metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Formato-κO)bis­­(1,10-phenanthroline-κ2N,N′)copper(II) formate hexa­hydrate

aState Key Laboratory Base of Novel Functional Materials & Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China
*Correspondence e-mail: zhengyueqing@nbu.edu.cn

(Received 30 September 2008; accepted 29 October 2008; online 8 November 2008)

In the title compound, [Cu(CHO2)(C12H8N2)2]CHO2·6H2O, the Cu atom is coordinated in a distorted trigonal-bipyramidal fashion by an O atom of the formate ligand and four N atoms of two phenanthroline ligands with Cu—O and Cu—N distances of 2.020 (3) and 1.978 (3)–2.177 (3) Å, respectively. Hydrogen bonding O—H⋯O between water molecules and between water anions as well as ππ inter­actions [centroid–centroid distances between phen rings = 3.38 (7) and 3.40 (5) Å] are responsible for the supra­molecular assembly.

Related literature

For backgorund on the utilization of formic acid for the rational design and synthesis of coordination polymers and the potential applications of these compounds, see: Dybtsev et al. (2003[Dybtsev, D. N., Chun, H., Yoon, S. H., Kim, D. & Kim, K. (2003). J. Am. Chem. Soc. 126, 32-33.]); Manson et al. (2003[Manson, J. L., Lecher, J. G., Gu, J., Geiser, U., Schlueter, J. A., Henning, R., Wang, X. P., Schultz, A. J., Koo, H. J. & Whangbo, M. H. (2003). Dalton Trans. pp. 2905-2911.]); Wang et al. (2005[Wang, X. Y., Wei, H. Y., Wang, Z. M., Chen, Z. D. & Gao, S. (2005). Inorg. Chem. 44, 572-583.], 2006[Wang, Y. Q., Cao, R., Bi, W. H., Li, X., Yuan, D. Q. & Sun, D. F. (2006). Microporous Mesoporous Mater. 91, 215-220.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(CHO2)(C12H8N2)2]CHO2·6H2O

  • Mr = 622.09

  • Monoclinic, P 21 /n

  • a = 14.765 (3) Å

  • b = 12.764 (3) Å

  • c = 15.513 (3) Å

  • β = 109.76 (3)°

  • V = 2751.4 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.86 mm−1

  • T = 295 (2) K

  • 0.43 × 0.29 × 0.22 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: ψ scan (XSCANS; Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.740, Tmax = 0.819

  • 5942 measured reflections

  • 4812 independent reflections

  • 3341 reflections with I > 2σ(I)

  • Rint = 0.068

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.163

  • S = 1.11

  • 4812 reflections

  • 372 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.76 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O8 0.82 2.10 2.874 (5) 160
O5—H5B⋯O4i 0.73 2.10 2.808 (6) 164
O6—H6A⋯O3 0.74 2.16 2.870 (5) 163
O6—H6B⋯O10 0.85 2.03 2.810 (5) 153
O7—H7A⋯O4 0.90 1.95 2.799 (5) 158
O7—H7B⋯O6ii 0.73 2.08 2.794 (6) 165
O8—H8A⋯O3 0.82 2.12 2.879 (5) 154
O8—H8B⋯O7i 0.76 2.20 2.876 (6) 148
O9—H9A⋯O2iii 0.75 2.05 2.754 (5) 157
O9—H9B⋯O10iv 0.83 2.09 2.827 (6) 148
O10—H10A⋯O5 0.85 2.03 2.798 (6) 149
O10—H10B⋯O9 0.82 2.01 2.832 (6) 179
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z; (iii) -x+1, -y+1, -z; (iv) -x, -y+2, -z.

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, interest in the utilization of formic acid for the rational design and synthesis of coordination polymers has been growing rapidly due to their potential applications and intriguing architectures (Dybtsev, et al., 2003; Manson, et al., 2003; Wang, et al., 2005; Wang, et al., 2006). In the present contribution, we report a new copper complex, [Cu(phen)2(HCOO)](HCOO).6H2O, resulting from self-assembly of Cu2+ ions, phenanthroline and formic acid.

The asymmetric unit of the title compound consists of one [Cu(phen)2(HCOO)]+ complex cation, one formate anion and six water molecules. As illustrated in Fig. 1, the Cu atom is penta-coordinated by four N atoms of two different bidentate chelating phen ligands and one O atom of the formate ligand. The coordination polyhedra is a trigonal bipyramid with d(Cu—O) = 2.020 (3) Å and d(Cu—N) = 1.978 (3)–2.177 (3) Å. The phenanthroline ring systems are each nearly planar and the dihedral angle between the two phen planes is 56.69 (5)°. The complex cations are arranged in such a way that non-symmetry related phen planes of neighboring complexes are oriented parallel to each other with phen-to-phen separations of about 3.38 (7) and 3.40 (5) Å. Such π-π stacking interactions assemble the complex cations into two-dimensional layers parallel to (001) (Fig. 2). The six crystallographically distinct H2O molecules and the non-coordinating formate anions are held together by hydrogen bonds (d(O···O) = 2.794 (6)–2.879 (5) Å; <O—H···O = 148–179°) to generate two-dimensional water-anionic layers parallel to (100) (Fig. 3). Through the hydrogen bonding interactions (O9···O2), the [Cu(phen)2(HCOO)]+ complex cationic layers are assembled into a three-dimensional network with the H2O molecules.

Related literature top

For backgorund on the utilization of formic acid for the rational design and synthesis of coordination polymers and the potential applications of these compounds, see: Dybtsev et al. (2003); Manson et al. (2003); Wang et al. (2005, 2006).

Experimental top

Addition of 2.0 ml (1.0 M) NaOH to a stirred aqueous solution of 0.171 g (1.00 mmol) CuCl2.2H2O in 5.0 ml H2O gave a blue precipitate, which was then separated by centrifugation, followed by washing with double-distilled water until no detectable Cl- anions were present in the supernatant. The precipitate was added to a stirred ethanolic aqueous solution of 0.398 g (2.00 mmol) phenanthroline monohydrate in 20 ml EtOH/H2O (v/v = 1:1). To the mixture was added 2.0 ml (1.0 M) HCOOH and the blue suspension was further stirred for ca 1 h. After filtration, the filtrate (pH = 5.56) was allowed to stand at room temperature. Slow evaporation for several days gave blue block crystals (yield 32%, based on the initial CuCl2.2H2O input).

Refinement top

H atoms attached to C atoms of the phen ligands and formate anions were positioned geometrically and refined using a riding model, with C—H = 0.93, and Uiso(H) values set at 1.2 Ueq(C). The hydrogen atoms of the water molecules were located in difference Fourier maps and placed at fixed positions with Uiso(H) values set at 1.2 Ueq(O).

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex showing 40% probability displacement ellipsoids.
[Figure 2] Fig. 2. Supramolecular assembly of the [Cu(phen)2(HCOO)]+ complex cations based on π-π stacking interactions.
[Figure 3] Fig. 3. The two-dimensional water-formate anion layers.
(Formato-κO)bis(1,10-phenanthroline-κ2N,N')copper(II) formate hexahydrate top
Crystal data top
[Cu(CHO2)(C12H8N2)2]CHO2·6H2OF(000) = 1292
Mr = 622.09Dx = 1.502 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 14.765 (3) Åθ = 5.0–12.5°
b = 12.764 (3) ŵ = 0.86 mm1
c = 15.513 (3) ÅT = 295 K
β = 109.76 (3)°Block, blue
V = 2751.4 (11) Å30.43 × 0.29 × 0.22 mm
Z = 4
Data collection top
Bruker P4
diffractometer
3341 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.068
Graphite monochromatorθmax = 25.0°, θmin = 1.7°
θ/2θ scansh = 117
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
k = 115
Tmin = 0.740, Tmax = 0.819l = 1817
5942 measured reflections3 standard reflections every 97 reflections
4812 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.0836P)2 + 2.1346P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
4812 reflectionsΔρmax = 0.67 e Å3
372 parametersΔρmin = 0.76 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0091 (10)
Crystal data top
[Cu(CHO2)(C12H8N2)2]CHO2·6H2OV = 2751.4 (11) Å3
Mr = 622.09Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.765 (3) ŵ = 0.86 mm1
b = 12.764 (3) ÅT = 295 K
c = 15.513 (3) Å0.43 × 0.29 × 0.22 mm
β = 109.76 (3)°
Data collection top
Bruker P4
diffractometer
3341 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
Rint = 0.068
Tmin = 0.740, Tmax = 0.8193 standard reflections every 97 reflections
5942 measured reflections intensity decay: none
4812 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.11Δρmax = 0.67 e Å3
4812 reflectionsΔρmin = 0.76 e Å3
372 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.64373 (3)0.25126 (4)0.01020 (3)0.0379 (2)
N10.7686 (2)0.3308 (2)0.0792 (2)0.0375 (7)
N20.6376 (2)0.2407 (2)0.1353 (2)0.0396 (7)
C10.8348 (3)0.3739 (3)0.0496 (3)0.0478 (10)
H1A0.82520.37360.01290.057*
C20.9184 (3)0.4195 (3)0.1096 (3)0.0563 (11)
H2A0.96430.44710.08710.068*
C30.9326 (3)0.4234 (3)0.2005 (3)0.0558 (11)
H3A0.98810.45400.24050.067*
C40.8635 (3)0.3813 (3)0.2342 (3)0.0436 (9)
C50.8705 (4)0.3821 (4)0.3286 (3)0.0580 (12)
H5C0.92460.41120.37190.070*
C60.8005 (3)0.3416 (4)0.3557 (3)0.0558 (11)
H6C0.80560.34600.41710.067*
C70.7191 (3)0.2924 (3)0.2925 (2)0.0447 (9)
C80.6439 (4)0.2461 (4)0.3157 (3)0.0568 (12)
H8C0.64460.24810.37580.068*
C90.5702 (4)0.1984 (4)0.2498 (3)0.0592 (12)
H9C0.52090.16670.26500.071*
C100.5685 (3)0.1968 (4)0.1599 (3)0.0531 (10)
H10C0.51740.16420.11550.064*
C110.7114 (3)0.2880 (3)0.2003 (2)0.0359 (8)
C120.7831 (3)0.3341 (3)0.1702 (2)0.0357 (8)
N30.5138 (2)0.3447 (2)0.0467 (2)0.0414 (7)
N40.6447 (2)0.2693 (2)0.1166 (2)0.0393 (7)
C130.4500 (3)0.3792 (3)0.0117 (3)0.0532 (10)
H13A0.46350.37370.05120.064*
C140.3627 (3)0.4240 (4)0.0651 (4)0.0647 (13)
H14A0.31860.44620.03810.078*
C150.3430 (4)0.4348 (3)0.1563 (4)0.0661 (13)
H15A0.28510.46480.19220.079*
C160.4094 (3)0.4007 (3)0.1966 (3)0.0526 (11)
C170.3954 (4)0.4059 (4)0.2923 (3)0.0679 (15)
H17A0.33930.43620.33160.081*
C180.4601 (4)0.3687 (4)0.3271 (3)0.0656 (14)
H18A0.44800.37300.38980.079*
C190.5478 (3)0.3223 (3)0.2694 (3)0.0514 (11)
C200.6173 (4)0.2797 (4)0.3019 (3)0.0608 (13)
H20A0.60900.28270.36400.073*
C210.6962 (4)0.2345 (3)0.2430 (3)0.0596 (13)
H21A0.74260.20590.26430.072*
C220.7083 (4)0.2306 (3)0.1504 (3)0.0520 (11)
H22A0.76350.19940.11060.062*
C230.5649 (3)0.3155 (3)0.1749 (2)0.0392 (9)
C240.4947 (3)0.3552 (3)0.1378 (2)0.0384 (8)
C250.6441 (4)0.0437 (3)0.0195 (3)0.0552 (11)
H250.62370.02420.03780.066*
O10.5806 (2)0.1097 (2)0.02386 (19)0.0543 (7)
O20.7306 (2)0.0600 (3)0.0067 (2)0.0683 (9)
C260.1997 (4)0.5352 (4)0.2316 (3)0.0618 (12)
H260.24530.51240.28590.074*
O30.1314 (3)0.5838 (3)0.2400 (3)0.0798 (10)
O40.2164 (3)0.5125 (3)0.1609 (2)0.0796 (11)
O50.1030 (3)0.9175 (3)0.3028 (3)0.0833 (11)
O60.0247 (3)0.6818 (3)0.0693 (2)0.0770 (10)
O70.1697 (3)0.3535 (3)0.0289 (2)0.0729 (10)
O80.1647 (3)0.7213 (3)0.3948 (2)0.0719 (9)
O90.1259 (3)1.0518 (3)0.0279 (2)0.0885 (12)
O100.0479 (3)0.8961 (3)0.1125 (3)0.0831 (11)
H5A0.11690.85620.31550.100*
H5B0.14480.95210.31370.100*
H6A0.04820.64570.10740.100*
H6B0.05140.73990.08960.100*
H7A0.17000.41140.06160.100*
H7B0.11780.35520.00520.100*
H8A0.17460.68090.35760.100*
H8B0.21540.73540.42640.100*
H9A0.16691.03650.01260.100*
H9B0.09051.06910.02410.100*
H10A0.04780.91980.16400.100*
H10B0.07070.94180.08850.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0408 (3)0.0447 (3)0.0282 (3)0.0022 (2)0.0116 (2)0.00049 (18)
N10.0403 (17)0.0364 (16)0.0372 (16)0.0011 (14)0.0149 (13)0.0014 (13)
N20.0380 (17)0.0473 (18)0.0350 (16)0.0030 (14)0.0141 (13)0.0018 (13)
C10.054 (2)0.045 (2)0.049 (2)0.0029 (19)0.0223 (19)0.0063 (18)
C20.048 (2)0.050 (2)0.076 (3)0.005 (2)0.028 (2)0.004 (2)
C30.043 (2)0.047 (2)0.072 (3)0.0049 (19)0.010 (2)0.008 (2)
C40.041 (2)0.036 (2)0.048 (2)0.0021 (17)0.0074 (18)0.0051 (17)
C50.065 (3)0.054 (3)0.040 (2)0.007 (2)0.003 (2)0.0094 (19)
C60.070 (3)0.060 (3)0.032 (2)0.006 (2)0.011 (2)0.0045 (19)
C70.057 (2)0.046 (2)0.0314 (19)0.0104 (19)0.0154 (18)0.0028 (17)
C80.071 (3)0.069 (3)0.040 (2)0.007 (2)0.032 (2)0.009 (2)
C90.067 (3)0.069 (3)0.052 (3)0.008 (2)0.034 (2)0.010 (2)
C100.050 (2)0.064 (3)0.048 (2)0.010 (2)0.021 (2)0.001 (2)
C110.039 (2)0.0367 (18)0.0308 (18)0.0066 (16)0.0103 (16)0.0029 (15)
C120.039 (2)0.0308 (17)0.0362 (18)0.0061 (16)0.0116 (16)0.0012 (15)
N30.0456 (18)0.0380 (17)0.0403 (17)0.0032 (14)0.0142 (15)0.0006 (13)
N40.0449 (18)0.0409 (17)0.0354 (16)0.0010 (14)0.0181 (14)0.0006 (13)
C130.058 (3)0.047 (2)0.060 (3)0.002 (2)0.027 (2)0.005 (2)
C140.054 (3)0.051 (3)0.095 (4)0.007 (2)0.033 (3)0.010 (3)
C150.055 (3)0.041 (2)0.091 (4)0.006 (2)0.009 (3)0.007 (2)
C160.051 (2)0.033 (2)0.061 (3)0.0014 (18)0.003 (2)0.0078 (19)
C170.080 (4)0.045 (3)0.051 (3)0.003 (2)0.012 (3)0.018 (2)
C180.091 (4)0.056 (3)0.035 (2)0.015 (3)0.002 (2)0.009 (2)
C190.079 (3)0.041 (2)0.0320 (19)0.018 (2)0.015 (2)0.0006 (17)
C200.103 (4)0.051 (2)0.036 (2)0.023 (3)0.033 (3)0.0063 (19)
C210.094 (4)0.047 (2)0.059 (3)0.007 (2)0.053 (3)0.009 (2)
C220.068 (3)0.047 (2)0.052 (2)0.001 (2)0.036 (2)0.0015 (19)
C230.052 (2)0.0323 (19)0.0311 (18)0.0075 (17)0.0105 (17)0.0003 (15)
C240.041 (2)0.0306 (18)0.0382 (19)0.0027 (15)0.0070 (16)0.0032 (15)
C250.075 (3)0.037 (2)0.042 (2)0.004 (2)0.006 (2)0.0013 (18)
O10.0549 (17)0.0500 (17)0.0495 (16)0.0009 (15)0.0064 (13)0.0002 (13)
O20.061 (2)0.076 (2)0.0609 (19)0.0112 (18)0.0103 (16)0.0038 (17)
C260.074 (3)0.047 (2)0.058 (3)0.002 (2)0.015 (2)0.002 (2)
O30.065 (2)0.074 (2)0.103 (3)0.0053 (19)0.031 (2)0.007 (2)
O40.116 (3)0.060 (2)0.061 (2)0.001 (2)0.027 (2)0.0082 (16)
O50.089 (3)0.075 (2)0.090 (3)0.017 (2)0.036 (2)0.018 (2)
O60.078 (2)0.086 (3)0.064 (2)0.004 (2)0.0206 (18)0.0112 (19)
O70.080 (2)0.076 (2)0.0580 (19)0.0064 (19)0.0182 (17)0.0100 (17)
O80.075 (2)0.075 (2)0.072 (2)0.0008 (18)0.0341 (19)0.0044 (18)
O90.085 (3)0.108 (3)0.067 (2)0.016 (2)0.0197 (19)0.012 (2)
O100.094 (3)0.075 (2)0.076 (2)0.009 (2)0.023 (2)0.0016 (19)
Geometric parameters (Å, º) top
Cu—N21.978 (3)C14—H14A0.9300
Cu—N41.986 (3)C15—C161.400 (7)
Cu—O12.020 (3)C15—H15A0.9300
Cu—N12.059 (3)C16—C241.407 (5)
Cu—N32.177 (3)C16—C171.430 (7)
N1—C11.332 (5)C17—C181.333 (7)
N1—C121.356 (5)C17—H17A0.9300
N2—C101.327 (5)C18—C191.430 (7)
N2—C111.352 (5)C18—H18A0.9300
C1—C21.397 (6)C19—C201.398 (7)
C1—H1A0.9300C19—C231.403 (5)
C2—C31.355 (6)C20—C211.343 (7)
C2—H2A0.9300C20—H20A0.9300
C3—C41.402 (6)C21—C221.388 (6)
C3—H3A0.9300C21—H21A0.9300
C4—C121.399 (5)C22—H22A0.9300
C4—C51.432 (6)C23—C241.437 (5)
C5—C61.345 (6)C25—O21.220 (5)
C5—H5C0.9300C25—O11.245 (5)
C6—C71.415 (6)C25—H250.9300
C6—H6C0.9300C26—O31.228 (6)
C7—C111.396 (5)C26—O41.237 (6)
C7—C81.409 (6)C26—H260.9300
C8—C91.360 (7)O5—H5A0.8162
C8—H8C0.9300O5—H5B0.7309
C9—C101.386 (6)O6—H6A0.7368
C9—H9C0.9300O6—H6B0.8486
C10—H10C0.9300O7—H7A0.8961
C11—C121.421 (5)O7—H7B0.7303
N3—C131.311 (5)O8—H8A0.8225
N3—C241.352 (5)O8—H8B0.7656
N4—C221.316 (5)O9—H9A0.7471
N4—C231.353 (5)O9—H9B0.8279
C13—C141.397 (6)O10—H10A0.8544
C13—H13A0.9300O10—H10B0.8217
C14—C151.351 (7)
N2—Cu—N4176.56 (12)C24—N3—Cu108.7 (2)
N2—Cu—O191.46 (12)C22—N4—C23118.4 (3)
N4—Cu—O190.09 (12)C22—N4—Cu126.6 (3)
N2—Cu—N181.60 (12)C23—N4—Cu114.6 (2)
N4—Cu—N198.78 (12)N3—C13—C14122.7 (4)
O1—Cu—N1146.07 (12)N3—C13—H13A118.7
N2—Cu—N396.24 (12)C14—C13—H13A118.7
N4—Cu—N380.52 (12)C15—C14—C13119.4 (4)
O1—Cu—N396.83 (12)C15—C14—H14A120.3
N1—Cu—N3116.87 (12)C13—C14—H14A120.3
C1—N1—C12118.0 (3)C14—C15—C16120.1 (4)
C1—N1—Cu131.1 (3)C14—C15—H15A120.0
C12—N1—Cu110.8 (2)C16—C15—H15A120.0
C10—N2—C11118.6 (3)C15—C16—C24116.6 (4)
C10—N2—Cu127.2 (3)C15—C16—C17125.0 (4)
C11—N2—Cu114.1 (2)C24—C16—C17118.4 (4)
N1—C1—C2121.9 (4)C18—C17—C16122.1 (4)
N1—C1—H1A119.0C18—C17—H17A118.9
C2—C1—H1A119.0C16—C17—H17A118.9
C3—C2—C1120.0 (4)C17—C18—C19121.0 (4)
C3—C2—H2A120.0C17—C18—H18A119.5
C1—C2—H2A120.0C19—C18—H18A119.5
C2—C3—C4119.8 (4)C20—C19—C23117.3 (4)
C2—C3—H3A120.1C20—C19—C18123.7 (4)
C4—C3—H3A120.1C23—C19—C18119.0 (4)
C12—C4—C3116.8 (4)C21—C20—C19119.7 (4)
C12—C4—C5118.7 (4)C21—C20—H20A120.2
C3—C4—C5124.6 (4)C19—C20—H20A120.2
C6—C5—C4121.3 (4)C20—C21—C22119.9 (4)
C6—C5—H5C119.3C20—C21—H21A120.1
C4—C5—H5C119.3C22—C21—H21A120.1
C5—C6—C7121.0 (4)N4—C22—C21122.6 (5)
C5—C6—H6C119.5N4—C22—H22A118.7
C7—C6—H6C119.5C21—C22—H22A118.7
C11—C7—C8116.5 (4)N4—C23—C19122.2 (4)
C11—C7—C6119.0 (4)N4—C23—C24118.0 (3)
C8—C7—C6124.6 (4)C19—C23—C24119.8 (4)
C9—C8—C7119.8 (4)N3—C24—C16122.9 (4)
C9—C8—H8C120.1N3—C24—C23117.4 (3)
C7—C8—H8C120.1C16—C24—C23119.7 (4)
C8—C9—C10120.0 (4)O2—C25—O1125.9 (4)
C8—C9—H9C120.0O2—C25—H25117.0
C10—C9—H9C120.0O1—C25—H25117.0
N2—C10—C9121.9 (4)C25—O1—Cu108.6 (3)
N2—C10—H10C119.1O3—C26—O4129.0 (5)
C9—C10—H10C119.1O3—C26—H26115.5
N2—C11—C7123.3 (4)O4—C26—H26115.5
N2—C11—C12116.2 (3)H5A—O5—H5B113.5
C7—C11—C12120.5 (4)H6A—O6—H6B102.5
N1—C12—C4123.4 (3)H7A—O7—H7B93.7
N1—C12—C11117.2 (3)H8A—O8—H8B103.3
C4—C12—C11119.5 (3)H9A—O9—H9B94.2
C13—N3—C24118.3 (3)H10A—O10—H10B107.7
C13—N3—Cu132.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O80.822.102.874 (5)160
O5—H5B···O4i0.732.102.808 (6)164
O6—H6A···O30.742.162.870 (5)163
O6—H6B···O100.852.032.810 (5)153
O7—H7A···O40.901.952.799 (5)158
O7—H7B···O6ii0.732.082.794 (6)165
O8—H8A···O30.822.122.879 (5)154
O8—H8B···O7i0.762.202.876 (6)148
O9—H9A···O2iii0.752.052.754 (5)157
O9—H9B···O10iv0.832.092.827 (6)148
O10—H10A···O50.852.032.798 (6)149
O10—H10B···O90.822.012.832 (6)179
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x, y+2, z.

Experimental details

Crystal data
Chemical formula[Cu(CHO2)(C12H8N2)2]CHO2·6H2O
Mr622.09
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)14.765 (3), 12.764 (3), 15.513 (3)
β (°) 109.76 (3)
V3)2751.4 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.86
Crystal size (mm)0.43 × 0.29 × 0.22
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionψ scan
(XSCANS; Siemens, 1996)
Tmin, Tmax0.740, 0.819
No. of measured, independent and
observed [I > 2σ(I)] reflections
5942, 4812, 3341
Rint0.068
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.163, 1.11
No. of reflections4812
No. of parameters372
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.76

Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O80.822.102.874 (5)160
O5—H5B···O4i0.732.102.808 (6)164
O6—H6A···O30.742.162.870 (5)163
O6—H6B···O100.852.032.810 (5)153
O7—H7A···O40.901.952.799 (5)158
O7—H7B···O6ii0.732.082.794 (6)165
O8—H8A···O30.822.122.879 (5)154
O8—H8B···O7i0.762.202.876 (6)148
O9—H9A···O2iii0.752.052.754 (5)157
O9—H9B···O10iv0.832.092.827 (6)148
O10—H10A···O50.852.032.798 (6)149
O10—H10B···O90.822.012.832 (6)179
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x, y+2, z.
 

Acknowledgements

This project was sponsored by the K. C. Wong Magna Fund of Ningbo University, the Expert Project of Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), the Ningbo Municipal Natural Science Foundation (grant No. 2006A610061), the Newer Training Program Foundation for Talents of the Science and Technology Department of Zhejiang Province (grant No. 2007R40G2070020) and the Scientific Research Fund of Ningbo University (XYL08012).

References

First citationDybtsev, D. N., Chun, H., Yoon, S. H., Kim, D. & Kim, K. (2003). J. Am. Chem. Soc. 126, 32–33.  Web of Science CrossRef Google Scholar
First citationManson, J. L., Lecher, J. G., Gu, J., Geiser, U., Schlueter, J. A., Henning, R., Wang, X. P., Schultz, A. J., Koo, H. J. & Whangbo, M. H. (2003). Dalton Trans. pp. 2905-2911.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWang, Y. Q., Cao, R., Bi, W. H., Li, X., Yuan, D. Q. & Sun, D. F. (2006). Microporous Mesoporous Mater. 91, 215–220.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, X. Y., Wei, H. Y., Wang, Z. M., Chen, Z. D. & Gao, S. (2005). Inorg. Chem. 44, 572–583.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds