metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[O-Ethyl N-(4-nitro­phen­yl)thio­carbam­ato-κS](tri-p-tolyl­phosphine-κP)gold(I)

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA
*Correspondence e-mail: Edward.Tiekink@utsa.edu

(Received 16 November 2008; accepted 17 November 2008; online 20 November 2008)

A nearly linear coordination geometry for Au is found in the title compound, [Au(C9H9N2O3S)(C21H21P)]. The thio­carbamate ligand is orientated so that the aryl group is in close proximity to the Au atom, consistent with an Au⋯π contact [Au⋯Cg = 3.351 (5) Å; Cg is the centroid of the aromatic ring].

Related literature

For related structures and discussion of structural diversity, see: Ho et al. (2006[Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165-8174.]); Ho & Tiekink (2007[Ho, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368-378.]); Kuan et al. (2008[Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 568-564.]).

[Scheme 1]

Experimental

Crystal data
  • [Au(C9H9N2O3S)(C21H21P)]

  • Mr = 726.56

  • Monoclinic, C c

  • a = 16.622 (3) Å

  • b = 18.307 (4) Å

  • c = 10.094 (2) Å

  • β = 112.78 (3)°

  • V = 2832.0 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.36 mm−1

  • T = 173 (2) K

  • 0.15 × 0.12 × 0.05 mm

Data collection
  • Rigaku AFC12K/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.739, Tmax = 1.000 (expected range = 0.565–0.765)

  • 9217 measured reflections

  • 4917 independent reflections

  • 4682 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.099

  • S = 1.06

  • 4917 reflections

  • 346 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 1.37 e Å−3

  • Δρmin = −2.40 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1980 Friedel pairs

  • Flack parameter: 0.008 (11)

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Phosphinegold(I) thiocarbamides uniformly adopt linear coordination geometries defined by a S and P donor set (Ho et al., 2006; Ho & Tiekink, 2007; Kuan et al., 2008). In these structures the thiocarbamide-O atom is normally located in close proximity to the Au atom but in cases where the donor ability of the phosphine ligand is increased, as in the structure of the title compound (I), a rotation about the S—C bond occurs and the N-bound aryl group is orientated towards the Au centre (Kuan et al., 2008). In (I), Fig. 1, such a rotation has occurred so that the Au···Cg distance is 3.351 (5) Å. Interestingly, in the O-methyl derivative, the thiocarbamide molecule is situated to allow for an intramolecular Au···O contact (Kuan et al., 2008) suggesting that replacing methyl with a more electronegative ethyl group is sufficient to introduce a difference in the orientation of the molecule.

Related literature top

For related structures and discussion of structural diversity, see: Ho et al. (2006); Ho & Tiekink (2007); Kuan et al. (2008).

Experimental top

The title compound (I) was prepared following established literature procedures (Ho et al., 2006). Yellow crystals were obtained by the slow evaporation of an acetone solution of (I).

