297 (7)0.0298 (7)0.0017 (6)0.0099 (6)0.0067 (5)
O40.0383 (8)0.0212 (7)0.0369 (8)0.0023 (6)0.0018 (6)0.0049 (6)
O50.0431 (8)0.0325 (7)0.0206 (6)0.0053 (6)0.0041 (6)0.0043 (5)
O60.0240 (6)0.0305 (7)0.0269 (6)0.0076 (5)0.0019 (5)0.0081 (5)
O70.0432 (9)0.0404 (8)0.0272 (7)0.0084 (7)0.0159 (6)0.0012 (6)
O80.0471 (9)0.0291 (7)0.0329 (7)0.0003 (6)0.0020 (7)0.0049 (6)
O90.0320 (8)0.0427 (9)0.0359 (8)0.0032 (6)0.0076 (6)0.0048 (6)
O100.0630 (13)0.0963 (18)0.0657 (13)0.0182 (12)0.0178 (11)0.0318 (12)
O110.0583 (10)0.0381 (9)0.0392 (8)0.0073 (8)0.0024 (8)0.0052 (7)
Zn10.02166 (11)0.02060 (11)0.01927 (10)0.00437 (7)0.00116 (8)0.00223 (7)
Geometric parameters (Å, º) top
C1—O11.240 (2)Na1—O4i2.3239 (19)
C1—O21.269 (2)Na1—O82.353 (2)
C1—C21.513 (3)Na1—O92.3687 (19)
C2—N11.461 (2)Na1—O4ii2.3901 (19)
C2—H10.9700Na1—O22.4009 (19)
C2—H20.9700Na1—O12.5245 (19)
C3—O41.235 (2)Na1—Na1iii3.401 (2)
C3—O31.270 (2)Na1—H142.6320
C3—C41.514 (3)O2—Zn11.9584 (16)
C4—N11.465 (2)O3—Zn11.9336 (17)
C4—H80.9700O4—Na1iv2.3239 (19)
C4—H70.9700O4—Na1ii2.3901 (19)
C5—C61.396 (2)O6—Zn1v1.9574 (15)
C5—C101.399 (2)O7—Zn12.0400 (16)
C5—N11.413 (2)O7—H90.8500
C6—C71.383 (2)O7—H100.8500
C6—H30.9300O8—H120.8500
C7—C81.391 (3)O8—H110.8500
C7—H40.9300O9—H130.8500
C8—C91.389 (3)O9—H140.8500
C8—C111.492 (2)O10—H170.8498
C9—C101.380 (3)O10—H180.8504
C9—H50.9300O11—H150.8504
C10—H60.9300O11—H160.8499
C11—O51.246 (2)Zn1—O6v1.9574 (15)
C11—O61.283 (2)
O1—C1—O2122.18 (17)O4i—Na1—O2138.34 (6)
O1—C1—C2117.99 (17)O8—Na1—O284.49 (6)
O2—C1—C2119.71 (16)O9—Na1—O2132.16 (6)
N1—C2—C1114.73 (15)O4ii—Na1—O280.48 (7)
N1—C2—H1108.6O4i—Na1—O185.66 (6)
C1—C2—H1108.6O8—Na1—O198.94 (7)
N1—C2—H2108.6O9—Na1—O1168.52 (6)
C1—C2—H2108.6O4ii—Na1—O178.25 (7)
H1—C2—H2107.6O2—Na1—O152.90 (5)
O4—C3—O3123.36 (18)O4i—Na1—Na1iii44.60 (5)
O4—C3—C4116.88 (17)O8—Na1—Na1iii153.40 (6)
O3—C3—C4119.70 (16)O9—Na1—Na1iii89.94 (6)
N1—C4—C3115.30 (15)O4ii—Na1—Na1iii43.06 (5)
N1—C4—H8108.4O2—Na1—Na1iii113.22 (5)
C3—C4—H8108.4O1—Na1—Na1iii78.77 (6)
N1—C4—H7108.4O4i—Na1—H1475.5
C3—C4—H7108.4O8—Na1—H14109.2
H8—C4—H7107.5O9—Na1—H1418.6
C6—C5—C10118.34 (15)O4ii—Na1—H1477.8
C6—C5—N1121.25 (15)O2—Na1—H14138.5
C10—C5—N1120.35 (15)O1—Na1—H14149.9
C7—C6—C5120.44 (16)Na1iii—Na1—H1471.4
C7—C6—H3119.8C1—O1—Na187.44 (12)
C5—C6—H3119.8C1—O2—Zn1127.16 (12)
C6—C7—C8121.26 (17)C1—O2—Na192.39 (10)
C6—C7—H4119.4Zn1—O2—Na1134.30 (7)
C8—C7—H4119.4C3—O3—Zn1126.24 (12)
C9—C8—C7118.10 (16)C3—O4—Na1iv124.19 (12)
C9—C8—C11121.76 (16)C3—O4—Na1ii143.46 (12)
C7—C8—C11120.11 (16)Na1iv—O4—Na1ii92.34 (7)
C10—C9—C8121.31 (16)C11—O6—Zn1v111.56 (12)
C10—C9—H5119.3Zn1—O7—H9128.8
C8—C9—H5119.3Zn1—O7—H10117.0
C9—C10—C5120.52 (16)H9—O7—H10112.8
C9—C10—H6119.7Na1—O8—H12119.1
C5—C10—H6119.7Na1—O8—H11114.2
O5—C11—O6121.83 (16)H12—O8—H11107.7
O5—C11—C8120.69 (16)Na1—O9—H13116.7
O6—C11—C8117.47 (16)Na1—O9—H1498.5
C5—N1—C2117.69 (14)H13—O9—H14111.0
C5—N1—C4116.93 (14)H17—O10—H18106.8
C2—N1—C4115.93 (14)H15—O11—H16107.9
O4i—Na1—O8108.97 (7)O3—Zn1—O6v128.18 (6)
O4i—Na1—O987.74 (7)O3—Zn1—O2125.40 (7)
O8—Na1—O992.08 (7)O6v—Zn1—O2100.31 (7)
O4i—Na1—O4ii87.66 (7)O3—Zn1—O797.01 (7)
O8—Na1—O4ii162.99 (6)O6v—Zn1—O7103.35 (7)
O9—Na1—O4ii92.12 (7)O2—Zn1—O793.95 (7)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x, y1, z; (v) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H10···O9vi0.851.872.716 (3)174
O7—H9···O5vii0.852.062.867 (2)159
O8—H12···O5viii0.851.902.748 (3)173
O8—H11···O11vi0.851.972.798 (2)163
O9—H14···O1iii0.852.072.910 (2)168
O9—H13···O8vi0.851.962.801 (2)172
O10—H17···O1iii0.851.922.762 (3)174
O10—H18···O10ix0.852.412.744 (5)104
O11—H15···O6x0.852.162.949 (3)154
O11—H16···O100.851.892.721 (3)165
Symmetry codes: (iii) x+1, y+1, z+1; (vi) x+2, y+1, z+1; (vii) x, y, z1; (viii) x+2, y+1, z+2; (ix) x+1, y+1, z; (x) x, y+1, z1.

Experimental details

Crystal data
Chemical formula[NaZn(C11H8NO6)(H2O)3]·2H2O
Mr428.62
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)7.925 (4), 8.989 (6), 11.726 (6)
α, β, γ (°)96.28 (3), 98.63 (2), 98.97 (2)
V3)808.1 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.61
Crystal size (mm)0.22 × 0.18 × 0.16
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.718, 0.782
No. of measured, independent and
observed [I > 2σ(I)] reflections
8055, 3668, 3320
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.065, 1.11
No. of reflections3668
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.44

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H10···O9i0.851.872.716 (3)173.6
O7—H9···O5ii0.852.062.867 (2)158.6
O8—H12···O5iii0.851.902.748 (3)173.4
O8—H11···O11i0.851.972.798 (2)162.9
O9—H14···O1iv0.852.072.910 (2)168.3
O9—H13···O8i0.851.962.801 (2)171.5
O10—H17···O1iv0.851.922.762 (3)173.9
O10—H18···O10v0.852.412.744 (5)104.0
O11—H15···O6vi0.852.162.949 (3)154.2
O11—H16···O100.851.892.721 (3)165.0
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y, z1; (iii) x+2, y+1, z+2; (iv) x+1, y+1, z+1; (v) x+1, y+1, z; (vi) x, y+1, z1.
 

Acknowledgements

The authors thank Heilongjiang University for supporting this study.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoung, A. & Sweet, T. R. (1958). J. Am. Chem. Soc. 80, 800–803.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds