metal-organic compounds
Tetra-n-butylammonium bis(1,1-dicyanoethylene-2,2-dithiolato)platinum(II)
aCollege of St Catherine, St Paul, Minnesota 55105, USA, and bDepartment of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
*Correspondence e-mail: dejanzen@stkate.edu
In the title compound, (C16H36N)2[Pt(C4N2S2)2], the PtII center adopts a distorted square-planar geometry due to the 4-membered chelate rings formed by coordination to the S atoms of the 1,1-dicyanoethylene-2,2-dithiolate (i-mnt) ligands [bite angle 74.35 (4)°]. The bond distances in the coordinated i-mnt ligands indicate some delocalization of the π-system.
Related literature
For general background on the salts of metal complexes of [Pt(i-mnt)2]2− (i-mnt=1,1-dicyanoethylene-2,2-dithiolate), see: Cummings & Eisenberg (1996); Fackler & Coucouvanis (1966); Werden et al. (1966). For related structures, see: Gao et al. (2005, 2006); Hummel (1987); Li et al. (2004); Sun et al. (2006).
Experimental
Crystal data
|
Data collection: SMART (Bruker,2003); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808036726/pk2127sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808036726/pk2127Isup2.hkl
The title compound (C16H36N)2[Pt(S2C4N2)2] was prepared using a procedure similar to that described by Fackler and Coucouvanis (1966) subsituting the use of tetra-n-propylammonium iodide with tetra-n-butylammonium bromide. The title compound has been previously characterized by Werden et al.(1966). Spectroscopic analysis of the present sample obtained by this procedure was consistent with the data previously reported. Crystals were obtained by diffusion of diethyl ether into a concentrated solution of the title compound dissolved in dichloromethane.
The H atoms were geometrically placed (C—H = 0.98–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).
Data collection: SMART (Bruker,2003); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of (C16H36N)2[Pt(S2C4N2)2] showing 50% displacement ellipsoids for the non-hydrogen atoms. Only the crystallographically independent atoms are labelled. |
(C16H36N)2[Pt(C4N2S2)2] | F(000) = 992 |
Mr = 960.40 | Dx = 1.380 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -P 2yn | Cell parameters from 3207 reflections |
a = 9.8687 (6) Å | θ = 5.5–50.0° |
b = 16.9556 (11) Å | µ = 3.25 mm−1 |
c = 13.8274 (9) Å | T = 173 K |
β = 92.840 (1)° | Plate, yellow |
V = 2310.9 (3) Å3 | 0.4 × 0.2 × 0.15 mm |
Z = 2 |
Bruker SMART CCD area-detector diffractometer | 4087 independent reflections |
Radiation source: normal-focus sealed tube | 3226 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
ϕ scans | θmax = 25.1°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker 2003) | h = −11→11 |
Tmin = 0.468, Tmax = 0.612 | k = −20→20 |
22256 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.077 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0339P)2 + 3.6638P] where P = (Fo2 + 2Fc2)/3 |
4087 reflections | (Δ/σ)max = 0.001 |
236 parameters | Δρmax = 1.02 e Å−3 |
0 restraints | Δρmin = −0.33 e Å−3 |
0 constraints |
(C16H36N)2[Pt(C4N2S2)2] | V = 2310.9 (3) Å3 |
Mr = 960.40 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.8687 (6) Å | µ = 3.25 mm−1 |
b = 16.9556 (11) Å | T = 173 K |
c = 13.8274 (9) Å | 0.4 × 0.2 × 0.15 mm |
β = 92.840 (1)° |
Bruker SMART CCD area-detector diffractometer | 4087 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker 2003) | 3226 reflections with I > 2σ(I) |
Tmin = 0.468, Tmax = 0.612 | Rint = 0.033 |
22256 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.077 | H-atom parameters constrained |
S = 1.09 | Δρmax = 1.02 e Å−3 |
4087 reflections | Δρmin = −0.33 e Å−3 |
236 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pt1 | 0.5000 | 0.5000 | 0.5000 | 0.03643 (9) | |
S1 | 0.56122 (11) | 0.43791 (7) | 0.64610 (8) | 0.0434 (3) | |
S2 | 0.30447 (11) | 0.49674 (7) | 0.58620 (8) | 0.0439 (2) | |
C1 | 0.3957 (4) | 0.4489 (2) | 0.6793 (3) | 0.0365 (9) | |
C2 | 0.3440 (4) | 0.4241 (2) | 0.7636 (3) | 0.0395 (9) | |
C3 | 0.2028 (5) | 0.4321 (2) | 0.7797 (3) | 0.0432 (10) | |
C4 | 0.4294 (5) | 0.3889 (2) | 0.8383 (3) | 0.0419 (10) | |
N1 | 0.0899 (4) | 0.4381 (3) | 0.7927 (3) | 0.0585 (11) | |
N2 | 0.4951 (5) | 0.3608 (2) | 0.8982 (3) | 0.0558 (10) | |
N3 | 0.6156 (3) | 0.15041 (17) | 0.7976 (2) | 0.0311 (7) | |
C5 | 0.6718 (4) | 0.0849 (2) | 0.7366 (3) | 0.0325 (8) | |
H5A | 0.5998 | 0.0449 | 0.7250 | 0.039* | |
H5B | 0.7471 | 0.0592 | 0.7747 | 0.039* | |
C6 | 0.7239 (5) | 0.1092 (3) | 0.6392 (3) | 0.0513 (12) | |
H6A | 0.6473 | 0.1284 | 0.5965 | 0.062* | |
H6B | 0.7899 | 0.1528 | 0.6485 | 0.062* | |
C7 | 0.7915 (5) | 0.0399 (3) | 0.5914 (3) | 0.0530 (12) | |
H7A | 0.8370 | 0.0594 | 0.5338 | 0.064* | |
H7B | 0.8626 | 0.0185 | 0.6372 | 0.064* | |
C8 | 0.6986 (7) | −0.0250 (4) | 0.5610 (5) | 0.088 (2) | |
H8A | 0.7497 | −0.0664 | 0.5293 | 0.131* | |
H8B | 0.6276 | −0.0047 | 0.5156 | 0.131* | |
H8C | 0.6568 | −0.0470 | 0.6180 | 0.131* | |
C9 | 0.7213 (4) | 0.2133 (2) | 0.8215 (3) | 0.0364 (9) | |
H9A | 0.6795 | 0.2539 | 0.8620 | 0.044* | |
H9B | 0.7446 | 0.2391 | 0.7603 | 0.044* | |
C10 | 0.8523 (4) | 0.1859 (2) | 0.8736 (3) | 0.0407 (10) | |
H10A | 0.8317 | 0.1624 | 0.9368 | 0.049* | |
H10B | 0.8954 | 0.1448 | 0.8346 | 0.049* | |
C11 | 0.9494 (5) | 0.2548 (3) | 0.8897 (3) | 0.0454 (10) | |
H11A | 0.9651 | 0.2796 | 0.8264 | 0.054* | |
H11B | 0.9063 | 0.2947 | 0.9305 | 0.054* | |
C12 | 1.0841 (5) | 0.2320 (3) | 0.9372 (4) | 0.0548 (12) | |
H12A | 1.1439 | 0.2781 | 0.9408 | 0.082* | |
H12B | 1.1256 | 0.1905 | 0.8991 | 0.082* | |
H12C | 1.0706 | 0.2124 | 1.0027 | 0.082* | |
C13 | 0.5705 (4) | 0.1106 (2) | 0.8892 (3) | 0.0321 (8) | |
H13A | 0.5059 | 0.0680 | 0.8703 | 0.039* | |
H13B | 0.6507 | 0.0855 | 0.9223 | 0.039* | |
C14 | 0.5040 (5) | 0.1638 (2) | 0.9614 (3) | 0.0416 (10) | |
H14A | 0.5685 | 0.2056 | 0.9834 | 0.050* | |
H14B | 0.4234 | 0.1896 | 0.9297 | 0.050* | |
C15 | 0.4618 (4) | 0.1166 (2) | 1.0474 (3) | 0.0389 (9) | |
H15A | 0.5434 | 0.0922 | 1.0794 | 0.047* | |
H15B | 0.4007 | 0.0736 | 1.0242 | 0.047* | |
C16 | 0.3900 (5) | 0.1654 (3) | 1.1214 (3) | 0.0499 (11) | |
H16A | 0.3599 | 0.1309 | 1.1729 | 0.075* | |
H16B | 0.3112 | 0.1916 | 1.0897 | 0.075* | |
H16C | 0.4526 | 0.2052 | 1.1492 | 0.075* | |
C17 | 0.4978 (4) | 0.1918 (2) | 0.7443 (3) | 0.0354 (9) | |
H17A | 0.4689 | 0.2363 | 0.7848 | 0.042* | |
H17B | 0.5309 | 0.2145 | 0.6839 | 0.042* | |
C18 | 0.3751 (4) | 0.1418 (2) | 0.7184 (3) | 0.0395 (9) | |
H18A | 0.3417 | 0.1178 | 0.7780 | 0.047* | |
H18B | 0.4014 | 0.0985 | 0.6750 | 0.047* | |
C19 | 0.2614 (5) | 0.1896 (3) | 0.6683 (3) | 0.0517 (12) | |
H19A | 0.2422 | 0.2362 | 0.7084 | 0.062* | |
H19B | 0.2914 | 0.2086 | 0.6052 | 0.062* | |
C20 | 0.1329 (5) | 0.1419 (3) | 0.6520 (4) | 0.0549 (12) | |
H20A | 0.0649 | 0.1735 | 0.6153 | 0.082* | |
H20B | 0.0979 | 0.1273 | 0.7146 | 0.082* | |
H20C | 0.1526 | 0.0941 | 0.6154 | 0.082* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1 | 0.03067 (12) | 0.04558 (14) | 0.03345 (13) | −0.00168 (10) | 0.00587 (8) | −0.00881 (11) |
S1 | 0.0354 (5) | 0.0561 (6) | 0.0392 (6) | 0.0020 (5) | 0.0066 (4) | −0.0062 (5) |
S2 | 0.0336 (5) | 0.0607 (7) | 0.0379 (5) | 0.0017 (5) | 0.0067 (4) | −0.0022 (5) |
C1 | 0.037 (2) | 0.033 (2) | 0.040 (2) | 0.0008 (17) | 0.0046 (17) | −0.0123 (17) |
C2 | 0.040 (2) | 0.034 (2) | 0.045 (2) | 0.0013 (18) | 0.0059 (19) | −0.0068 (18) |
C3 | 0.049 (3) | 0.039 (2) | 0.043 (2) | −0.001 (2) | 0.009 (2) | −0.0047 (19) |
C4 | 0.053 (3) | 0.032 (2) | 0.043 (3) | −0.0012 (19) | 0.014 (2) | −0.0088 (19) |
N1 | 0.045 (2) | 0.063 (3) | 0.069 (3) | 0.001 (2) | 0.022 (2) | 0.004 (2) |
N2 | 0.071 (3) | 0.047 (2) | 0.050 (2) | 0.006 (2) | 0.008 (2) | 0.0006 (19) |
N3 | 0.0361 (17) | 0.0295 (16) | 0.0282 (17) | 0.0022 (13) | 0.0071 (13) | 0.0044 (13) |
C5 | 0.038 (2) | 0.0298 (19) | 0.031 (2) | 0.0043 (16) | 0.0081 (16) | −0.0007 (15) |
C6 | 0.067 (3) | 0.047 (3) | 0.041 (3) | 0.003 (2) | 0.024 (2) | 0.007 (2) |
C7 | 0.060 (3) | 0.056 (3) | 0.045 (3) | 0.002 (2) | 0.026 (2) | 0.000 (2) |
C8 | 0.080 (4) | 0.102 (5) | 0.083 (4) | −0.016 (4) | 0.034 (4) | −0.046 (4) |
C9 | 0.043 (2) | 0.030 (2) | 0.037 (2) | −0.0031 (17) | 0.0095 (18) | 0.0057 (17) |
C10 | 0.041 (2) | 0.038 (2) | 0.043 (2) | −0.0033 (18) | 0.0023 (19) | 0.0032 (18) |
C11 | 0.053 (3) | 0.041 (2) | 0.043 (2) | −0.007 (2) | 0.000 (2) | 0.0058 (19) |
C12 | 0.054 (3) | 0.057 (3) | 0.052 (3) | −0.011 (2) | −0.008 (2) | −0.004 (2) |
C13 | 0.039 (2) | 0.030 (2) | 0.028 (2) | 0.0020 (16) | 0.0077 (16) | 0.0059 (15) |
C14 | 0.053 (3) | 0.033 (2) | 0.039 (2) | 0.0041 (18) | 0.0141 (19) | 0.0023 (18) |
C15 | 0.047 (2) | 0.042 (2) | 0.028 (2) | 0.0022 (19) | 0.0080 (18) | −0.0009 (17) |
C16 | 0.055 (3) | 0.055 (3) | 0.040 (3) | 0.003 (2) | 0.016 (2) | 0.000 (2) |
C17 | 0.041 (2) | 0.034 (2) | 0.032 (2) | 0.0081 (17) | 0.0054 (17) | 0.0061 (16) |
C18 | 0.042 (2) | 0.039 (2) | 0.037 (2) | 0.0074 (18) | 0.0019 (18) | 0.0018 (18) |
C19 | 0.049 (3) | 0.055 (3) | 0.051 (3) | 0.012 (2) | −0.001 (2) | 0.008 (2) |
C20 | 0.044 (3) | 0.068 (3) | 0.052 (3) | 0.012 (2) | −0.003 (2) | 0.001 (2) |
Pt1—S2 | 2.3184 (10) | C10—H10B | 0.9900 |
Pt1—S2i | 2.3185 (10) | C11—C12 | 1.504 (6) |
Pt1—S1 | 2.3310 (11) | C11—H11A | 0.9900 |
Pt1—S1i | 2.3310 (11) | C11—H11B | 0.9900 |
S1—C1 | 1.729 (4) | C12—H12A | 0.9800 |
S2—C1 | 1.735 (4) | C12—H12B | 0.9800 |
C1—C2 | 1.361 (6) | C12—H12C | 0.9800 |
C2—C3 | 1.429 (6) | C13—C14 | 1.519 (5) |
C2—C4 | 1.430 (6) | C13—H13A | 0.9900 |
C3—N1 | 1.142 (5) | C13—H13B | 0.9900 |
C4—N2 | 1.132 (6) | C14—C15 | 1.509 (6) |
N3—C9 | 1.516 (5) | C14—H14A | 0.9900 |
N3—C5 | 1.516 (4) | C14—H14B | 0.9900 |
N3—C17 | 1.518 (5) | C15—C16 | 1.517 (6) |
N3—C13 | 1.522 (4) | C15—H15A | 0.9900 |
C5—C6 | 1.522 (5) | C15—H15B | 0.9900 |
C5—H5A | 0.9900 | C16—H16A | 0.9800 |
C5—H5B | 0.9900 | C16—H16B | 0.9800 |
C6—C7 | 1.518 (6) | C16—H16C | 0.9800 |
C6—H6A | 0.9900 | C17—C18 | 1.508 (6) |
C6—H6B | 0.9900 | C17—H17A | 0.9900 |
C7—C8 | 1.480 (8) | C17—H17B | 0.9900 |
C7—H7A | 0.9900 | C18—C19 | 1.522 (6) |
C7—H7B | 0.9900 | C18—H18A | 0.9900 |
C8—H8A | 0.9800 | C18—H18B | 0.9900 |
C8—H8B | 0.9800 | C19—C20 | 1.511 (7) |
C8—H8C | 0.9800 | C19—H19A | 0.9900 |
C9—C10 | 1.521 (6) | C19—H19B | 0.9900 |
C9—H9A | 0.9900 | C20—H20A | 0.9800 |
C9—H9B | 0.9900 | C20—H20B | 0.9800 |
C10—C11 | 1.521 (6) | C20—H20C | 0.9800 |
C10—H10A | 0.9900 | ||
S2—Pt1—S2i | 180.0 | C12—C11—H11A | 108.8 |
S2—Pt1—S1 | 74.35 (4) | C10—C11—H11A | 108.8 |
S2i—Pt1—S1 | 105.65 (4) | C12—C11—H11B | 108.8 |
S2—Pt1—S1i | 105.65 (4) | C10—C11—H11B | 108.8 |
S2i—Pt1—S1i | 74.35 (4) | H11A—C11—H11B | 107.7 |
S1—Pt1—S1i | 180.0 | C11—C12—H12A | 109.5 |
C1—S1—Pt1 | 88.49 (15) | C11—C12—H12B | 109.5 |
C1—S2—Pt1 | 88.74 (14) | H12A—C12—H12B | 109.5 |
C2—C1—S1 | 126.4 (3) | C11—C12—H12C | 109.5 |
C2—C1—S2 | 125.2 (3) | H12A—C12—H12C | 109.5 |
S1—C1—S2 | 108.4 (2) | H12B—C12—H12C | 109.5 |
C1—C2—C3 | 120.9 (4) | C14—C13—N3 | 115.9 (3) |
C1—C2—C4 | 121.0 (4) | C14—C13—H13A | 108.3 |
C3—C2—C4 | 118.1 (4) | N3—C13—H13A | 108.3 |
N1—C3—C2 | 179.6 (5) | C14—C13—H13B | 108.3 |
N2—C4—C2 | 178.8 (5) | N3—C13—H13B | 108.3 |
C9—N3—C5 | 111.7 (3) | H13A—C13—H13B | 107.4 |
C9—N3—C17 | 106.4 (3) | C15—C14—C13 | 110.3 (3) |
C5—N3—C17 | 111.2 (3) | C15—C14—H14A | 109.6 |
C9—N3—C13 | 110.9 (3) | C13—C14—H14A | 109.6 |
C5—N3—C13 | 105.6 (3) | C15—C14—H14B | 109.6 |
C17—N3—C13 | 111.2 (3) | C13—C14—H14B | 109.6 |
N3—C5—C6 | 116.3 (3) | H14A—C14—H14B | 108.1 |
N3—C5—H5A | 108.2 | C14—C15—C16 | 113.5 (4) |
C6—C5—H5A | 108.2 | C14—C15—H15A | 108.9 |
N3—C5—H5B | 108.2 | C16—C15—H15A | 108.9 |
C6—C5—H5B | 108.2 | C14—C15—H15B | 108.9 |
H5A—C5—H5B | 107.4 | C16—C15—H15B | 108.9 |
C7—C6—C5 | 110.5 (4) | H15A—C15—H15B | 107.7 |
C7—C6—H6A | 109.5 | C15—C16—H16A | 109.5 |
C5—C6—H6A | 109.5 | C15—C16—H16B | 109.5 |
C7—C6—H6B | 109.5 | H16A—C16—H16B | 109.5 |
C5—C6—H6B | 109.5 | C15—C16—H16C | 109.5 |
H6A—C6—H6B | 108.1 | H16A—C16—H16C | 109.5 |
C8—C7—C6 | 114.8 (5) | H16B—C16—H16C | 109.5 |
C8—C7—H7A | 108.6 | C18—C17—N3 | 116.2 (3) |
C6—C7—H7A | 108.6 | C18—C17—H17A | 108.2 |
C8—C7—H7B | 108.6 | N3—C17—H17A | 108.2 |
C6—C7—H7B | 108.6 | C18—C17—H17B | 108.2 |
H7A—C7—H7B | 107.5 | N3—C17—H17B | 108.2 |
C7—C8—H8A | 109.5 | H17A—C17—H17B | 107.4 |
C7—C8—H8B | 109.5 | C17—C18—C19 | 112.0 (3) |
H8A—C8—H8B | 109.5 | C17—C18—H18A | 109.2 |
C7—C8—H8C | 109.5 | C19—C18—H18A | 109.2 |
H8A—C8—H8C | 109.5 | C17—C18—H18B | 109.2 |
H8B—C8—H8C | 109.5 | C19—C18—H18B | 109.2 |
N3—C9—C10 | 116.6 (3) | H18A—C18—H18B | 107.9 |
N3—C9—H9A | 108.1 | C20—C19—C18 | 112.2 (4) |
C10—C9—H9A | 108.1 | C20—C19—H19A | 109.2 |
N3—C9—H9B | 108.1 | C18—C19—H19A | 109.2 |
C10—C9—H9B | 108.1 | C20—C19—H19B | 109.2 |
H9A—C9—H9B | 107.3 | C18—C19—H19B | 109.2 |
C11—C10—C9 | 110.5 (3) | H19A—C19—H19B | 107.9 |
C11—C10—H10A | 109.6 | C19—C20—H20A | 109.5 |
C9—C10—H10A | 109.6 | C19—C20—H20B | 109.5 |
C11—C10—H10B | 109.6 | H20A—C20—H20B | 109.5 |
C9—C10—H10B | 109.6 | C19—C20—H20C | 109.5 |
H10A—C10—H10B | 108.1 | H20A—C20—H20C | 109.5 |
C12—C11—C10 | 113.8 (4) | H20B—C20—H20C | 109.5 |
S2—Pt1—S1—C1 | 0.38 (13) | C5—C6—C7—C8 | 67.3 (6) |
S2i—Pt1—S1—C1 | −179.62 (13) | C5—N3—C9—C10 | −57.1 (4) |
S1—Pt1—S2—C1 | −0.38 (13) | C17—N3—C9—C10 | −178.6 (3) |
S1i—Pt1—S2—C1 | 179.62 (13) | C13—N3—C9—C10 | 60.4 (4) |
Pt1—S1—C1—C2 | 179.1 (4) | N3—C9—C10—C11 | 178.2 (3) |
Pt1—S1—C1—S2 | −0.52 (17) | C9—C10—C11—C12 | −177.5 (4) |
Pt1—S2—C1—C2 | −179.1 (3) | C9—N3—C13—C14 | 61.4 (4) |
Pt1—S2—C1—S1 | 0.52 (17) | C5—N3—C13—C14 | −177.5 (3) |
S1—C1—C2—C3 | −175.8 (3) | C17—N3—C13—C14 | −56.8 (4) |
S2—C1—C2—C3 | 3.8 (6) | N3—C13—C14—C15 | 178.8 (3) |
S1—C1—C2—C4 | 3.9 (6) | C13—C14—C15—C16 | −178.0 (4) |
S2—C1—C2—C4 | −176.6 (3) | C9—N3—C17—C18 | −176.2 (3) |
C9—N3—C5—C6 | −59.8 (4) | C5—N3—C17—C18 | 62.0 (4) |
C17—N3—C5—C6 | 58.9 (4) | C13—N3—C17—C18 | −55.3 (4) |
C13—N3—C5—C6 | 179.6 (4) | N3—C17—C18—C19 | 178.0 (3) |
N3—C5—C6—C7 | 173.5 (4) | C17—C18—C19—C20 | −173.8 (4) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | (C16H36N)2[Pt(C4N2S2)2] |
Mr | 960.40 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 173 |
a, b, c (Å) | 9.8687 (6), 16.9556 (11), 13.8274 (9) |
β (°) | 92.840 (1) |
V (Å3) | 2310.9 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 3.25 |
Crystal size (mm) | 0.4 × 0.2 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker 2003) |
Tmin, Tmax | 0.468, 0.612 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 22256, 4087, 3226 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.077, 1.09 |
No. of reflections | 4087 |
No. of parameters | 236 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.02, −0.33 |
Computer programs: SMART (Bruker,2003), SAINT (Bruker, 2006), SHELXTL (Sheldrick, 2008).
Acknowledgements
This work was supported by funding from the NSF through a Research Site for Educators in Chemistry grant. The authors acknowledge Victor G. Young, Jr and the X-ray Crystallographic Laboratory in the Department of Chemistry at the University of Minnesota.
References
Bruker (2003). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2006). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cummings, S. D. & Eisenberg, R. (1996). Inorg. Chim. Acta, 242, 225–231. CrossRef CAS Web of Science Google Scholar
Fackler, J. P. & Coucouvanis, D. (1966). J. Am. Chem. Soc. 88, 3913–3920. CrossRef CAS Web of Science Google Scholar
Gao, X.-K., Dou, J.-M., Li, D.-C., Dong, F.-Y. & Wang, D.-Q. (2005). J. Incl. Phen. Macro. Chem. 53, 111–119. Web of Science CSD CrossRef CAS Google Scholar
Gao, X.-K., Dou, J.-M., Li, D.-C., Dong, F.-Y. & Wang, D.-Q. (2006). J. Mol. Struct. 733, 181–186. Web of Science CrossRef Google Scholar
Hummel, H.-U. (1987). Transition Met. Chem. 12, 172–174. CSD CrossRef CAS Web of Science Google Scholar
Li, B., Li, D.-C., Dong, F.-Y., Dou, J.-M. & Wang, D.-Q. (2004). Z. Kristallogr. 219, 413–414. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, Y.-M., Dong, F.-Y., Dou, J.-M., Li, D.-C., Gao, X.-K. & Wang, D.-Q. (2006). J. Inorg. Organomet. Poly. Mater. 16, 61–67. Web of Science CSD CrossRef CAS Google Scholar
Werden, B. G., Billig, E. & Gray, H. B. (1966). Inorg. Chem. 5, 78–81. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Salts of metal complexes of [Pt(i-mnt)2]2- (i-mnt=1,1-dicyanoethylene-2,2-dithiolate) have been studied for their interesting electronic properties including their photoluminescence (Cummings & Eisenberg, 1996) and their redox behavior especially in relation to the analagous isomeric ligand 1,2-dicyanoethylene-1,2-dithiolate (mnt2-) complexes (Fackler & Coucouvanis, 1966; Werden et al., 1966). In sharp contrast to mnt complexes of the form [M(mnt)2]2- (M= NiII, PdII, PtII) which do exhibit reversible oxidation behavior, analagous i-mnt complexes of the form [M(i-mnt)2]2- do not. This effect is attributed to better π-delocalization of the five-membered rings formed by complexation of mnt compared with four-membered chelate rings of i-mnt complexes. Salts of [Pt(i-mnt)2]2- have also been studied as supramolecular linker groups in organic-inorganic hybrid coordination polymers (Gao et al. 2005, 2006; Li et al. 2004; Sun et al. 2006). While several x-ray structures of [Pt(i-mnt)2]2- with alkali metal-complexed crown ether salts have been reported, only one other simple non-coordinating cation salt (tetraethylammonium, Hummel 1987) has been structurally characterized.
The structure of the anion in the title compound (C16H36N)2[Pt(S2C4N2)2] shows significant distortions from a square planar environment as forced by the four-membered chelate rings of the i-mnt ligands, with the i-mnt bite angle S(2)—Pt(1)—S(1) = 74.35 (4)°. As the Pt sits on the special position (1/2, 1/2, 1/2) in the space group P21/n, Z' = 0.5, the anion is quite planar, with a calculated r.m.s. deviation from a least-squares plane formed by all atoms of the complex anion of 0.042 (3) Å. The bond lengths within coordinated i-mnt ligand, in particular the bonds C(1)—C(2) 1.361 (6) Å, C(2)—C(3) 1.429 (6) Å, and C(2)—C(4) 1.430 (6)Å are very similar to those observed in the tetraethylammonium salt, showing significant π-delocalization. No columnar stacking is observed amongst the complex anions. As expected, upon comparison of the structure of the title compound and the tetraethylammonium salt, little effect was observed on the intramolecular features of the complex anion.