Refinement top

The H atoms were geometrically placed (C—H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The largest peak was 1.46 Å from Au and the deepest hole was 1.02 Å from Au.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[O-Ethyl N-(4-nitrophenyl)thiocarbamato-κS](tri-p- tolylphosphine-κP)gold(I) top
Crystal data top
[Au(C9H9N2O3S)(C21H21P)]F(000) = 1432
Mr = 726.56Dx = 1.704 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71070 Å
Hall symbol: C -2ycCell parameters from 6817 reflections
a = 16.622 (3) Åθ = 2.4–30.4°
b = 18.307 (4) ŵ = 5.36 mm1
c = 10.094 (2) ÅT = 173 K
β = 112.78 (3)°Prism, yellow
V = 2832.0 (10) Å30.15 × 0.12 × 0.05 mm
Z = 4
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
4917 independent reflections
Radiation source: fine-focus sealed tube4682 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ω scansθmax = 26.5°, θmin = 2.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2020
Tmin = 0.739, Tmax = 1.000k = 2222
9217 measured reflectionsl = 1210
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0306P)2 + 5.5648P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4917 reflectionsΔρmax = 1.37 e Å3
346 parametersΔρmin = 2.40 e Å3
2 restraintsAbsolute structure: Flack (1983), 1980 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.008 (11)
Crystal data top
[Au(C9H9N2O3S)(C21H21P)]V = 2832.0 (10) Å3
Mr = 726.56Z = 4
Monoclinic, CcMo Kα radiation
a = 16.622 (3) ŵ = 5.36 mm1
b = 18.307 (4) ÅT = 173 K
c = 10.094 (2) Å0.15 × 0.12 × 0.05 mm
β = 112.78 (3)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
4917 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4682 reflections with I > 2σ(I)
Tmin = 0.739, Tmax = 1.000Rint = 0.059
9217 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.099Δρmax = 1.37 e Å3
S = 1.06Δρmin = 2.40 e Å3
4917 reflectionsAbsolute structure: Flack (1983), 1980 Friedel pairs
346 parametersAbsolute structure parameter: 0.008 (11)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au0.49939 (4)0.473591 (16)0.74925 (5)0.03122 (11)
S10.59961 (18)0.56583 (13)0.8436 (3)0.0367 (6)
P10.39053 (16)0.39085 (13)0.6519 (3)0.0270 (5)
O10.7581 (5)0.5885 (4)0.8868 (7)0.0355 (16)
O20.5347 (7)0.2127 (6)1.0596 (12)0.055 (3)
O30.5424 (7)0.1666 (5)0.8655 (11)0.074 (3)
N10.7339 (6)0.4654 (4)0.8938 (9)0.032 (2)
N20.5563 (7)0.2152 (6)0.9524 (12)0.049 (3)
C10.6860 (6)0.4052 (5)0.9059 (12)0.030 (2)
C20.6591 (6)0.3981 (6)1.0185 (11)0.031 (2)
H2A0.66930.43711.08510.037*
C30.6179 (7)0.3364 (6)1.0369 (11)0.035 (2)
H3A0.60120.33171.11660.042*
C40.6014 (7)0.2813 (6)0.9367 (12)0.031 (2)
C50.6258 (7)0.2864 (6)0.8200 (12)0.037 (2)
H5A0.61410.24790.75210.044*
C60.6674 (7)0.3490 (6)0.8060 (11)0.035 (2)
H6A0.68390.35400.72620.042*
C70.7041 (7)0.5312 (5)0.8757 (11)0.031 (2)
C80.8498 (7)0.5729 (7)0.9210 (12)0.046 (3)
H8A0.86850.53230.99130.055*
H8B0.88490.61650.96650.055*
C90.8674 (9)0.5524 (8)0.7904 (14)0.052 (3)
H9A0.92980.54230.81880.079*
H9B0.85040.59290.72140.079*
H9C0.83370.50880.74580.079*
C100.2983 (7)0.4272 (5)0.5037 (11)0.029 (2)
C110.2704 (7)0.4981 (6)0.5072 (13)0.041 (3)
H11A0.30010.52740.58950.050*
C120.2010 (8)0.5276 (5)0.3950 (13)0.042 (3)
H12A0.18270.57600.40290.050*
C130.1572 (8)0.4879 (7)0.2704 (12)0.038 (3)
C140.1839 (9)0.4159 (6)0.2679 (12)0.050 (3)
H14A0.15250.38600.18760.060*
C150.2548 (9)0.3868 (6)0.3790 (13)0.053 (3)
H15A0.27420.33890.37050.063*
C160.0830 (10)0.5201 (7)0.1453 (14)0.059 (4)
H16A0.08250.49910.05560.088*
H16B0.09020.57310.14410.088*
H16C0.02770.50880.15450.088*
C170.3478 (6)0.3540 (5)0.7770 (10)0.028 (2)
C180.2710 (7)0.3149 (6)0.7351 (11)0.038 (2)
H18A0.23560.31050.63570.045*
C190.2448 (7)0.2826 (6)0.8332 (12)0.038 (2)
H19A0.19130.25650.80080.045*
C200.2947 (8)0.2870 (6)0.9794 (11)0.039 (3)
C210.3698 (7)0.3280 (6)1.0242 (11)0.036 (2)
H21A0.40370.33291.12410.043*
C220.3968 (6)0.3624 (6)0.9264 (11)0.037 (2)
H22A0.44810.39150.95930.044*
C230.2631 (9)0.2489 (7)1.0866 (13)0.054 (3)
H23A0.31210.24381.17960.081*
H23B0.24020.20041.05000.081*
H23C0.21700.27821.09850.081*
C240.4231 (6)0.3135 (5)0.5721 (10)0.025 (2)
C250.4745 (7)0.3277 (6)0.4931 (11)0.037 (2)
H25A0.49530.37580.49000.044*
C260.4948 (7)0.2714 (6)0.4193 (11)0.036 (2)
H26A0.52850.28180.36420.043*
C270.4667 (10)0.1993 (7)0.4240 (15)0.041 (3)
C280.4187 (8)0.1867 (7)0.5063 (14)0.044 (3)
H28A0.40020.13830.51290.053*
C290.3960 (7)0.2420 (6)0.5805 (12)0.036 (2)
H29A0.36260.23130.63600.043*
C300.4884 (10)0.1410 (7)0.3408 (14)0.058 (3)
H30A0.45590.09650.34200.087*
H30B0.55110.13080.38420.087*
H30C0.47250.15720.24130.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au0.03049 (18)0.03164 (17)0.03174 (19)0.0017 (2)0.01226 (14)0.0001 (2)
S10.0368 (14)0.0270 (11)0.0499 (16)0.0055 (11)0.0207 (13)0.0056 (11)
P10.0262 (13)0.0295 (12)0.0239 (13)0.0029 (10)0.0083 (11)0.0002 (10)
O10.036 (4)0.036 (4)0.035 (4)0.005 (3)0.015 (3)0.000 (3)
O20.059 (7)0.052 (6)0.061 (7)0.001 (5)0.032 (6)0.022 (5)
O30.091 (8)0.051 (5)0.070 (7)0.019 (6)0.021 (6)0.001 (5)
N10.030 (5)0.031 (4)0.030 (5)0.007 (4)0.006 (4)0.007 (4)
N20.037 (6)0.047 (6)0.042 (7)0.006 (5)0.007 (5)0.008 (5)
C10.029 (5)0.028 (5)0.032 (6)0.007 (4)0.011 (5)0.004 (4)
C20.029 (6)0.033 (5)0.030 (6)0.003 (4)0.012 (5)0.003 (4)
C30.033 (6)0.048 (6)0.022 (5)0.009 (5)0.008 (5)0.010 (5)
C40.021 (5)0.035 (6)0.035 (6)0.001 (5)0.009 (5)0.004 (5)
C50.033 (6)0.032 (5)0.047 (7)0.010 (5)0.018 (5)0.013 (5)
C60.044 (6)0.040 (6)0.027 (6)0.003 (5)0.019 (5)0.002 (5)
C70.033 (6)0.035 (5)0.025 (5)0.018 (4)0.012 (5)0.001 (4)
C80.036 (6)0.060 (7)0.036 (6)0.020 (6)0.008 (5)0.002 (5)
C90.049 (8)0.056 (8)0.049 (8)0.011 (7)0.015 (7)0.002 (7)
C100.034 (6)0.027 (5)0.029 (6)0.000 (4)0.017 (5)0.002 (4)
C110.042 (7)0.030 (5)0.046 (7)0.002 (5)0.010 (6)0.002 (5)
C120.049 (7)0.024 (5)0.042 (7)0.003 (5)0.006 (6)0.003 (4)
C130.036 (6)0.046 (6)0.031 (6)0.007 (5)0.013 (5)0.011 (5)
C140.068 (9)0.041 (6)0.026 (6)0.016 (6)0.001 (6)0.006 (5)
C150.067 (9)0.028 (5)0.049 (7)0.007 (6)0.008 (7)0.008 (5)
C160.077 (10)0.050 (7)0.046 (8)0.028 (7)0.021 (8)0.009 (6)
C170.030 (5)0.039 (5)0.021 (5)0.007 (4)0.016 (5)0.010 (4)
C180.033 (6)0.052 (6)0.025 (5)0.008 (5)0.009 (5)0.001 (5)
C190.031 (6)0.043 (6)0.038 (6)0.006 (5)0.012 (5)0.005 (5)
C200.052 (7)0.041 (6)0.024 (6)0.003 (5)0.014 (5)0.001 (5)
C210.040 (6)0.036 (5)0.032 (6)0.009 (5)0.013 (5)0.004 (4)
C220.024 (5)0.051 (6)0.033 (6)0.002 (5)0.009 (5)0.000 (5)
C230.068 (9)0.059 (8)0.043 (7)0.006 (7)0.032 (7)0.014 (6)
C240.019 (5)0.029 (5)0.024 (5)0.005 (4)0.004 (4)0.005 (4)
C250.038 (6)0.036 (5)0.044 (6)0.006 (5)0.025 (6)0.006 (5)
C260.044 (6)0.039 (6)0.036 (6)0.005 (5)0.029 (5)0.002 (5)
C270.047 (8)0.035 (6)0.039 (8)0.013 (6)0.015 (7)0.008 (5)
C280.049 (8)0.048 (7)0.044 (8)0.005 (6)0.025 (7)0.002 (6)
C290.036 (6)0.036 (6)0.037 (6)0.001 (5)0.015 (5)0.005 (5)
C300.080 (10)0.049 (7)0.051 (8)0.010 (7)0.032 (8)0.003 (6)
Geometric parameters (Å, º) top
Au—P12.271 (3)C13—C161.502 (17)
Au—S12.303 (3)C14—C151.380 (17)
S1—C71.757 (11)C14—H14A0.9500
P1—C171.801 (9)C15—H15A0.9500
P1—C101.804 (11)C16—H16A0.9800
P1—C241.813 (10)C16—H16B0.9800
O1—C71.358 (11)C16—H16C0.9800
O1—C81.454 (13)C17—C181.380 (14)
O2—N21.266 (15)C17—C221.417 (14)
O3—N21.207 (14)C18—C191.361 (13)
N1—C71.287 (12)C18—H18A0.9500
N1—C11.392 (12)C19—C201.388 (15)
N2—C41.464 (15)C19—H19A0.9500
C1—C21.380 (13)C20—C211.375 (16)
C1—C61.389 (14)C20—C231.540 (14)
C2—C31.371 (15)C21—C221.384 (14)
C2—H2A0.9500C21—H21A0.9500
C3—C41.378 (16)C22—H22A0.9500
C3—H3A0.9500C23—H23A0.9800
C4—C51.390 (14)C23—H23B0.9800
C5—C61.374 (14)C23—H23C0.9800
C5—H5A0.9500C24—C291.397 (13)
C6—H6A0.9500C24—C251.400 (12)
C8—C91.505 (16)C25—C261.388 (14)
C8—H8A0.9900C25—H25A0.9500
C8—H8B0.9900C26—C271.407 (17)
C9—H9A0.9800C26—H26A0.9500
C9—H9B0.9800C27—C281.376 (18)
C9—H9C0.9800C27—C301.487 (17)
C10—C111.384 (14)C28—C291.396 (16)
C10—C151.396 (15)C28—H28A0.9500
C11—C121.376 (16)C29—H29A0.9500
C11—H11A0.9500C30—H30A0.9800
C12—C131.389 (16)C30—H30B0.9800
C12—H12A0.9500C30—H30C0.9800
C13—C141.395 (15)
P1—Au—S1174.54 (10)C15—C14—H14A119.1
C7—S1—Au108.4 (3)C13—C14—H14A119.1
C17—P1—C10106.3 (5)C14—C15—C10120.6 (10)
C17—P1—C24106.6 (4)C14—C15—H15A119.7
C10—P1—C24102.9 (4)C10—C15—H15A119.7
C17—P1—Au114.2 (4)C13—C16—H16A109.5
C10—P1—Au113.1 (3)C13—C16—H16B109.5
C24—P1—Au112.8 (3)H16A—C16—H16B109.5
C7—O1—C8117.8 (8)C13—C16—H16C109.5
C7—N1—C1123.4 (9)H16A—C16—H16C109.5
O3—N2—O2123.8 (11)H16B—C16—H16C109.5
O3—N2—C4119.5 (11)C18—C17—C22117.6 (8)
O2—N2—C4116.7 (11)C18—C17—P1123.3 (8)
C2—C1—C6118.4 (9)C22—C17—P1119.0 (8)
C2—C1—N1121.7 (10)C19—C18—C17121.4 (10)
C6—C1—N1119.8 (9)C19—C18—H18A119.3
C3—C2—C1121.9 (10)C17—C18—H18A119.3
C3—C2—H2A119.1C18—C19—C20121.4 (10)
C1—C2—H2A119.1C18—C19—H19A119.3
C2—C3—C4118.1 (9)C20—C19—H19A119.3
C2—C3—H3A120.9C21—C20—C19118.3 (10)
C4—C3—H3A120.9C21—C20—C23122.0 (10)
C3—C4—C5122.1 (10)C19—C20—C23119.7 (11)
C3—C4—N2119.4 (10)C20—C21—C22121.2 (10)
C5—C4—N2118.5 (10)C20—C21—H21A119.4
C6—C5—C4117.9 (10)C22—C21—H21A119.4
C6—C5—H5A121.0C21—C22—C17119.9 (10)
C4—C5—H5A121.0C21—C22—H22A120.0
C5—C6—C1121.5 (9)C17—C22—H22A120.0
C5—C6—H6A119.3C20—C23—H23A109.5
C1—C6—H6A119.3C20—C23—H23B109.5
N1—C7—O1120.3 (10)H23A—C23—H23B109.5
N1—C7—S1131.5 (8)C20—C23—H23C109.5
O1—C7—S1108.1 (7)H23A—C23—H23C109.5
O1—C8—C9112.5 (9)H23B—C23—H23C109.5
O1—C8—H8A109.1C29—C24—C25119.5 (9)
C9—C8—H8A109.1C29—C24—P1123.0 (8)
O1—C8—H8B109.1C25—C24—P1117.4 (7)
C9—C8—H8B109.1C26—C25—C24119.7 (9)
H8A—C8—H8B107.8C26—C25—H25A120.1
C8—C9—H9A109.5C24—C25—H25A120.1
C8—C9—H9B109.5C25—C26—C27121.7 (9)
H9A—C9—H9B109.5C25—C26—H26A119.2
C8—C9—H9C109.5C27—C26—H26A119.2
H9A—C9—H9C109.5C28—C27—C26117.1 (12)
H9B—C9—H9C109.5C28—C27—C30123.1 (13)
C11—C10—C15117.3 (10)C26—C27—C30119.9 (11)
C11—C10—P1120.7 (8)C27—C28—C29122.9 (12)
C15—C10—P1122.0 (8)C27—C28—H28A118.5
C12—C11—C10121.9 (10)C29—C28—H28A118.5
C12—C11—H11A119.0C24—C29—C28119.0 (10)
C10—C11—H11A119.0C24—C29—H29A120.5
C11—C12—C13121.3 (10)C28—C29—H29A120.5
C11—C12—H12A119.3C27—C30—H30A109.5
C13—C12—H12A119.3C27—C30—H30B109.5
C12—C13—C14116.8 (10)H30A—C30—H30B109.5
C12—C13—C16121.9 (11)C27—C30—H30C109.5
C14—C13—C16121.3 (12)H30A—C30—H30C109.5
C15—C14—C13121.9 (11)H30B—C30—H30C109.5
P1—Au—S1—C7170.4 (10)C12—C13—C14—C154.9 (19)
S1—Au—P1—C1786.1 (11)C16—C13—C14—C15176.6 (12)
S1—Au—P1—C1035.6 (12)C13—C14—C15—C105 (2)
S1—Au—P1—C24151.9 (10)C11—C10—C15—C143.5 (18)
C7—N1—C1—C263.7 (14)P1—C10—C15—C14179.4 (10)
C7—N1—C1—C6119.0 (11)C10—P1—C17—C1841.1 (10)
C6—C1—C2—C32.6 (15)C24—P1—C17—C1868.2 (9)
N1—C1—C2—C3174.8 (9)Au—P1—C17—C18166.5 (8)
C1—C2—C3—C41.9 (15)C10—P1—C17—C22141.8 (8)
C2—C3—C4—C50.6 (16)C24—P1—C17—C22108.9 (9)
C2—C3—C4—N2179.0 (9)Au—P1—C17—C2216.5 (9)
O3—N2—C4—C3179.4 (11)C22—C17—C18—C193.0 (15)
O2—N2—C4—C30.1 (16)P1—C17—C18—C19174.2 (9)
O3—N2—C4—C50.9 (16)C17—C18—C19—C200.6 (17)
O2—N2—C4—C5179.6 (10)C18—C19—C20—C213.2 (16)
C3—C4—C5—C60.2 (16)C18—C19—C20—C23179.4 (10)
N2—C4—C5—C6179.5 (10)C19—C20—C21—C222.0 (16)
C4—C5—C6—C11.0 (17)C23—C20—C21—C22179.4 (10)
C2—C1—C6—C52.1 (16)C20—C21—C22—C171.5 (15)
N1—C1—C6—C5175.3 (10)C18—C17—C22—C214.0 (15)
C1—N1—C7—O1169.9 (9)P1—C17—C22—C21173.2 (8)
C1—N1—C7—S17.1 (16)C17—P1—C24—C2915.8 (10)
C8—O1—C7—N10.7 (13)C10—P1—C24—C2995.9 (9)
C8—O1—C7—S1176.9 (7)Au—P1—C24—C29142.0 (8)
Au—S1—C7—N121.9 (11)C17—P1—C24—C25167.3 (8)
Au—S1—C7—O1160.9 (5)C10—P1—C24—C2581.1 (9)
C7—O1—C8—C983.3 (12)Au—P1—C24—C2541.1 (9)
C17—P1—C10—C1187.5 (9)C29—C24—C25—C262.7 (16)
C24—P1—C10—C11160.6 (8)P1—C24—C25—C26174.4 (9)
Au—P1—C10—C1138.6 (9)C24—C25—C26—C271.4 (18)
C17—P1—C10—C1595.5 (10)C25—C26—C27—C281 (2)
C24—P1—C10—C1516.3 (10)C25—C26—C27—C30178.7 (12)
Au—P1—C10—C15138.4 (9)C26—C27—C28—C291 (2)
C15—C10—C11—C122.0 (17)C30—C27—C28—C29177.9 (13)
P1—C10—C11—C12179.2 (9)C25—C24—C29—C281.9 (16)
C10—C11—C12—C132.1 (18)P1—C24—C29—C28175.0 (9)
C11—C12—C13—C143.3 (18)C27—C28—C29—C240.3 (19)
C11—C12—C13—C16178.2 (11)

Experimental details

Crystal data
Chemical formula[Au(C9H9N2O3S)(C21H21P)]
Mr726.56
Crystal system, space groupMonoclinic, Cc
Temperature (K)173
a, b, c (Å)16.622 (3), 18.307 (4), 10.094 (2)
β (°) 112.78 (3)
V3)2832.0 (10)
Z4
Radiation typeMo Kα
µ (mm1)5.36
Crystal size (mm)0.15 × 0.12 × 0.05
Data collection
DiffractometerRigaku AFC12K/SATURN724
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.739, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9217, 4917, 4682
Rint0.059
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.099, 1.06
No. of reflections4917
No. of parameters346
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.37, 2.40
Absolute structureFlack (1983), 1980 Friedel pairs
Absolute structure parameter0.008 (11)

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

 

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHo, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165–8174.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHo, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368–378.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 568–564.  Web of Science CSD CrossRef Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds