metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1572-m1573

Octa-n-butyl-1κ2C,2κ2C,3κ2,4κ2C-bis­­(μ-2,3-di­bromo­propionato)-1:2κ2O:O′,3:4κ2O:O′-bis­­(2,3-di­bromo­propionato)-1κO,3κO-di-μ3-oxido-1:2:4κ3O:O:O,2:3:4κ3O:O:O-tetra­tin(IV)

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bUniversiti Tunku Abdul Rahman, Faculty of Engineering and Science, Jalan Genting Kelang, Setapak 53300, Kuala Lumpur, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 10 November 2008; accepted 12 November 2008; online 20 November 2008)

In the centrosymmetric tetra­nuclear title complex, [Sn4(C4H9)8(C3H3Br2O2)4O2], one of the two independent Sn atoms is five-coordinated by one O atom of the carboxyl­ate anion, two bridging O atoms and two n-butyl groups in a C2SnO3 distorted trigonal bipyramidal geometry. The other Sn atom also has a distorted trigonal bipyramidal geometry, being coordinated by two O atoms of two carboxyl­ate anions, one bridging O atom and two butyl groups. An inter­esting feature of the crystal structure is the short Sn⋯O [2.756 (4) Å] and O⋯O [2.608 (3) Å] inter­actions. The –BrCH2—CHBr– segments of the two carboxyl­ate anions are disordered over two positions [site occupancies of 0.60 (1)/0.40 (1) and 0.53 (2)/0.47 (2)]. Weak non-directional C—H⋯O inter­actions lead to the formation of infinte chains along the a axis; other weak inter­molecular C—H⋯π inter­actions are also present.

Related literature

For hydrogen-bond motifs, see Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related distannoxanes, see: Gielen et al. (2000[Gielen, M., Biesemans, M., Vos, D. & Willem, R. (2000). J. Inorg. Biochem. 79, 139-145.]); Khan et al. (2000[Khan, S. R. A., Huang, S., Shamsuddin, S., Inutsuka, S., Whitmire, K. H., Siddik, Z. H. & Khokhar, A. R. (2000). Bioorg. Med. Chem. 8, 515-521.]); Khoo & Hazell (1999[Khoo, L. E. & Hazell, A. (1999). Acta Cryst. C55, 2070-2073.]); Li et al. (2006[Li, F.-H., Yin, H.-D., Gao, Z.-J. & Wang, D.-Q. (2006). Acta Cryst. E62, m788-m790.]); Parvez et al. (2004[Parvez, M., Sadiq-ur-Rehman,, Shahid, K., Ali, S. & Mazhar, M. (2004). Acta Cryst. E60, m1465-m1467.]); Ronconi et al. (2002[Ronconi, L., Marzano, C., Russo, U., Sitran, S., Graziani, R. & Fregona, D. (2002). J. Inorg. Biochem. 91, 413-420.]); Tian et al. (2005[Tian, L., Sun, Y., Li, H., Zheng, X., Cheng, Y., Liu, X. & Qian, B. (2005). J. Inorg. Biochem. 99, 1646-1652.]); Win et al. (2008[Win, Y. F., Teoh, S. G., Lim, E. K., Ng, S. L. & Fun, H. K. (2008). J. Chem. Crystallogr. 38, 345-350.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn4(C4H9)8(C3H3Br2O2)4O2]

  • Mr = 1887.15

  • Monoclinic, P 21 /n

  • a = 11.7495 (4) Å

  • b = 20.6620 (8) Å

  • c = 12.9684 (5) Å

  • β = 91.462 (2)°

  • V = 3147.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.69 mm−1

  • T = 100.0 (1) K

  • 0.51 × 0.32 × 0.25 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.088, Tmax = 0.188

  • 51856 measured reflections

  • 12752 independent reflections

  • 6843 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.144

  • S = 1.00

  • 12752 reflections

  • 365 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 1.86 e Å−3

  • Δρmin = −1.37 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—O1 2.048 (3)
Sn1—C19 2.120 (5)
Sn1—C15 2.126 (5)
Sn1—O4 2.208 (3)
Sn1—O3 2.283 (4)
Sn2—O1 2.043 (3)
Sn2—C1 2.122 (6)
Sn2—C5 2.132 (6)
Sn2—O1i 2.149 (3)
Sn2—O2 2.300 (4)
Sn2—Sn2i 3.2840 (6)
Symmetry code: (i) -x+1, -y+2, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the Sn2/O1/Sn2A/O1A and Sn1/O1/Sn2/O2/C9/O3 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6B⋯O2 0.97 2.58 3.232 (9) 124
C14A—H14A⋯O3ii 0.97 2.56 3.434 (13) 149
C15—H15A⋯O5ii 0.97 2.53 3.220 (6) 128
C16—H16A⋯O3 0.97 2.45 3.134 (6) 127
C19—H19A⋯O5ii 0.97 2.57 3.287 (6) 130
C2—H2ACg1 0.97 2.95 3.415 (6) 111
C16—H16ACg2 0.97 2.68 3.250 (6) 118
Symmetry code: (ii) -x, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

In recent years, different types of organotin(IV) complexes have been studied for their in vitro activity against a large array of tumor cell lines and have been found to be as effective as traditional heavy metal anticancer drugs, such as cis-platin and paraplatin (Gielen et al., 2000; Khan et al., 2000; Ronconi et al., 2002; Tian et al., 2005). In general, there are many well documented structures on complexes isolated from the 1:1 molar ratio reaction between diorganotin(IV) with the respective organic acids. Commonly, this dimeric structure is known as organodistannoxane dimer (Khoo & Hazell, 1999; Parvez et al., 2004; Li et al., 2006). The core geometry of the organodistannoxane dimer complexes consists of a centrosymmetric planar Sn2O2 group bonded to the exo- and endocyclic tin(IV) atom moiety via the bridging oxygen atoms so that the oxygen atoms are tri-coordinated. Recently, the crystal structure of the bis(2,4-dinitrobenzoato)tetrabutyldistannoxane(IV) dimer has been determined and consists of a centrosymmetric planar Sn2O2 group (Win et al., 2008). In addition, all the four tin atoms (exo- and endocyclic) are five-coordinated and exist in distorted trigonal bypiramid geometry (Win et al., 2008). In this study, the structure of the titled complex is similar to bis(2,4-dinitrobenzoato)tetrabutyldistannoxane(IV) dimer. The only exception is 2,3-dibromopropionic acid is utilized in the reaction to obtain the title complex.

The bond lengths (Allen et al., 1987) and angles in the molecule (I, Fig. 1, Table 1) are within normal ranges. Intramolecular C—H···O hydrogen bonds generate S(5) ring motifs. In the title compound, one of the two independent Sn atoms is five-coordinated by the one oxygen atom of the carboxylate anoin, two oxo-bridged oxygen atoms and two n-butyl groups in a trans-C2SnO3 distorted trigonal-bipyramidal geometry. The other Sn atom has also a five-coordinated geometry which is coordinated by two oxygen atoms of the carboxylate anion, one oxo-bridged O atom and two butyl groups in a distorted trigonal-bipyramidal mode. The interesting feature of the crystal structure is the short Sn···O [2.756 (4)–3.271 (4) Å] and O···O [2.608 (3) Å], which are shorter than sum of the van der Waals radii of the relevant atoms (Spek, 2003). The –BrCH2—CHBr- segment of the carboxylate anion ligand is disordered over two positions with refined site-occupancies of 0.60 (1)/0.40 (1) and 0.53 (2)/0.47 (3), respectively. In the crystal structure, molecules are linked together through C—H···O hydrogen bonds, forming 1-D infinte chains along the a axis (Fig 2). The crystal structure is further stabilized by weak intermolecular C—H···π (Table 1) interactions.

Related literature top

For hydrogen-bond motifs, see Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For related distannoxanes, see: Gielen et al. (2000); Khan et al. (2000); Khoo et al. (1999); Li et al. (2006); Parvez et al. (2004); Ronconi et al. (2002); Tian et al. (2005); Win et al. (2008).

Experimental top

The complex bis(2,3-dibromopropionato)tetrabutyldistannoxane(IV) dimer was obtained by heating under reflux a 1:1 molar mixture of dibutyltin(IV) oxide (0.50 g, 2 mmol) and 2,3-dibromopropionic acid (0.46 g, 2 mmol) in methanol (50 ml) for four hours. A clear colourless solution was isolated by filtration and kept in a bottle. After four days, colourless crystals (0.65 g, 69.4% yield) were collected. Melting point: 439.3 - 440.1 K. Analysis found for C44H84O10Br8Sn4: C, 28.36; H, 4.37; Sn, 24.97%. Calculated found for C44H84O10Br8Sn4: C, 28.00; H, 4.49; Sn, 25.16%. FTIR as KBr disc (cm-1): υ(C—H) saturated 2957, 2927, 2869; υ(COO)as 1654, 1614; υ(COO)s 1406, 1376; υ(Sn—O—Sn) 617; υ(Sn—O) 477.

Refinement top

All of the hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.96–0.98 Å and Uiso(H) = 1.2–1.5 Ueq(C). A rotating group model was used for the methyl groups. The C–C bonds of the butyl groups were restrained to 1.500 (1) Å. The highest peak (1.86 e. Å-3) is located 0.71 Å from Sn1 and the deepest hole (-1.37 e. Å-3) is located 0.82 Å from Sn2. The C—C bonds in the butyl chains were restrained to 1.513 (2) Å.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR2004 (Burla et al., 2003); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 30% probability ellipsoids for non-H atoms. The H atoms were omitted for clarity. Solid bonds show the major disordered part.
[Figure 2] Fig. 2. The crystal packing of the major component of (I), viewed down the c-axis, showing 1-D infinte chains along the a-axis. Intermolecular C—H···π interactions were shown as dashed lines.
Octa-n-butyl-1κ2C,2κ2C,3κ2,4κ2C-bis(µ- 2,3-dibromopropionato)-1:2κ2O:O',3:4κ2O: O'-bis(2,3-dibromopropionato)-1κO,3κO-di-µ3-oxido- 1:2:4κ3O:O:O,2:3:4κ3O:O:O- tetratin(IV) top
Crystal data top
[Sn4(C4H9)8(C3H3Br2O2)4O2]F(000) = 1816
Mr = 1887.15Dx = 1.991 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9940 reflections
a = 11.7495 (4) Åθ = 2.3–28.6°
b = 20.6620 (8) ŵ = 6.69 mm1
c = 12.9684 (5) ÅT = 100 K
β = 91.462 (2)°Block, colourless
V = 3147.3 (2) Å30.51 × 0.32 × 0.25 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
12752 independent reflections
Radiation source: fine-focus sealed tube6843 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 34.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1818
Tmin = 0.088, Tmax = 0.188k = 2432
51856 measured reflectionsl = 1620
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.051P)2 + 7.7627P]
where P = (Fo2 + 2Fc2)/3
12752 reflections(Δ/σ)max = 0.001
365 parametersΔρmax = 1.86 e Å3
12 restraintsΔρmin = 1.37 e Å3
Crystal data top
[Sn4(C4H9)8(C3H3Br2O2)4O2]V = 3147.3 (2) Å3
Mr = 1887.15Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.7495 (4) ŵ = 6.69 mm1
b = 20.6620 (8) ÅT = 100 K
c = 12.9684 (5) Å0.51 × 0.32 × 0.25 mm
β = 91.462 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
12752 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6843 reflections with I > 2σ(I)
Tmin = 0.088, Tmax = 0.188Rint = 0.053
51856 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05712 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.00Δρmax = 1.86 e Å3
12752 reflectionsΔρmin = 1.37 e Å3
365 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.21896 (3)0.992516 (16)0.45688 (2)0.03422 (9)
Sn20.52841 (3)0.987445 (19)0.37831 (2)0.04044 (10)
Br1A0.2381 (4)0.86283 (19)0.1079 (3)0.1169 (16)0.604 (11)
Br2A0.3252 (3)1.07102 (19)0.0148 (4)0.0696 (9)0.604 (11)
Br1B0.2220 (3)0.86703 (15)0.1034 (2)0.0426 (8)0.396 (11)
Br2B0.3090 (6)1.0761 (3)0.0346 (6)0.0833 (18)0.396 (11)
Br4A0.0442 (9)0.9327 (2)0.8407 (5)0.0672 (11)0.53 (2)
Br3A0.1343 (6)1.1384 (3)0.7509 (4)0.0499 (7)0.53 (2)
Br3B0.1054 (7)1.1495 (4)0.7523 (5)0.0516 (8)0.47 (2)
Br4B0.0709 (4)0.9362 (3)0.8620 (6)0.0616 (8)0.47 (2)
O10.3928 (3)0.99367 (16)0.4734 (2)0.0348 (7)
O20.4051 (4)0.9684 (3)0.2411 (3)0.0657 (9)
O30.2282 (4)0.9870 (2)0.2815 (3)0.0657 (9)
O40.2381 (3)1.00102 (18)0.6261 (3)0.0423 (8)
O50.0507 (3)1.00432 (16)0.6120 (3)0.0388 (7)
C10.5744 (5)0.8886 (3)0.3650 (5)0.0624 (17)
H1A0.57670.87730.29250.075*
H1B0.65030.88260.39460.075*
C20.4935 (4)0.8430 (2)0.4179 (5)0.0586 (15)
H2A0.48400.85790.48810.070*
H2B0.41980.84560.38270.070*
C30.5307 (5)0.7729 (2)0.4209 (5)0.0672 (18)
H3A0.53380.75690.35080.081*
H3B0.60720.77070.45080.081*
C40.4541 (6)0.7291 (3)0.4817 (6)0.081 (2)
H4A0.47780.68500.47370.121*
H4B0.37690.73380.45660.121*
H4C0.45880.74080.55330.121*
C50.5498 (5)1.0807 (3)0.3110 (4)0.0559 (15)
H5A0.47801.10360.31420.067*
H5B0.60511.10450.35290.067*
C60.5880 (5)1.0815 (3)0.2005 (4)0.073 (2)
H6A0.66631.06670.19920.088*
H6B0.54201.05090.16110.088*
C70.5806 (6)1.1466 (3)0.1475 (6)0.086 (2)
H7A0.59111.14070.07410.103*
H7B0.50521.16460.15650.103*
C80.6685 (7)1.1941 (4)0.1888 (7)0.099 (3)
H8A0.67161.23090.14380.148*
H8B0.74171.17350.19240.148*
H8C0.64801.20800.25650.148*
C90.3011 (5)0.9730 (3)0.2232 (4)0.0560 (16)
C10A0.2518 (10)0.9633 (8)0.1134 (10)0.052 (2)0.604 (11)
H10A0.17820.98500.10260.063*0.604 (11)
C11A0.3317 (9)0.9767 (7)0.0293 (7)0.073 (4)0.604 (11)
H11A0.30720.95540.03410.087*0.604 (11)
H11B0.40810.96240.04800.087*0.604 (11)
C10B0.2938 (16)0.9483 (12)0.1031 (16)0.052 (2)0.396 (11)
H10B0.36970.94540.07380.063*0.396 (11)
C11B0.2249 (14)1.0033 (14)0.0539 (12)0.108 (11)0.396 (11)
H11C0.16161.01360.09750.129*0.396 (11)
H11D0.19380.98890.01220.129*0.396 (11)
C120.1386 (4)1.0095 (3)0.6628 (4)0.0411 (11)
C13A0.1425 (11)1.0446 (8)0.7698 (11)0.041 (3)0.53 (2)
H13A0.21201.03280.80880.049*0.53 (2)
C13B0.1286 (12)1.0153 (9)0.7786 (11)0.039 (3)0.47 (2)
H13B0.20381.02720.80710.046*0.47 (2)
C14A0.0398 (10)1.0263 (8)0.8286 (9)0.050 (4)0.53 (2)
H14A0.02911.04000.79200.060*0.53 (2)
H14B0.04201.04620.89630.060*0.53 (2)
C14B0.0472 (10)1.0681 (8)0.8062 (10)0.049 (4)0.47 (2)
H14C0.04091.07080.88050.059*0.47 (2)
H14D0.02771.05920.77630.059*0.47 (2)
C150.1635 (4)1.0893 (2)0.4323 (4)0.0440 (11)
H15A0.08811.08850.40000.053*
H15B0.15741.11060.49870.053*
C160.2414 (4)1.1288 (2)0.3657 (4)0.0505 (13)
H16A0.26201.10290.30670.061*
H16B0.31081.13810.40510.061*
C170.1913 (5)1.1921 (2)0.3270 (5)0.0576 (15)
H17A0.11801.18370.29340.069*
H17B0.17881.22040.38530.069*
C180.2681 (7)1.2257 (3)0.2519 (5)0.080 (2)
H18A0.23301.26520.22890.121*
H18B0.28001.19790.19380.121*
H18C0.33991.23510.28550.121*
C190.1594 (4)0.8959 (2)0.4437 (3)0.0414 (11)
H19A0.08070.89780.41950.050*
H19B0.20210.87520.38980.050*
C200.1642 (4)0.85156 (19)0.5366 (3)0.0422 (11)
H20A0.12930.87310.59430.051*
H20B0.24310.84300.55570.051*
C210.1037 (4)0.78800 (19)0.5159 (4)0.0465 (12)
H21A0.02440.79680.49890.056*
H21B0.13690.76760.45640.056*
C220.1099 (5)0.7412 (3)0.6057 (4)0.0600 (15)
H22A0.06820.70270.58810.090*
H22B0.07750.76100.66510.090*
H22C0.18800.73030.62070.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03673 (15)0.03153 (17)0.03398 (16)0.00327 (12)0.00747 (11)0.00247 (13)
Sn20.03953 (16)0.0544 (2)0.02729 (15)0.01181 (14)0.00053 (12)0.00482 (14)
Br1A0.196 (3)0.0626 (17)0.0895 (19)0.0263 (17)0.049 (2)0.0114 (13)
Br2A0.0805 (12)0.0672 (18)0.0593 (14)0.0346 (12)0.0307 (10)0.0210 (12)
Br1B0.0681 (15)0.0231 (11)0.0366 (12)0.0071 (8)0.0018 (9)0.0047 (8)
Br2B0.142 (4)0.0406 (17)0.066 (3)0.0102 (19)0.026 (2)0.0053 (16)
Br4A0.095 (3)0.0468 (9)0.0590 (16)0.0083 (14)0.0212 (14)0.0068 (9)
Br3A0.0560 (19)0.0349 (15)0.0587 (9)0.0054 (10)0.0009 (13)0.0095 (9)
Br3B0.059 (2)0.0401 (17)0.0549 (10)0.0037 (13)0.0041 (14)0.0100 (11)
