organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages o2363-o2364

[3-(4-Chloro­phen­yl)-5-hydr­­oxy-5-phenyl-4,5-di­hydro-1H-pyrazol-1-yl](3-pyrid­yl)methanone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 10 November 2008; accepted 10 November 2008; online 13 November 2008)

In the title compound, C21H16ClN3O2, the dihedral angles formed by the pyrazole ring with the pyridyl, phenyl­ene and phenyl rings are 6.80 (5), 9.23 (5) and 74.96 (5)°, respectively. The phenyl and phenyl­ene rings are inclined at 80.14 (2)°. Intra­molecular O—H⋯O and C—H⋯N hydrogen bonds generate S(6) ring motifs. The crystal packing is strengthened by short inter­molecular O—H⋯N, C—H⋯O hydrogen bonds and ππ stacking inter­actions with centroid–centroid distances of 3.6247 (5)–3.7205 (5) Å, together with inter­molecular short O⋯N contacts [2.7682 (11) Å]. Mol­ecules are linked into infinite chains along [100].

Related literature

For the biological applications of pyrazoles, see: Kalluraya & Ramesh (2001[Kalluraya, B. & Ramesh, M. C. (2001). Indian J. Heterocycl. Chem. 11, 171-172.]); Watanabe et al. (1998[Watanabe, N., Kabasawa, Y., Takase, Y., Matsukura, M., Miyazaki, K., Ishihara, H., Kodama, K. & Adachi, H. (1998). J. Med. Chem. 41, 3367-3372.]); Yuhong & Rajender (2005[Yuhong, J. & Rajender, S. V. (2005). Tetrahedron Lett. 46, 6011-6014.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C21H16ClN3O2

  • Mr = 377.82

  • Triclinic, [P \overline 1]

  • a = 7.5916 (1) Å

  • b = 9.7644 (1) Å

  • c = 12.5474 (2) Å

  • α = 104.424 (1)°

  • β = 94.960 (1)°

  • γ = 96.081 (1)°

  • V = 889.55 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100.0 (1) K

  • 0.47 × 0.29 × 0.19 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.896, Tmax = 0.957

  • 20326 measured reflections

  • 6385 independent reflections

  • 5630 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.103

  • S = 1.04

  • 6385 reflections

  • 248 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯O1 0.824 (13) 2.340 (14) 2.8463 (9) 120.3 (13)
O2—H1O2⋯N3i 0.824 (13) 2.027 (14) 2.7682 (11) 149.5 (14)
C8—H8A⋯O2ii 0.97 2.55 3.4836 (11) 163
C13—H13A⋯O1iii 0.93 2.46 3.3294 (12) 156
C21—H21A⋯N1 0.93 2.21 2.8600 (12) 127
C14—H14ACg2iv 0.93 2.90 3.6968 (11) 144
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z+2; (iii) -x+1, -y, -z+1; (iv) -x, -y, -z+1. Cg2 is the centroid of the N3/C17–C21 ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Heterocyclic compounds occur very widely in nature and are essential to life. Nitrogen-containing heterocyclic molecules constitute the largest portion of chemical entities, which are part of many natural products, fine chemicals, and biologically active pharmaceuticals vital for enhancing the quality of life. 4,5-Dihydro-pyrazoles, pyrazolidines and 1,2-dihydro-phthalazines are important classes of heterocycles useful as pesticides, anticonvulsants, and potent vasorelaxing agents (Kalluraya et al., 2001; Watanabe et al., 1998; Yuhong & Rajender, 2005). The pyrazoline function is quite stable and has inspired chemists to utilize this stable fragment in bioactive moieties to synthesize new compounds. Prompted by these review, we have synthesized this new substituted pyrazoline derivative and report its crystal structure.

Bond lengths and angles in (I) (Fig. 1) are found to have normal values (Allen et al., 1987). The dihedral angle formed by the pyrazole (N1/N2/C7—C9) ring with the pyridine ring (N3/C17—C21) and the two benzene rings (C1—C6; C10—C15) are 6.80 (5), 9.23 (5) and 74.96 (5)° respectively. The benzene rings (C1—C6; C10—C15) form dihedral angle of 80.14 (2)°, indicating that they are inclined to each other. Intramolecular C—H···N and O—H···O hydrogen bonds generate S(6) ring motifs. (Bernstein et al., 1995).

The crystal packing is consolidated by intermolecular O—H···N and C—H···O hydrogen bonding (Table 1). Furthermore, the packing is strengthened by ππ stacking interactions involving the pyrazole (N1—N2/C7—C9) (Cg1) ring and the symmetry related benzene (C10—C15) (Cg4) ring [Cg1···Cg4v=3.7787 (6) Å; symmetry code: (v) X,Y,Z]; pyridine (N3/C17—C21) (Cg2) ring and the symmetry related benzene (C1—C6) (Cg3) ring [Cg2···Cg3vi=3.6247 (5) Å; symmetry code: (vi) –X,-Y,2-Z] and between symmetry related benzene (C1—C6) (Cg3) rings [Cg3···Cg3vii = 3.7205 (5) Å; symmetry code: (vii) –X,1-Y,2-Z] together with intermolecular O···N = 2.7682 (11)Å short contacts. In the crystal packing, the molecules are linked into infinite one dimensional chains along the [100] direction (Fig 2).

Related literature top

For the biological applications of pyrazoles, see: Kalluraya et al. (2001); Watanabe et al. (1998); Yuhong & Rajender (2005). For bond-length data, see: Allen et al. (1987). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995). Cg2 is the centroid of the N3/C17–C21ring.

Experimental top

A mixture of 1-phenyl-3-(4-chloro phenyl)-2,3-di-bromo propan-1-one (0.01 mol), nicotinic hydrazide (0.01 mol) and trimethylamine (0.04 mol) in ethanol (30 mL) was refluxed for 8 h. The contents were poured onto crushed ice with stirring. The solid mass separated was collected and recrystallized from ethanol.

Refinement top

The hydroxy H atoms were located in a difference map and refined with restraints of O—H=0.82 (1) Å. The remaining H atoms were positioned geometrically [C—H=0.93Å (aromatic) or 0.97Å (methylene)] and refined using a riding model, with Uiso(H)=1.2Uequ(aromatic C, methylene).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound,viewed down the a axis.
[3-(4-Chlorophenyl)-5-hydroxy-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl](3- pyridyl)methanone top
Crystal data top
C21H16ClN3O2Z = 2
Mr = 377.82F(000) = 392
Triclinic, P1Dx = 1.411 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5916 (1) ÅCell parameters from 9943 reflections
b = 9.7644 (1) Åθ = 3.1–37.5°
c = 12.5474 (2) ŵ = 0.24 mm1
α = 104.424 (1)°T = 100 K
β = 94.960 (1)°Block, colourless
γ = 96.081 (1)°0.47 × 0.29 × 0.19 mm
V = 889.55 (2) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6385 independent reflections
Radiation source: fine-focus sealed tube5630 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 32.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1111
Tmin = 0.896, Tmax = 0.957k = 1414
20326 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.2362P]
where P = (Fo2 + 2Fc2)/3
6385 reflections(Δ/σ)max < 0.001
248 parametersΔρmax = 0.54 e Å3
1 restraintΔρmin = 0.26 e Å3
Crystal data top
C21H16ClN3O2γ = 96.081 (1)°
Mr = 377.82V = 889.55 (2) Å3
Triclinic, P1Z = 2
a = 7.5916 (1) ÅMo Kα radiation
b = 9.7644 (1) ŵ = 0.24 mm1
c = 12.5474 (2) ÅT = 100 K
α = 104.424 (1)°0.47 × 0.29 × 0.19 mm
β = 94.960 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6385 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5630 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 0.957Rint = 0.023
20326 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.54 e Å3
6385 reflectionsΔρmin = 0.26 e Å3
248 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.18759 (3)0.58111 (2)1.24148 (2)0.02272 (7)
O10.24543 (9)0.22304 (7)0.66899 (5)0.01553 (13)
O20.47798 (8)0.05281 (7)0.85593 (5)0.01450 (12)
N10.05961 (10)0.04156 (8)0.85564 (6)0.01321 (13)
N20.17594 (9)0.03622 (8)0.79391 (6)0.01266 (13)
N30.36717 (10)0.27300 (9)0.73008 (7)0.01823 (15)
C10.11452 (12)0.23011 (9)1.01516 (7)0.01448 (15)
H1A0.18210.14480.97520.017*
C20.19255 (12)0.32951 (10)1.08935 (7)0.01548 (16)
H2A0.31190.31131.09940.019*
C30.08985 (13)0.45689 (9)1.14851 (7)0.01577 (16)
C40.08865 (13)0.48666 (9)1.13548 (7)0.01624 (16)
H4A0.15550.57221.17560.019*
C50.16553 (12)0.38617 (9)1.06134 (7)0.01500 (15)
H5A0.28520.40471.05230.018*
C60.06584 (11)0.25743 (9)1.00002 (7)0.01290 (14)
C70.15147 (11)0.15330 (9)0.92314 (7)0.01247 (14)
C80.34900 (11)0.16151 (9)0.91685 (7)0.01392 (15)
H8A0.41180.15210.98480.017*
H8B0.39610.25100.90300.017*
C90.36523 (11)0.03425 (9)0.81857 (7)0.01211 (14)
C100.42505 (12)0.08305 (9)0.71939 (7)0.01367 (15)
C110.60717 (13)0.11624 (10)0.71445 (8)0.01826 (17)
H11A0.69010.10360.76900.022*
C120.66489 (15)0.16839 (11)0.62776 (9)0.0236 (2)
H12A0.78630.19030.62480.028*
C130.54216 (16)0.18775 (11)0.54588 (8)0.0245 (2)
H13A0.58100.22080.48740.029*
C140.36126 (16)0.15747 (11)0.55197 (8)0.0227 (2)
H14A0.27860.17180.49790.027*
C150.30233 (13)0.10574 (10)0.63848 (8)0.01771 (16)
H15A0.18070.08630.64220.021*
C160.12920 (11)0.16587 (9)0.71942 (7)0.01213 (14)
C170.05871 (11)0.24069 (9)0.69814 (7)0.01225 (14)
C180.08787 (12)0.36918 (10)0.61570 (8)0.01686 (16)
H18A0.00500.40160.57680.020*
C190.25619 (13)0.44831 (10)0.59202 (8)0.01974 (18)
H19A0.27760.53440.53760.024*
C200.39171 (12)0.39616 (10)0.65129 (8)0.01884 (17)
H20A0.50440.44920.63550.023*
C210.20374 (11)0.19778 (10)0.75323 (8)0.01554 (16)
H21A0.18620.11280.80880.019*
H1O20.488 (2)0.1208 (13)0.8037 (10)0.026 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02952 (12)0.01698 (11)0.02199 (12)0.00842 (8)0.01020 (9)0.00106 (8)
O10.0147 (3)0.0150 (3)0.0160 (3)0.0030 (2)0.0043 (2)0.0011 (2)
O20.0147 (3)0.0148 (3)0.0141 (3)0.0036 (2)0.0005 (2)0.0036 (2)
N10.0140 (3)0.0118 (3)0.0129 (3)0.0026 (2)0.0031 (2)0.0008 (2)
N20.0110 (3)0.0120 (3)0.0133 (3)0.0011 (2)0.0025 (2)0.0000 (2)
N30.0120 (3)0.0183 (4)0.0217 (4)0.0009 (3)0.0001 (3)0.0015 (3)
C10.0157 (3)0.0130 (4)0.0143 (4)0.0018 (3)0.0019 (3)0.0028 (3)
C20.0169 (4)0.0154 (4)0.0151 (4)0.0038 (3)0.0035 (3)0.0045 (3)
C30.0218 (4)0.0131 (4)0.0134 (4)0.0057 (3)0.0045 (3)0.0030 (3)
C40.0214 (4)0.0118 (4)0.0146 (4)0.0016 (3)0.0029 (3)0.0015 (3)
C50.0170 (4)0.0126 (4)0.0142 (4)0.0007 (3)0.0022 (3)0.0018 (3)
C60.0156 (3)0.0113 (3)0.0115 (3)0.0022 (3)0.0019 (3)0.0023 (3)
C70.0141 (3)0.0115 (3)0.0118 (3)0.0018 (3)0.0019 (3)0.0027 (3)
C80.0135 (3)0.0138 (4)0.0123 (3)0.0003 (3)0.0017 (3)0.0000 (3)
C90.0111 (3)0.0126 (3)0.0121 (3)0.0006 (3)0.0012 (3)0.0026 (3)
C100.0172 (4)0.0110 (3)0.0124 (3)0.0010 (3)0.0033 (3)0.0021 (3)
C110.0186 (4)0.0180 (4)0.0175 (4)0.0013 (3)0.0045 (3)0.0039 (3)
C120.0289 (5)0.0178 (4)0.0233 (5)0.0033 (4)0.0120 (4)0.0035 (3)
C130.0433 (6)0.0135 (4)0.0177 (4)0.0002 (4)0.0113 (4)0.0047 (3)
C140.0382 (6)0.0153 (4)0.0153 (4)0.0045 (4)0.0017 (4)0.0055 (3)
C150.0228 (4)0.0149 (4)0.0156 (4)0.0031 (3)0.0017 (3)0.0043 (3)
C160.0133 (3)0.0116 (3)0.0111 (3)0.0014 (3)0.0011 (3)0.0023 (3)
C170.0122 (3)0.0115 (3)0.0123 (3)0.0017 (3)0.0002 (3)0.0022 (3)
C180.0165 (4)0.0141 (4)0.0169 (4)0.0008 (3)0.0013 (3)0.0009 (3)
C190.0192 (4)0.0150 (4)0.0203 (4)0.0015 (3)0.0008 (3)0.0017 (3)
C200.0149 (4)0.0181 (4)0.0205 (4)0.0017 (3)0.0023 (3)0.0025 (3)
C210.0126 (3)0.0143 (4)0.0177 (4)0.0016 (3)0.0006 (3)0.0007 (3)
Geometric parameters (Å, º) top
Cl1—C31.7373 (9)C8—H8A0.9700
O1—C161.2311 (10)C8—H8B0.9700
O2—C91.3994 (11)C9—C101.5262 (12)
O2—H1O20.823 (9)C10—C151.3928 (13)
N1—C71.2924 (11)C10—C111.3965 (12)
N1—N21.3870 (10)C11—C121.3948 (13)
N2—C161.3638 (11)C11—H11A0.9300
N2—C91.4972 (11)C12—C131.3885 (17)
N3—C201.3367 (12)C12—H12A0.9300
N3—C211.3422 (11)C13—C141.3866 (16)
C1—C21.3880 (12)C13—H13A0.9300
C1—C61.4053 (12)C14—C151.3938 (13)
C1—H1A0.9300C14—H14A0.9300
C2—C31.3929 (13)C15—H15A0.9300
C2—H2A0.9300C16—C171.5021 (11)
C3—C41.3879 (13)C17—C181.3957 (12)
C4—C51.3889 (12)C17—C211.3966 (12)
C4—H4A0.9300C18—C191.3889 (12)
C5—C61.4003 (12)C18—H18A0.9300
C5—H5A0.9300C19—C201.3876 (14)
C6—C71.4652 (12)C19—H19A0.9300
C7—C81.5032 (12)C20—H20A0.9300
C8—C91.5412 (12)C21—H21A0.9300
C9—O2—H1O2108.8 (10)C10—C9—C8111.83 (7)
C7—N1—N2108.27 (7)C15—C10—C11119.31 (8)
C16—N2—N1125.12 (7)C15—C10—C9121.51 (8)
C16—N2—C9121.54 (7)C11—C10—C9118.99 (8)
N1—N2—C9113.32 (7)C12—C11—C10120.09 (9)
C20—N3—C21118.29 (8)C12—C11—H11A120.0
C2—C1—C6120.46 (8)C10—C11—H11A120.0
C2—C1—H1A119.8C13—C12—C11120.40 (10)
C6—C1—H1A119.8C13—C12—H12A119.8
C1—C2—C3119.15 (8)C11—C12—H12A119.8
C1—C2—H2A120.4C14—C13—C12119.51 (9)
C3—C2—H2A120.4C14—C13—H13A120.2
C4—C3—C2121.67 (8)C12—C13—H13A120.2
C4—C3—Cl1119.23 (7)C13—C14—C15120.49 (10)
C2—C3—Cl1119.10 (7)C13—C14—H14A119.8
C3—C4—C5118.69 (8)C15—C14—H14A119.8
C3—C4—H4A120.7C10—C15—C14120.18 (9)
C5—C4—H4A120.7C10—C15—H15A119.9
C4—C5—C6121.12 (8)C14—C15—H15A119.9
C4—C5—H5A119.4O1—C16—N2118.64 (8)
C6—C5—H5A119.4O1—C16—C17119.41 (8)
C5—C6—C1118.91 (8)N2—C16—C17121.95 (7)
C5—C6—C7119.70 (8)C18—C17—C21117.32 (8)
C1—C6—C7121.37 (8)C18—C17—C16115.35 (7)
N1—C7—C6121.37 (8)C21—C17—C16127.30 (8)
N1—C7—C8113.88 (7)C19—C18—C17119.68 (9)
C6—C7—C8124.71 (7)C19—C18—H18A120.2
C7—C8—C9103.47 (7)C17—C18—H18A120.2
C7—C8—H8A111.1C20—C19—C18118.56 (9)
C9—C8—H8A111.1C20—C19—H19A120.7
C7—C8—H8B111.1C18—C19—H19A120.7
C9—C8—H8B111.1N3—C20—C19122.80 (8)
H8A—C8—H8B109.0N3—C20—H20A118.6
O2—C9—N2111.30 (7)C19—C20—H20A118.6
O2—C9—C10113.38 (7)N3—C21—C17123.34 (8)
N2—C9—C10110.73 (7)N3—C21—H21A118.3
O2—C9—C8108.31 (7)C17—C21—H21A118.3
N2—C9—C8100.55 (6)
C7—N1—N2—C16175.28 (8)N2—C9—C10—C1521.78 (11)
C7—N1—N2—C93.15 (10)C8—C9—C10—C1589.47 (10)
C6—C1—C2—C30.11 (13)O2—C9—C10—C1137.34 (11)
C1—C2—C3—C40.26 (14)N2—C9—C10—C11163.27 (8)
C1—C2—C3—Cl1179.91 (7)C8—C9—C10—C1185.48 (10)
C2—C3—C4—C50.00 (14)C15—C10—C11—C121.49 (14)
Cl1—C3—C4—C5179.66 (7)C9—C10—C11—C12176.55 (8)
C3—C4—C5—C60.41 (14)C10—C11—C12—C130.03 (15)
C4—C5—C6—C10.56 (13)C11—C12—C13—C141.25 (15)
C4—C5—C6—C7179.54 (8)C12—C13—C14—C151.05 (15)
C2—C1—C6—C50.29 (13)C11—C10—C15—C141.69 (14)
C2—C1—C6—C7179.26 (8)C9—C10—C15—C14176.63 (8)
N2—N1—C7—C6179.99 (7)C13—C14—C15—C100.43 (14)
N2—N1—C7—C81.91 (10)N1—N2—C16—O1179.18 (8)
C5—C6—C7—N1171.57 (8)C9—N2—C16—O12.51 (12)
C1—C6—C7—N19.47 (13)N1—N2—C16—C171.32 (13)
C5—C6—C7—C810.55 (13)C9—N2—C16—C17176.99 (7)
C1—C6—C7—C8168.42 (8)O1—C16—C17—C183.55 (12)
N1—C7—C8—C95.84 (10)N2—C16—C17—C18176.95 (8)
C6—C7—C8—C9176.14 (8)O1—C16—C17—C21174.65 (9)
C16—N2—C9—O257.55 (10)N2—C16—C17—C214.85 (14)
N1—N2—C9—O2120.95 (8)C21—C17—C18—C190.15 (14)
C16—N2—C9—C1069.54 (10)C16—C17—C18—C19178.25 (8)
N1—N2—C9—C10111.97 (8)C17—C18—C19—C200.35 (15)
C16—N2—C9—C8172.11 (8)C21—N3—C20—C190.70 (15)
N1—N2—C9—C86.39 (9)C18—C19—C20—N30.08 (16)
C7—C8—C9—O2123.48 (7)C20—N3—C21—C170.92 (14)
C7—C8—C9—N26.68 (8)C18—C17—C21—N30.51 (14)
C7—C8—C9—C10110.87 (8)C16—C17—C21—N3178.68 (9)
O2—C9—C10—C15147.71 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O10.82 (1)2.34 (1)2.8463 (9)120 (1)
O2—H1O2···N3i0.82 (1)2.03 (1)2.7682 (11)150 (1)
C8—H8A···O2ii0.972.553.4836 (11)163
C13—H13A···O1iii0.932.463.3294 (12)156
C21—H21A···N10.932.212.8600 (12)127
C14—H14A···Cg2iv0.932.903.6968 (11)144
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+2; (iii) x+1, y, z+1; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC21H16ClN3O2
Mr377.82
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.5916 (1), 9.7644 (1), 12.5474 (2)
α, β, γ (°)104.424 (1), 94.960 (1), 96.081 (1)
V3)889.55 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.47 × 0.29 × 0.19
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.896, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
20326, 6385, 5630
Rint0.023
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.104, 1.04
No. of reflections6385
No. of parameters248
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.26

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O10.824 (13)2.340 (14)2.8463 (9)120.3 (13)
O2—H1O2···N3i0.824 (13)2.027 (14)2.7682 (11)149.5 (14)
C8—H8A···O2ii0.972.553.4836 (11)163
C13—H13A···O1iii0.932.463.3294 (12)156
C21—H21A···N10.932.212.8600 (12)127
C14—H14A···Cg2iv0.932.903.6968 (11)144
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+2; (iii) x+1, y, z+1; (iv) x, y, z+1.
 

Footnotes

Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Acknowledgements

FHK and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKalluraya, B. & Ramesh, M. C. (2001). Indian J. Heterocycl. Chem. 11, 171–172.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatanabe, N., Kabasawa, Y., Takase, Y., Matsukura, M., Miyazaki, K., Ishihara, H., Kodama, K. & Adachi, H. (1998). J. Med. Chem. 41, 3367–3372.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYuhong, J. & Rajender, S. V. (2005). Tetrahedron Lett. 46, 6011–6014.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages o2363-o2364
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds