metal-organic compounds
(Formato-κO)bis(1,10-phenanthroline-κ2N,N′)copper(II) formate hexahydrate
aState Key Laboratory Base of Novel Functional Materials & Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China
*Correspondence e-mail: zhengyueqing@nbu.edu.cn
In the title compound, [Cu(CHO2)(C12H8N2)2]CHO2·6H2O, the Cu atom is coordinated in a distorted trigonal-bipyramidal fashion by an O atom of the formate ligand and four N atoms of two phenanthroline ligands with Cu—O and Cu—N distances of 2.020 (3) and 1.978 (3)–2.177 (3) Å, respectively. Hydrogen bonding O—H⋯O between water molecules and between water anions as well as π–π interactions [centroid–centroid distances between phen rings = 3.38 (7) and 3.40 (5) Å] are responsible for the supramolecular assembly.
Related literature
For backgorund on the utilization of formic acid for the rational design and synthesis of coordination polymers and the potential applications of these compounds, see: Dybtsev et al. (2003); Manson et al. (2003); Wang et al. (2005, 2006).
Experimental
Crystal data
|
Refinement
|
Data collection: XSCANS (Siemens, 1996); cell XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808035320/pk2125sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808035320/pk2125Isup2.hkl
Addition of 2.0 ml (1.0 M) NaOH to a stirred aqueous solution of 0.171 g (1.00 mmol) CuCl2.2H2O in 5.0 ml H2O gave a blue precipitate, which was then separated by centrifugation, followed by washing with double-distilled water until no detectable Cl- anions were present in the supernatant. The precipitate was added to a stirred ethanolic aqueous solution of 0.398 g (2.00 mmol) phenanthroline monohydrate in 20 ml EtOH/H2O (v/v = 1:1). To the mixture was added 2.0 ml (1.0 M) HCOOH and the blue suspension was further stirred for ca 1 h. After filtration, the filtrate (pH = 5.56) was allowed to stand at room temperature. Slow evaporation for several days gave blue block crystals (yield 32%, based on the initial CuCl2.2H2O input).
H atoms attached to C atoms of the phen ligands and formate anions were positioned geometrically and refined using a riding model, with C—H = 0.93, and Uiso(H) values set at 1.2 Ueq(C). The hydrogen atoms of the water molecules were located in difference Fourier maps and placed at fixed positions with Uiso(H) values set at 1.2 Ueq(O).
Data collection: XSCANS (Siemens, 1996); cell
XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title complex showing 40% probability displacement ellipsoids. | |
Fig. 2. Supramolecular assembly of the [Cu(phen)2(HCOO)]+ complex cations based on π-π stacking interactions. | |
Fig. 3. The two-dimensional water-formate anion layers. |
[Cu(CHO2)(C12H8N2)2]CHO2·6H2O | F(000) = 1292 |
Mr = 622.09 | Dx = 1.502 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 25 reflections |
a = 14.765 (3) Å | θ = 5.0–12.5° |
b = 12.764 (3) Å | µ = 0.86 mm−1 |
c = 15.513 (3) Å | T = 295 K |
β = 109.76 (3)° | Block, blue |
V = 2751.4 (11) Å3 | 0.43 × 0.29 × 0.22 mm |
Z = 4 |
Bruker P4 diffractometer | 3341 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.068 |
Graphite monochromator | θmax = 25.0°, θmin = 1.7° |
θ/2θ scans | h = −1→17 |
Absorption correction: ψ scan (XSCANS; Siemens, 1996) | k = −1→15 |
Tmin = 0.740, Tmax = 0.819 | l = −18→17 |
5942 measured reflections | 3 standard reflections every 97 reflections |
4812 independent reflections | intensity decay: none |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.053 | H-atom parameters constrained |
wR(F2) = 0.163 | w = 1/[σ2(Fo2) + (0.0836P)2 + 2.1346P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max < 0.001 |
4812 reflections | Δρmax = 0.67 e Å−3 |
372 parameters | Δρmin = −0.76 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0091 (10) |
[Cu(CHO2)(C12H8N2)2]CHO2·6H2O | V = 2751.4 (11) Å3 |
Mr = 622.09 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 14.765 (3) Å | µ = 0.86 mm−1 |
b = 12.764 (3) Å | T = 295 K |
c = 15.513 (3) Å | 0.43 × 0.29 × 0.22 mm |
β = 109.76 (3)° |
Bruker P4 diffractometer | 3341 reflections with I > 2σ(I) |
Absorption correction: ψ scan (XSCANS; Siemens, 1996) | Rint = 0.068 |
Tmin = 0.740, Tmax = 0.819 | 3 standard reflections every 97 reflections |
5942 measured reflections | intensity decay: none |
4812 independent reflections |
R[F2 > 2σ(F2)] = 0.053 | 0 restraints |
wR(F2) = 0.163 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.67 e Å−3 |
4812 reflections | Δρmin = −0.76 e Å−3 |
372 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu | 0.64373 (3) | 0.25126 (4) | 0.01020 (3) | 0.0379 (2) | |
N1 | 0.7686 (2) | 0.3308 (2) | 0.0792 (2) | 0.0375 (7) | |
N2 | 0.6376 (2) | 0.2407 (2) | 0.1353 (2) | 0.0396 (7) | |
C1 | 0.8348 (3) | 0.3739 (3) | 0.0496 (3) | 0.0478 (10) | |
H1A | 0.8252 | 0.3736 | −0.0129 | 0.057* | |
C2 | 0.9184 (3) | 0.4195 (3) | 0.1096 (3) | 0.0563 (11) | |
H2A | 0.9643 | 0.4471 | 0.0871 | 0.068* | |
C3 | 0.9326 (3) | 0.4234 (3) | 0.2005 (3) | 0.0558 (11) | |
H3A | 0.9881 | 0.4540 | 0.2405 | 0.067* | |
C4 | 0.8635 (3) | 0.3813 (3) | 0.2342 (3) | 0.0436 (9) | |
C5 | 0.8705 (4) | 0.3821 (4) | 0.3286 (3) | 0.0580 (12) | |
H5C | 0.9246 | 0.4112 | 0.3719 | 0.070* | |
C6 | 0.8005 (3) | 0.3416 (4) | 0.3557 (3) | 0.0558 (11) | |
H6C | 0.8056 | 0.3460 | 0.4171 | 0.067* | |
C7 | 0.7191 (3) | 0.2924 (3) | 0.2925 (2) | 0.0447 (9) | |
C8 | 0.6439 (4) | 0.2461 (4) | 0.3157 (3) | 0.0568 (12) | |
H8C | 0.6446 | 0.2481 | 0.3758 | 0.068* | |
C9 | 0.5702 (4) | 0.1984 (4) | 0.2498 (3) | 0.0592 (12) | |
H9C | 0.5209 | 0.1667 | 0.2650 | 0.071* | |
C10 | 0.5685 (3) | 0.1968 (4) | 0.1599 (3) | 0.0531 (10) | |
H10C | 0.5174 | 0.1642 | 0.1155 | 0.064* | |
C11 | 0.7114 (3) | 0.2880 (3) | 0.2003 (2) | 0.0359 (8) | |
C12 | 0.7831 (3) | 0.3341 (3) | 0.1702 (2) | 0.0357 (8) | |
N3 | 0.5138 (2) | 0.3447 (2) | −0.0467 (2) | 0.0414 (7) | |
N4 | 0.6447 (2) | 0.2693 (2) | −0.1166 (2) | 0.0393 (7) | |
C13 | 0.4500 (3) | 0.3792 (3) | −0.0117 (3) | 0.0532 (10) | |
H13A | 0.4635 | 0.3737 | 0.0512 | 0.064* | |
C14 | 0.3627 (3) | 0.4240 (4) | −0.0651 (4) | 0.0647 (13) | |
H14A | 0.3186 | 0.4462 | −0.0381 | 0.078* | |
C15 | 0.3430 (4) | 0.4348 (3) | −0.1563 (4) | 0.0661 (13) | |
H15A | 0.2851 | 0.4648 | −0.1922 | 0.079* | |
C16 | 0.4094 (3) | 0.4007 (3) | −0.1966 (3) | 0.0526 (11) | |
C17 | 0.3954 (4) | 0.4059 (4) | −0.2923 (3) | 0.0679 (15) | |
H17A | 0.3393 | 0.4362 | −0.3316 | 0.081* | |
C18 | 0.4601 (4) | 0.3687 (4) | −0.3271 (3) | 0.0656 (14) | |
H18A | 0.4480 | 0.3730 | −0.3898 | 0.079* | |
C19 | 0.5478 (3) | 0.3223 (3) | −0.2694 (3) | 0.0514 (11) | |
C20 | 0.6173 (4) | 0.2797 (4) | −0.3019 (3) | 0.0608 (13) | |
H20A | 0.6090 | 0.2827 | −0.3640 | 0.073* | |
C21 | 0.6962 (4) | 0.2345 (3) | −0.2430 (3) | 0.0596 (13) | |
H21A | 0.7426 | 0.2059 | −0.2643 | 0.072* | |
C22 | 0.7083 (4) | 0.2306 (3) | −0.1504 (3) | 0.0520 (11) | |
H22A | 0.7635 | 0.1994 | −0.1106 | 0.062* | |
C23 | 0.5649 (3) | 0.3155 (3) | −0.1749 (2) | 0.0392 (9) | |
C24 | 0.4947 (3) | 0.3552 (3) | −0.1378 (2) | 0.0384 (8) | |
C25 | 0.6441 (4) | 0.0437 (3) | −0.0195 (3) | 0.0552 (11) | |
H25 | 0.6237 | −0.0242 | −0.0378 | 0.066* | |
O1 | 0.5806 (2) | 0.1097 (2) | −0.02386 (19) | 0.0543 (7) | |
O2 | 0.7306 (2) | 0.0600 (3) | 0.0067 (2) | 0.0683 (9) | |
C26 | 0.1997 (4) | 0.5352 (4) | 0.2316 (3) | 0.0618 (12) | |
H26 | 0.2453 | 0.5124 | 0.2859 | 0.074* | |
O3 | 0.1314 (3) | 0.5838 (3) | 0.2400 (3) | 0.0798 (10) | |
O4 | 0.2164 (3) | 0.5125 (3) | 0.1609 (2) | 0.0796 (11) | |
O5 | 0.1030 (3) | 0.9175 (3) | 0.3028 (3) | 0.0833 (11) | |
O6 | 0.0247 (3) | 0.6818 (3) | 0.0693 (2) | 0.0770 (10) | |
O7 | 0.1697 (3) | 0.3535 (3) | 0.0289 (2) | 0.0729 (10) | |
O8 | 0.1647 (3) | 0.7213 (3) | 0.3948 (2) | 0.0719 (9) | |
O9 | 0.1259 (3) | 1.0518 (3) | 0.0279 (2) | 0.0885 (12) | |
O10 | 0.0479 (3) | 0.8961 (3) | 0.1125 (3) | 0.0831 (11) | |
H5A | 0.1169 | 0.8562 | 0.3155 | 0.100* | |
H5B | 0.1448 | 0.9521 | 0.3137 | 0.100* | |
H6A | 0.0482 | 0.6457 | 0.1074 | 0.100* | |
H6B | 0.0514 | 0.7399 | 0.0896 | 0.100* | |
H7A | 0.1700 | 0.4114 | 0.0616 | 0.100* | |
H7B | 0.1178 | 0.3552 | 0.0052 | 0.100* | |
H8A | 0.1746 | 0.6809 | 0.3576 | 0.100* | |
H8B | 0.2154 | 0.7354 | 0.4264 | 0.100* | |
H9A | 0.1669 | 1.0365 | 0.0126 | 0.100* | |
H9B | 0.0905 | 1.0691 | −0.0241 | 0.100* | |
H10A | 0.0478 | 0.9198 | 0.1640 | 0.100* | |
H10B | 0.0707 | 0.9418 | 0.0885 | 0.100* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.0408 (3) | 0.0447 (3) | 0.0282 (3) | −0.0022 (2) | 0.0116 (2) | 0.00049 (18) |
N1 | 0.0403 (17) | 0.0364 (16) | 0.0372 (16) | 0.0011 (14) | 0.0149 (13) | 0.0014 (13) |
N2 | 0.0380 (17) | 0.0473 (18) | 0.0350 (16) | −0.0030 (14) | 0.0141 (13) | 0.0018 (13) |
C1 | 0.054 (2) | 0.045 (2) | 0.049 (2) | −0.0029 (19) | 0.0223 (19) | 0.0063 (18) |
C2 | 0.048 (2) | 0.050 (2) | 0.076 (3) | −0.005 (2) | 0.028 (2) | 0.004 (2) |
C3 | 0.043 (2) | 0.047 (2) | 0.072 (3) | −0.0049 (19) | 0.010 (2) | −0.008 (2) |
C4 | 0.041 (2) | 0.036 (2) | 0.048 (2) | 0.0021 (17) | 0.0074 (18) | −0.0051 (17) |
C5 | 0.065 (3) | 0.054 (3) | 0.040 (2) | 0.007 (2) | −0.003 (2) | −0.0094 (19) |
C6 | 0.070 (3) | 0.060 (3) | 0.032 (2) | 0.006 (2) | 0.011 (2) | −0.0045 (19) |
C7 | 0.057 (2) | 0.046 (2) | 0.0314 (19) | 0.0104 (19) | 0.0154 (18) | 0.0028 (17) |
C8 | 0.071 (3) | 0.069 (3) | 0.040 (2) | 0.007 (2) | 0.032 (2) | 0.009 (2) |
C9 | 0.067 (3) | 0.069 (3) | 0.052 (3) | −0.008 (2) | 0.034 (2) | 0.010 (2) |
C10 | 0.050 (2) | 0.064 (3) | 0.048 (2) | −0.010 (2) | 0.021 (2) | 0.001 (2) |
C11 | 0.039 (2) | 0.0367 (18) | 0.0308 (18) | 0.0066 (16) | 0.0103 (16) | 0.0029 (15) |
C12 | 0.039 (2) | 0.0308 (17) | 0.0362 (18) | 0.0061 (16) | 0.0116 (16) | 0.0012 (15) |
N3 | 0.0456 (18) | 0.0380 (17) | 0.0403 (17) | 0.0032 (14) | 0.0142 (15) | 0.0006 (13) |
N4 | 0.0449 (18) | 0.0409 (17) | 0.0354 (16) | −0.0010 (14) | 0.0181 (14) | 0.0006 (13) |
C13 | 0.058 (3) | 0.047 (2) | 0.060 (3) | 0.002 (2) | 0.027 (2) | −0.005 (2) |
C14 | 0.054 (3) | 0.051 (3) | 0.095 (4) | 0.007 (2) | 0.033 (3) | −0.010 (3) |
C15 | 0.055 (3) | 0.041 (2) | 0.091 (4) | 0.006 (2) | 0.009 (3) | 0.007 (2) |
C16 | 0.051 (2) | 0.033 (2) | 0.061 (3) | −0.0014 (18) | 0.003 (2) | 0.0078 (19) |
C17 | 0.080 (4) | 0.045 (3) | 0.051 (3) | −0.003 (2) | −0.012 (3) | 0.018 (2) |
C18 | 0.091 (4) | 0.056 (3) | 0.035 (2) | −0.015 (3) | 0.002 (2) | 0.009 (2) |
C19 | 0.079 (3) | 0.041 (2) | 0.0320 (19) | −0.018 (2) | 0.015 (2) | −0.0006 (17) |
C20 | 0.103 (4) | 0.051 (2) | 0.036 (2) | −0.023 (3) | 0.033 (3) | −0.0063 (19) |
C21 | 0.094 (4) | 0.047 (2) | 0.059 (3) | −0.007 (2) | 0.053 (3) | −0.009 (2) |
C22 | 0.068 (3) | 0.047 (2) | 0.052 (2) | −0.001 (2) | 0.036 (2) | −0.0015 (19) |
C23 | 0.052 (2) | 0.0323 (19) | 0.0311 (18) | −0.0075 (17) | 0.0105 (17) | −0.0003 (15) |
C24 | 0.041 (2) | 0.0306 (18) | 0.0382 (19) | −0.0027 (15) | 0.0070 (16) | 0.0032 (15) |
C25 | 0.075 (3) | 0.037 (2) | 0.042 (2) | −0.004 (2) | 0.006 (2) | 0.0013 (18) |
O1 | 0.0549 (17) | 0.0500 (17) | 0.0495 (16) | −0.0009 (15) | 0.0064 (13) | 0.0002 (13) |
O2 | 0.061 (2) | 0.076 (2) | 0.0609 (19) | 0.0112 (18) | 0.0103 (16) | 0.0038 (17) |
C26 | 0.074 (3) | 0.047 (2) | 0.058 (3) | −0.002 (2) | 0.015 (2) | −0.002 (2) |
O3 | 0.065 (2) | 0.074 (2) | 0.103 (3) | 0.0053 (19) | 0.031 (2) | −0.007 (2) |
O4 | 0.116 (3) | 0.060 (2) | 0.061 (2) | 0.001 (2) | 0.027 (2) | −0.0082 (16) |
O5 | 0.089 (3) | 0.075 (2) | 0.090 (3) | 0.017 (2) | 0.036 (2) | 0.018 (2) |
O6 | 0.078 (2) | 0.086 (3) | 0.064 (2) | 0.004 (2) | 0.0206 (18) | −0.0112 (19) |
O7 | 0.080 (2) | 0.076 (2) | 0.0580 (19) | 0.0064 (19) | 0.0182 (17) | −0.0100 (17) |
O8 | 0.075 (2) | 0.075 (2) | 0.072 (2) | −0.0008 (18) | 0.0341 (19) | 0.0044 (18) |
O9 | 0.085 (3) | 0.108 (3) | 0.067 (2) | 0.016 (2) | 0.0197 (19) | −0.012 (2) |
O10 | 0.094 (3) | 0.075 (2) | 0.076 (2) | 0.009 (2) | 0.023 (2) | 0.0016 (19) |
Cu—N2 | 1.978 (3) | C14—H14A | 0.9300 |
Cu—N4 | 1.986 (3) | C15—C16 | 1.400 (7) |
Cu—O1 | 2.020 (3) | C15—H15A | 0.9300 |
Cu—N1 | 2.059 (3) | C16—C24 | 1.407 (5) |
Cu—N3 | 2.177 (3) | C16—C17 | 1.430 (7) |
N1—C1 | 1.332 (5) | C17—C18 | 1.333 (7) |
N1—C12 | 1.356 (5) | C17—H17A | 0.9300 |
N2—C10 | 1.327 (5) | C18—C19 | 1.430 (7) |
N2—C11 | 1.352 (5) | C18—H18A | 0.9300 |
C1—C2 | 1.397 (6) | C19—C20 | 1.398 (7) |
C1—H1A | 0.9300 | C19—C23 | 1.403 (5) |
C2—C3 | 1.355 (6) | C20—C21 | 1.343 (7) |
C2—H2A | 0.9300 | C20—H20A | 0.9300 |
C3—C4 | 1.402 (6) | C21—C22 | 1.388 (6) |
C3—H3A | 0.9300 | C21—H21A | 0.9300 |
C4—C12 | 1.399 (5) | C22—H22A | 0.9300 |
C4—C5 | 1.432 (6) | C23—C24 | 1.437 (5) |
C5—C6 | 1.345 (6) | C25—O2 | 1.220 (5) |
C5—H5C | 0.9300 | C25—O1 | 1.245 (5) |
C6—C7 | 1.415 (6) | C25—H25 | 0.9300 |
C6—H6C | 0.9300 | C26—O3 | 1.228 (6) |
C7—C11 | 1.396 (5) | C26—O4 | 1.237 (6) |
C7—C8 | 1.409 (6) | C26—H26 | 0.9300 |
C8—C9 | 1.360 (7) | O5—H5A | 0.8162 |
C8—H8C | 0.9300 | O5—H5B | 0.7309 |
C9—C10 | 1.386 (6) | O6—H6A | 0.7368 |
C9—H9C | 0.9300 | O6—H6B | 0.8486 |
C10—H10C | 0.9300 | O7—H7A | 0.8961 |
C11—C12 | 1.421 (5) | O7—H7B | 0.7303 |
N3—C13 | 1.311 (5) | O8—H8A | 0.8225 |
N3—C24 | 1.352 (5) | O8—H8B | 0.7656 |
N4—C22 | 1.316 (5) | O9—H9A | 0.7471 |
N4—C23 | 1.353 (5) | O9—H9B | 0.8279 |
C13—C14 | 1.397 (6) | O10—H10A | 0.8544 |
C13—H13A | 0.9300 | O10—H10B | 0.8217 |
C14—C15 | 1.351 (7) | ||
N2—Cu—N4 | 176.56 (12) | C24—N3—Cu | 108.7 (2) |
N2—Cu—O1 | 91.46 (12) | C22—N4—C23 | 118.4 (3) |
N4—Cu—O1 | 90.09 (12) | C22—N4—Cu | 126.6 (3) |
N2—Cu—N1 | 81.60 (12) | C23—N4—Cu | 114.6 (2) |
N4—Cu—N1 | 98.78 (12) | N3—C13—C14 | 122.7 (4) |
O1—Cu—N1 | 146.07 (12) | N3—C13—H13A | 118.7 |
N2—Cu—N3 | 96.24 (12) | C14—C13—H13A | 118.7 |
N4—Cu—N3 | 80.52 (12) | C15—C14—C13 | 119.4 (4) |
O1—Cu—N3 | 96.83 (12) | C15—C14—H14A | 120.3 |
N1—Cu—N3 | 116.87 (12) | C13—C14—H14A | 120.3 |
C1—N1—C12 | 118.0 (3) | C14—C15—C16 | 120.1 (4) |
C1—N1—Cu | 131.1 (3) | C14—C15—H15A | 120.0 |
C12—N1—Cu | 110.8 (2) | C16—C15—H15A | 120.0 |
C10—N2—C11 | 118.6 (3) | C15—C16—C24 | 116.6 (4) |
C10—N2—Cu | 127.2 (3) | C15—C16—C17 | 125.0 (4) |
C11—N2—Cu | 114.1 (2) | C24—C16—C17 | 118.4 (4) |
N1—C1—C2 | 121.9 (4) | C18—C17—C16 | 122.1 (4) |
N1—C1—H1A | 119.0 | C18—C17—H17A | 118.9 |
C2—C1—H1A | 119.0 | C16—C17—H17A | 118.9 |
C3—C2—C1 | 120.0 (4) | C17—C18—C19 | 121.0 (4) |
C3—C2—H2A | 120.0 | C17—C18—H18A | 119.5 |
C1—C2—H2A | 120.0 | C19—C18—H18A | 119.5 |
C2—C3—C4 | 119.8 (4) | C20—C19—C23 | 117.3 (4) |
C2—C3—H3A | 120.1 | C20—C19—C18 | 123.7 (4) |
C4—C3—H3A | 120.1 | C23—C19—C18 | 119.0 (4) |
C12—C4—C3 | 116.8 (4) | C21—C20—C19 | 119.7 (4) |
C12—C4—C5 | 118.7 (4) | C21—C20—H20A | 120.2 |
C3—C4—C5 | 124.6 (4) | C19—C20—H20A | 120.2 |
C6—C5—C4 | 121.3 (4) | C20—C21—C22 | 119.9 (4) |
C6—C5—H5C | 119.3 | C20—C21—H21A | 120.1 |
C4—C5—H5C | 119.3 | C22—C21—H21A | 120.1 |
C5—C6—C7 | 121.0 (4) | N4—C22—C21 | 122.6 (5) |
C5—C6—H6C | 119.5 | N4—C22—H22A | 118.7 |
C7—C6—H6C | 119.5 | C21—C22—H22A | 118.7 |
C11—C7—C8 | 116.5 (4) | N4—C23—C19 | 122.2 (4) |
C11—C7—C6 | 119.0 (4) | N4—C23—C24 | 118.0 (3) |
C8—C7—C6 | 124.6 (4) | C19—C23—C24 | 119.8 (4) |
C9—C8—C7 | 119.8 (4) | N3—C24—C16 | 122.9 (4) |
C9—C8—H8C | 120.1 | N3—C24—C23 | 117.4 (3) |
C7—C8—H8C | 120.1 | C16—C24—C23 | 119.7 (4) |
C8—C9—C10 | 120.0 (4) | O2—C25—O1 | 125.9 (4) |
C8—C9—H9C | 120.0 | O2—C25—H25 | 117.0 |
C10—C9—H9C | 120.0 | O1—C25—H25 | 117.0 |
N2—C10—C9 | 121.9 (4) | C25—O1—Cu | 108.6 (3) |
N2—C10—H10C | 119.1 | O3—C26—O4 | 129.0 (5) |
C9—C10—H10C | 119.1 | O3—C26—H26 | 115.5 |
N2—C11—C7 | 123.3 (4) | O4—C26—H26 | 115.5 |
N2—C11—C12 | 116.2 (3) | H5A—O5—H5B | 113.5 |
C7—C11—C12 | 120.5 (4) | H6A—O6—H6B | 102.5 |
N1—C12—C4 | 123.4 (3) | H7A—O7—H7B | 93.7 |
N1—C12—C11 | 117.2 (3) | H8A—O8—H8B | 103.3 |
C4—C12—C11 | 119.5 (3) | H9A—O9—H9B | 94.2 |
C13—N3—C24 | 118.3 (3) | H10A—O10—H10B | 107.7 |
C13—N3—Cu | 132.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O8 | 0.82 | 2.10 | 2.874 (5) | 160 |
O5—H5B···O4i | 0.73 | 2.10 | 2.808 (6) | 164 |
O6—H6A···O3 | 0.74 | 2.16 | 2.870 (5) | 163 |
O6—H6B···O10 | 0.85 | 2.03 | 2.810 (5) | 153 |
O7—H7A···O4 | 0.90 | 1.95 | 2.799 (5) | 158 |
O7—H7B···O6ii | 0.73 | 2.08 | 2.794 (6) | 165 |
O8—H8A···O3 | 0.82 | 2.12 | 2.879 (5) | 154 |
O8—H8B···O7i | 0.76 | 2.20 | 2.876 (6) | 148 |
O9—H9A···O2iii | 0.75 | 2.05 | 2.754 (5) | 157 |
O9—H9B···O10iv | 0.83 | 2.09 | 2.827 (6) | 148 |
O10—H10A···O5 | 0.85 | 2.03 | 2.798 (6) | 149 |
O10—H10B···O9 | 0.82 | 2.01 | 2.832 (6) | 179 |
Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) −x, −y+1, −z; (iii) −x+1, −y+1, −z; (iv) −x, −y+2, −z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(CHO2)(C12H8N2)2]CHO2·6H2O |
Mr | 622.09 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 295 |
a, b, c (Å) | 14.765 (3), 12.764 (3), 15.513 (3) |
β (°) | 109.76 (3) |
V (Å3) | 2751.4 (11) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.86 |
Crystal size (mm) | 0.43 × 0.29 × 0.22 |
Data collection | |
Diffractometer | Bruker P4 diffractometer |
Absorption correction | ψ scan (XSCANS; Siemens, 1996) |
Tmin, Tmax | 0.740, 0.819 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5942, 4812, 3341 |
Rint | 0.068 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.053, 0.163, 1.11 |
No. of reflections | 4812 |
No. of parameters | 372 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.67, −0.76 |
Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O8 | 0.82 | 2.10 | 2.874 (5) | 160 |
O5—H5B···O4i | 0.73 | 2.10 | 2.808 (6) | 164 |
O6—H6A···O3 | 0.74 | 2.16 | 2.870 (5) | 163 |
O6—H6B···O10 | 0.85 | 2.03 | 2.810 (5) | 153 |
O7—H7A···O4 | 0.90 | 1.95 | 2.799 (5) | 158 |
O7—H7B···O6ii | 0.73 | 2.08 | 2.794 (6) | 165 |
O8—H8A···O3 | 0.82 | 2.12 | 2.879 (5) | 154 |
O8—H8B···O7i | 0.76 | 2.20 | 2.876 (6) | 148 |
O9—H9A···O2iii | 0.75 | 2.05 | 2.754 (5) | 157 |
O9—H9B···O10iv | 0.83 | 2.09 | 2.827 (6) | 148 |
O10—H10A···O5 | 0.85 | 2.03 | 2.798 (6) | 149 |
O10—H10B···O9 | 0.82 | 2.01 | 2.832 (6) | 179 |
Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) −x, −y+1, −z; (iii) −x+1, −y+1, −z; (iv) −x, −y+2, −z. |
Acknowledgements
This project was sponsored by the K. C. Wong Magna Fund of Ningbo University, the Expert Project of Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), the Ningbo Municipal Natural Science Foundation (grant No. 2006A610061), the Newer Training Program Foundation for Talents of the Science and Technology Department of Zhejiang Province (grant No. 2007R40G2070020) and the Scientific Research Fund of Ningbo University (XYL08012).
References
Dybtsev, D. N., Chun, H., Yoon, S. H., Kim, D. & Kim, K. (2003). J. Am. Chem. Soc. 126, 32–33. Web of Science CrossRef Google Scholar
Manson, J. L., Lecher, J. G., Gu, J., Geiser, U., Schlueter, J. A., Henning, R., Wang, X. P., Schultz, A. J., Koo, H. J. & Whangbo, M. H. (2003). Dalton Trans. pp. 2905-2911. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Wang, Y. Q., Cao, R., Bi, W. H., Li, X., Yuan, D. Q. & Sun, D. F. (2006). Microporous Mesoporous Mater. 91, 215–220. Web of Science CSD CrossRef CAS Google Scholar
Wang, X. Y., Wei, H. Y., Wang, Z. M., Chen, Z. D. & Gao, S. (2005). Inorg. Chem. 44, 572–583. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, interest in the utilization of formic acid for the rational design and synthesis of coordination polymers has been growing rapidly due to their potential applications and intriguing architectures (Dybtsev, et al., 2003; Manson, et al., 2003; Wang, et al., 2005; Wang, et al., 2006). In the present contribution, we report a new copper complex, [Cu(phen)2(HCOO)](HCOO).6H2O, resulting from self-assembly of Cu2+ ions, phenanthroline and formic acid.
The asymmetric unit of the title compound consists of one [Cu(phen)2(HCOO)]+ complex cation, one formate anion and six water molecules. As illustrated in Fig. 1, the Cu atom is penta-coordinated by four N atoms of two different bidentate chelating phen ligands and one O atom of the formate ligand. The coordination polyhedra is a trigonal bipyramid with d(Cu—O) = 2.020 (3) Å and d(Cu—N) = 1.978 (3)–2.177 (3) Å. The phenanthroline ring systems are each nearly planar and the dihedral angle between the two phen planes is 56.69 (5)°. The complex cations are arranged in such a way that non-symmetry related phen planes of neighboring complexes are oriented parallel to each other with phen-to-phen separations of about 3.38 (7) and 3.40 (5) Å. Such π-π stacking interactions assemble the complex cations into two-dimensional layers parallel to (001) (Fig. 2). The six crystallographically distinct H2O molecules and the non-coordinating formate anions are held together by hydrogen bonds (d(O···O) = 2.794 (6)–2.879 (5) Å; <O—H···O = 148–179°) to generate two-dimensional water-anionic layers parallel to (100) (Fig. 3). Through the hydrogen bonding interactions (O9···O2), the [Cu(phen)2(HCOO)]+ complex cationic layers are assembled into a three-dimensional network with the H2O molecules.