Br4B0.0625 (14)0.0550 (13)0.066 (2)0.0029 (9)0.0291 (10)0.0088 (13)
O10.0345 (14)0.0381 (18)0.0316 (15)0.0049 (12)0.0033 (12)0.0015 (13)
O20.0628 (18)0.097 (3)0.0367 (15)0.0153 (17)0.0076 (13)0.0095 (15)
O30.0628 (18)0.097 (3)0.0367 (15)0.0153 (17)0.0076 (13)0.0095 (15)
O40.0366 (16)0.054 (2)0.0363 (18)0.0012 (14)0.0051 (13)0.0023 (15)
O50.0354 (15)0.041 (2)0.0397 (18)0.0026 (13)0.0013 (13)0.0007 (14)
C10.060 (3)0.057 (4)0.071 (4)0.017 (3)0.024 (3)0.027 (3)
C20.051 (3)0.056 (4)0.068 (4)0.003 (3)0.004 (3)0.011 (3)
C30.067 (4)0.057 (4)0.079 (5)0.003 (3)0.010 (3)0.026 (3)
C40.082 (5)0.056 (4)0.104 (6)0.012 (4)0.012 (4)0.006 (4)
C50.048 (3)0.065 (4)0.054 (3)0.001 (3)0.006 (2)0.018 (3)
C60.055 (3)0.095 (6)0.069 (4)0.002 (3)0.005 (3)0.033 (4)
C70.069 (4)0.088 (6)0.100 (6)0.005 (4)0.001 (4)0.032 (5)
C80.134 (8)0.065 (5)0.097 (6)0.002 (5)0.019 (6)0.004 (5)
C90.074 (4)0.065 (4)0.028 (2)0.033 (3)0.011 (2)0.004 (2)
C10A0.046 (7)0.080 (8)0.030 (4)0.001 (6)0.001 (5)0.012 (4)
C11A0.053 (6)0.130 (11)0.035 (5)0.002 (6)0.007 (4)0.021 (6)
C10B0.046 (7)0.080 (8)0.030 (4)0.001 (6)0.001 (5)0.012 (4)
C11B0.050 (9)0.24 (3)0.029 (7)0.012 (13)0.015 (6)0.022 (12)
C120.042 (2)0.047 (3)0.034 (2)0.005 (2)0.0031 (19)0.002 (2)
C13A0.041 (6)0.046 (8)0.034 (6)0.005 (5)0.006 (4)0.001 (6)
C13B0.038 (5)0.052 (10)0.027 (5)0.008 (6)0.009 (4)0.001 (7)
C14A0.061 (6)0.048 (9)0.040 (6)0.001 (5)0.005 (5)0.003 (5)
C14B0.044 (6)0.054 (10)0.051 (7)0.009 (5)0.004 (5)0.001 (6)
C150.043 (3)0.034 (3)0.055 (3)0.0002 (19)0.005 (2)0.007 (2)
C160.054 (3)0.038 (3)0.060 (3)0.002 (2)0.005 (3)0.006 (3)
C170.071 (4)0.036 (3)0.066 (4)0.001 (3)0.010 (3)0.007 (3)
C180.126 (6)0.044 (4)0.072 (5)0.004 (4)0.028 (4)0.012 (3)
C190.039 (2)0.035 (3)0.050 (3)0.0035 (18)0.007 (2)0.000 (2)
C200.045 (2)0.038 (3)0.044 (3)0.001 (2)0.007 (2)0.001 (2)
C210.051 (3)0.032 (3)0.056 (3)0.004 (2)0.000 (2)0.004 (2)
C220.067 (4)0.040 (3)0.073 (4)0.003 (3)0.002 (3)0.009 (3)
Geometric parameters (Å, º) top
Sn1—O12.048 (3)C8—H8B0.9600
Sn1—C192.120 (5)C8—H8C0.9600
Sn1—C152.126 (5)C9—C10A1.537 (13)
Sn1—O42.208 (3)C9—C10B1.64 (2)
Sn1—O32.283 (4)C10A—C11A1.483 (16)
Sn2—O12.043 (3)C10A—H10A0.9800
Sn2—C12.122 (6)C11A—H11A0.9700
Sn2—C52.132 (6)C11A—H11B0.9700
Sn2—O1i2.149 (3)C10B—C11B1.53 (3)
Sn2—O22.300 (4)C10B—H10B0.9800
Sn2—Sn2i3.2840 (6)C11B—H11C0.9700
Br1A—C10A2.084 (16)C11B—H11D0.9700
Br2A—C11A1.960 (15)C12—C13B1.513 (15)
Br1B—C10B1.88 (3)C12—C13A1.565 (15)
Br2B—C11B1.82 (3)C13A—C14A1.49 (2)
Br4A—C14A1.940 (17)C13A—H13A0.9800
Br3A—C13A1.956 (19)C13B—C14B1.50 (2)
Br3B—C14B1.952 (17)C13B—H13B0.9800
Br4B—C13B2.083 (17)C14A—H14A0.9700
O1—Sn2i2.149 (3)C14A—H14B0.9700
O2—C91.241 (7)C14B—H14C0.9700
O3—C91.192 (7)C14B—H14D0.9700
O4—C121.285 (6)C15—C161.513 (2)
O5—C121.216 (6)C15—H15A0.9700
C1—C21.513 (2)C15—H15B0.9700
C1—H1A0.9700C16—C171.513 (2)
C1—H1B0.9700C16—H16A0.9700
C2—C31.513 (2)C16—H16B0.9700
C2—H2A0.9700C17—C181.513 (2)
C2—H2B0.9700C17—H17A0.9700
C3—C41.513 (2)C17—H17B0.9700
C3—H3A0.9700C18—H18A0.9600
C3—H3B0.9700C18—H18B0.9600
C4—H4A0.9600C18—H18C0.9600
C4—H4B0.9600C19—C201.513 (2)
C4—H4C0.9600C19—H19A0.9700
C5—C61.513 (2)C19—H19B0.9700
C5—H5A0.9700C20—C211.514 (2)
C5—H5B0.9700C20—H20A0.9700
C6—C71.513 (2)C20—H20B0.9700
C6—H6A0.9700C21—C221.513 (2)
C6—H6B0.9700C21—H21A0.9700
C7—C81.512 (2)C21—H21B0.9700
C7—H7A0.9700C22—H22A0.9600
C7—H7B0.9700C22—H22B0.9600
C8—H8A0.9600C22—H22C0.9600
O1—Sn1—C19110.21 (16)C10A—C11A—H11B111.1
O1—Sn1—C15107.81 (15)Br2A—C11A—H11B111.1
C19—Sn1—C15140.76 (18)H11A—C11A—H11B109.0
O1—Sn1—O479.58 (12)C11B—C10B—C9100.3 (14)
C19—Sn1—O4100.37 (15)C11B—C10B—Br1B115.7 (15)
C15—Sn1—O495.58 (17)C9—C10B—Br1B106.8 (13)
O1—Sn1—O391.83 (14)C11B—C10B—H10B111.1
C19—Sn1—O384.07 (17)C9—C10B—H10B111.1
C15—Sn1—O385.41 (19)Br1B—C10B—H10B111.1
O4—Sn1—O3171.25 (14)C10B—C11B—Br2B112.9 (13)
O1—Sn2—C1108.28 (15)C10B—C11B—H11C109.0
O1—Sn2—C5106.96 (17)Br2B—C11B—H11C109.0
C1—Sn2—C5143.5 (2)C10B—C11B—H11D109.0
O1—Sn2—O1i76.90 (13)Br2B—C11B—H11D109.0
C1—Sn2—O1i98.2 (2)H11C—C11B—H11D107.8
C5—Sn2—O1i98.61 (17)O5—C12—O4123.7 (5)
O1—Sn2—O289.54 (14)O5—C12—C13B117.3 (7)
C1—Sn2—O285.9 (2)O4—C12—C13B118.2 (7)
C5—Sn2—O285.2 (2)O5—C12—C13A121.8 (6)
O1i—Sn2—O2166.43 (14)O4—C12—C13A112.7 (6)
O1—Sn2—Sn2i39.59 (8)C13B—C12—C13A23.8 (5)
C1—Sn2—Sn2i106.78 (16)C14A—C13A—C12109.3 (11)
C5—Sn2—Sn2i106.23 (15)C14A—C13A—Br3A106.1 (12)
O1i—Sn2—Sn2i37.30 (8)C12—C13A—Br3A110.3 (9)
O2—Sn2—Sn2i129.13 (11)C14A—C13A—H13A110.4
Sn2—O1—Sn1136.64 (16)C12—C13A—H13A110.4
Sn2—O1—Sn2i103.10 (12)Br3A—C13A—H13A110.4
Sn1—O1—Sn2i120.08 (15)C14B—C13B—C12111.2 (13)
C9—O2—Sn2136.8 (4)C14B—C13B—Br4B103.2 (10)
C9—O3—Sn1134.2 (4)C12—C13B—Br4B119.1 (12)
C12—O4—Sn1108.0 (3)C14B—C13B—H13B107.6
C2—C1—Sn2113.4 (4)C12—C13B—H13B107.6
C2—C1—H1A108.9Br4B—C13B—H13B107.6
Sn2—C1—H1A108.9C13A—C14A—Br4A105.9 (11)
C2—C1—H1B108.9C13A—C14A—H14A110.6
Sn2—C1—H1B108.9Br4A—C14A—H14A110.6
H1A—C1—H1B107.7C13A—C14A—H14B110.6
C3—C2—C1115.0 (5)Br4A—C14A—H14B110.6
C3—C2—H2A108.5H14A—C14A—H14B108.7
C1—C2—H2A108.5C13B—C14B—Br3B108.0 (12)
C3—C2—H2B108.5C13B—C14B—H14C110.1
C1—C2—H2B108.5Br3B—C14B—H14C110.1
H2A—C2—H2B107.5C13B—C14B—H14D110.1
C4—C3—C2114.3 (5)Br3B—C14B—H14D110.1
C4—C3—H3A108.7H14C—C14B—H14D108.4
C2—C3—H3A108.7C16—C15—Sn1113.9 (3)
C4—C3—H3B108.7C16—C15—H15A108.8
C2—C3—H3B108.7Sn1—C15—H15A108.8
H3A—C3—H3B107.6C16—C15—H15B108.8
C3—C4—H4A109.5Sn1—C15—H15B108.8
C3—C4—H4B109.5H15A—C15—H15B107.7
H4A—C4—H4B109.5C15—C16—C17114.8 (4)
C3—C4—H4C109.5C15—C16—H16A108.6
H4A—C4—H4C109.5C17—C16—H16A108.6
H4B—C4—H4C109.5C15—C16—H16B108.6
C6—C5—Sn2116.1 (4)C17—C16—H16B108.6
C6—C5—H5A108.3H16A—C16—H16B107.6
Sn2—C5—H5A108.3C18—C17—C16112.1 (5)
C6—C5—H5B108.3C18—C17—H17A109.2
Sn2—C5—H5B108.3C16—C17—H17A109.2
H5A—C5—H5B107.4C18—C17—H17B109.2
C7—C6—C5115.2 (6)C16—C17—H17B109.2
C7—C6—H6A108.5H17A—C17—H17B107.9
C5—C6—H6A108.5C17—C18—H18A109.5
C7—C6—H6B108.5C17—C18—H18B109.5
C5—C6—H6B108.5H18A—C18—H18B109.5
H6A—C6—H6B107.5C17—C18—H18C109.5
C8—C7—C6112.6 (6)H18A—C18—H18C109.5
C8—C7—H7A109.1H18B—C18—H18C109.5
C6—C7—H7A109.1C20—C19—Sn1120.1 (3)
C8—C7—H7B109.1C20—C19—H19A107.3
C6—C7—H7B109.1Sn1—C19—H19A107.3
H7A—C7—H7B107.8C20—C19—H19B107.3
C7—C8—H8A109.5Sn1—C19—H19B107.3
C7—C8—H8B109.5H19A—C19—H19B106.9
H8A—C8—H8B109.5C19—C20—C21112.2 (4)
C7—C8—H8C109.5C19—C20—H20A109.2
H8A—C8—H8C109.5C21—C20—H20A109.2
H8B—C8—H8C109.5C19—C20—H20B109.2
O3—C9—O2128.3 (5)C21—C20—H20B109.2
O3—C9—C10A111.0 (7)H20A—C20—H20B107.9
O2—C9—C10A120.6 (7)C22—C21—C20113.9 (4)
O3—C9—C10B131.0 (8)C22—C21—H21A108.8
O2—C9—C10B100.4 (8)C20—C21—H21A108.8
C10A—C9—C10B21.5 (6)C22—C21—H21B108.8
C11A—C10A—C9115.2 (9)C20—C21—H21B108.8
C11A—C10A—Br1A102.1 (9)H21A—C21—H21B107.7
C9—C10A—Br1A100.9 (8)C21—C22—H22A109.5
C11A—C10A—H10A112.5C21—C22—H22B109.5
C9—C10A—H10A112.5H22A—C22—H22B109.5
Br1A—C10A—H10A112.5C21—C22—H22C109.5
C10A—C11A—Br2A103.4 (9)H22A—C22—H22C109.5
C10A—C11A—H11A111.1H22B—C22—H22C109.5
Br2A—C11A—H11A111.1
C1—Sn2—O1—Sn190.7 (3)Sn2—O2—C9—C10B180.0 (10)
C5—Sn2—O1—Sn179.7 (3)O3—C9—C10A—C11A152.2 (10)
O1i—Sn2—O1—Sn1174.9 (3)O2—C9—C10A—C11A25.3 (15)
O2—Sn2—O1—Sn15.1 (3)C10B—C9—C10A—C11A47 (3)
Sn2i—Sn2—O1—Sn1174.9 (3)O3—C9—C10A—Br1A98.7 (7)
C1—Sn2—O1—Sn2i94.4 (2)O2—C9—C10A—Br1A83.8 (8)
C5—Sn2—O1—Sn2i95.15 (19)C10B—C9—C10A—Br1A62 (4)
O1i—Sn2—O1—Sn2i0.0C9—C10A—C11A—Br2A81.7 (11)
O2—Sn2—O1—Sn2i179.98 (17)Br1A—C10A—C11A—Br2A170.0 (5)
C19—Sn1—O1—Sn281.2 (3)O3—C9—C10B—C11B56 (2)
C15—Sn1—O1—Sn288.9 (3)O2—C9—C10B—C11B129.2 (13)
O4—Sn1—O1—Sn2178.5 (3)C10A—C9—C10B—C11B32 (3)
O3—Sn1—O1—Sn23.1 (3)O3—C9—C10B—Br1B65.0 (16)
C19—Sn1—O1—Sn2i104.5 (2)O2—C9—C10B—Br1B109.7 (9)
C15—Sn1—O1—Sn2i85.4 (2)C10A—C9—C10B—Br1B89 (4)
O4—Sn1—O1—Sn2i7.20 (16)C9—C10B—C11B—Br2B76.4 (15)
O3—Sn1—O1—Sn2i171.1 (2)Br1B—C10B—C11B—Br2B169.1 (10)
O1—Sn2—O2—C913.7 (6)Sn1—O4—C12—O59.2 (6)
C1—Sn2—O2—C9122.0 (7)Sn1—O4—C12—C13B178.7 (8)
C5—Sn2—O2—C993.4 (7)Sn1—O4—C12—C13A155.6 (7)
O1i—Sn2—O2—C913.6 (12)O5—C12—C13A—C14A41.0 (15)
Sn2i—Sn2—O2—C913.7 (7)O4—C12—C13A—C14A153.9 (10)
O1—Sn1—O3—C917.4 (6)C13B—C12—C13A—C14A45 (2)
C19—Sn1—O3—C992.8 (6)O5—C12—C13A—Br3A75.3 (9)
C15—Sn1—O3—C9125.1 (6)O4—C12—C13A—Br3A89.8 (8)
O4—Sn1—O3—C928.2 (15)C13B—C12—C13A—Br3A161 (3)
O1—Sn1—O4—C12173.4 (3)O5—C12—C13B—C14B52.0 (15)
C19—Sn1—O4—C1277.8 (3)O4—C12—C13B—C14B137.8 (10)
C15—Sn1—O4—C1266.2 (3)C13A—C12—C13B—C14B55 (2)
O3—Sn1—O4—C12162.3 (10)O5—C12—C13B—Br4B67.7 (11)
O1—Sn2—C1—C25.6 (5)O4—C12—C13B—Br4B102.5 (9)
C5—Sn2—C1—C2158.9 (4)C13A—C12—C13B—Br4B175 (3)
O1i—Sn2—C1—C284.4 (5)C12—C13A—C14A—Br4A58.1 (13)
O2—Sn2—C1—C282.6 (5)Br3A—C13A—C14A—Br4A177.1 (6)
Sn2i—Sn2—C1—C247.2 (5)C12—C13B—C14B—Br3B60.6 (13)
Sn2—C1—C2—C3173.2 (5)Br4B—C13B—C14B—Br3B170.5 (7)
C1—C2—C3—C4175.2 (6)O1—Sn1—C15—C1637.9 (4)
O1—Sn2—C5—C6144.3 (4)C19—Sn1—C15—C16127.4 (4)
C1—Sn2—C5—C620.3 (7)O4—Sn1—C15—C16118.7 (4)
O1i—Sn2—C5—C6136.9 (4)O3—Sn1—C15—C1652.6 (4)
O2—Sn2—C5—C656.2 (4)Sn1—C15—C16—C17166.7 (4)
Sn2i—Sn2—C5—C6174.4 (4)C15—C16—C17—C18173.8 (6)
Sn2—C5—C6—C7168.6 (4)O1—Sn1—C19—C2070.9 (4)
C5—C6—C7—C870.7 (9)C15—Sn1—C19—C20124.0 (4)
Sn1—O3—C9—O215.3 (11)O4—Sn1—C19—C2011.7 (4)
Sn1—O3—C9—C10A167.4 (7)O3—Sn1—C19—C20160.7 (4)
Sn1—O3—C9—C10B158.1 (13)Sn1—C19—C20—C21172.3 (3)
Sn2—O2—C9—O35.1 (12)C19—C20—C21—C22178.0 (5)
Sn2—O2—C9—C10A172.0 (8)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O20.972.583.232 (9)124
C14A—H14A···O3ii0.972.563.434 (13)149
C15—H15A···O5ii0.972.533.220 (6)128
C16—H16A···O30.972.453.134 (6)127
C19—H19A···O5ii0.972.573.287 (6)130
C2—H2A···Cg10.972.953.415 (6)111
C16—H16A···Cg20.972.683.250 (6)118
Symmetry code: (ii) x, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Sn4(C4H9)8(C3H3Br2O2)4O2]
Mr1887.15
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)11.7495 (4), 20.6620 (8), 12.9684 (5)
β (°) 91.462 (2)
V3)3147.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)6.69
Crystal size (mm)0.51 × 0.32 × 0.25
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.088, 0.188
No. of measured, independent and
observed [I > 2σ(I)] reflections
51856, 12752, 6843
Rint0.053
(sin θ/λ)max1)0.787
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.144, 1.00
No. of reflections12752
No. of parameters365
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.86, 1.37

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR2004 (Burla et al., 2003), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected bond lengths (Å) top
Sn1—O12.048 (3)Sn2—C12.122 (6)
Sn1—C192.120 (5)Sn2—C52.132 (6)
Sn1—C152.126 (5)Sn2—O1i2.149 (3)
Sn1—O42.208 (3)Sn2—O22.300 (4)
Sn1—O32.283 (4)Sn2—Sn2i3.2840 (6)
Sn2—O12.043 (3)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O20.97002.58003.232 (9)124.00
C14A—H14A···O3ii0.97002.56003.434 (13)149.00
C15—H15A···O5ii0.97002.53003.220 (6)128.00
C16—H16A···O30.97002.45003.134 (6)127.00
C19—H19A···O5ii0.97002.57003.287 (6)130.00
C2—H2A···Cg10.972.953.415 (6)111.00
C16—H16A···Cg20.972.683.250 (6)118.00
Symmetry code: (ii) x, y+2, z+1.
 

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia for the RU research grant 101/PKIMIA/815002 and for the facilities. HKF and RK thank the Malaysian Government and Universiti sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationGielen, M., Biesemans, M., Vos, D. & Willem, R. (2000). J. Inorg. Biochem. 79, 139–145.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, S. R. A., Huang, S., Shamsuddin, S., Inutsuka, S., Whitmire, K. H., Siddik, Z. H. & Khokhar, A. R. (2000). Bioorg. Med. Chem. 8, 515–521.  CSD CrossRef PubMed Google Scholar
First citationKhoo, L. E. & Hazell, A. (1999). Acta Cryst. C55, 2070–2073.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLi, F.-H., Yin, H.-D., Gao, Z.-J. & Wang, D.-Q. (2006). Acta Cryst. E62, m788–m790.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParvez, M., Sadiq-ur-Rehman,, Shahid, K., Ali, S. & Mazhar, M. (2004). Acta Cryst. E60, m1465–m1467.  Google Scholar
First citationRonconi, L., Marzano, C., Russo, U., Sitran, S., Graziani, R. & Fregona, D. (2002). J. Inorg. Biochem. 91, 413–420.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, L., Sun, Y., Li, H., Zheng, X., Cheng, Y., Liu, X. & Qian, B. (2005). J. Inorg. Biochem. 99, 1646–1652.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWin, Y. F., Teoh, S. G., Lim, E. K., Ng, S. L. & Fun, H. K. (2008). J. Chem. Crystallogr. 38, 345–350.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1572-m1573
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds