organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(Z)-3-(4-Chloro­benzo­yl)-1,3-thia­zolidin-2-yl­­idene]cyanamide

aMicroscale Science Institute, Biology Department, Weifang University, Weifang 261061, People's Republic of China, bNew Materials and Functional Coordination Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao 266042 People's Republic of China, and cMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ffjian2008@163.com

(Received 8 October 2008; accepted 7 November 2008; online 13 November 2008)

The title compound, C11H8ClN3OS, was prepared by the reaction of N-cyano­imino­thia­zolidine, 2-amino­ethanethiol and triethyl­amine at 350 K. The dihedral angle between the two rings is 62.5 (8)°.

Related literature

For the biological activities of thia­zolidine compounds, see: Iwata et al. (1988[Iwata, C., Watanabe, M., Okamoto, S., Fujimoto, M., Sakae, M., Katstrada, M. & Imanishi, T. (1988). Synthesis, 3, 261-262.]); Huang & Shi (1990[Huang, Z. T. & Shi, X. (1990). Synthesis, 2, 162-167.]). For related structures, see Jian et al. (2006[Jian, F.-F., Zhuang, R.-R., Wang, K.-F., Zhao, P.-S. & Xiao, H.-L. (2006). Acta Cryst. E62, o3198-o3199.]); Schroth et al. (1997[Schroth, W., Hintzsche, E., Jordan, H., Jende, T., Spitzner, R. & Thondorf, I. (1997). Tetrahedron, 53, 7509-7528.]).

[Scheme 1]

Experimental

Crystal data
  • C11H8ClN3OS

  • Mr = 265.72

  • Monoclinic, P 21 /c

  • a = 16.442 (3) Å

  • b = 5.6798 (11) Å

  • c = 13.313 (3) Å

  • β = 112.76 (3)°

  • V = 1146.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 293 (2) K

  • 0.34 × 0.21 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 8343 measured reflections

  • 2016 independent reflections

  • 1915 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.066

  • S = 1.13

  • 2016 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiazolidine is an important group in organic chemistry. Many compounds containing thiazolidine groups possess a broad spectrum of biological activities (Iwata et al., 1988; Huang & Shi, 1990).

In the crystal structure (Fig. 1), the torsion angle formed by atoms N1, C8, C9 and S1 was 34.5 (9)°. The dihedral angle formed by the the ring (N1, C8, C9, C10 and S1) and the phenyl ring (C1-C6) was 62.5 (8)°. The C=N bond length (1.299 (2) Å) is in agreement with that observed before (Jian et al., 2006). The C—S bond length (1.734 (7) and 1.808 (2) Å) are in agreement with those observed before (Schroth et al., 1997). Intermolecular C–H···N interactions help to stabilize the crystal structure.

Related literature top

For the biological activities of thiazolidine compounds, see: Iwata et al. (1988); Huang & Shi (1990). For related structures, see Jian et al. (2006); Schroth et al. (1997).

Experimental top

A mixture of N-cyanoiminothiazolidine 10 mmol (1.27 g), 2-amino-ethanethiol (1.75 g, 10 mmol) and (1.01 g, 10 mmol) triethylamine was refluxed in absolute acetone (25 ml) for 4 h. On cooling, the product crystallized, was filtered, and recrystallized from absolute EtOH (yield 2.42 g (91%)). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H distances of 0.93–0.97 Å, respectively, and Uiso(H) = 1.2 Ueq of the parent atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 40% probability level.
N-[(Z)-3-(4-Chlorobenzoyl)-1,3-thiazolidin-2-ylidene]cyanamide top
Crystal data top
C11H8ClN3OSF(000) = 544
Mr = 265.72Dx = 1.539 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1021 reflections
a = 16.442 (3) Åθ = 2.9–26.4°
b = 5.6798 (11) ŵ = 0.50 mm1
c = 13.313 (3) ÅT = 293 K
β = 112.76 (3)°Block, colorless
V = 1146.5 (5) Å30.34 × 0.21 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1915 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 25.0°, θmin = 3.1°
ϕ and ω scansh = 1919
8343 measured reflectionsk = 66
2016 independent reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.017P)2 + 0.7287P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
2016 reflectionsΔρmax = 0.21 e Å3
155 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.031 (2)
Crystal data top
C11H8ClN3OSV = 1146.5 (5) Å3
Mr = 265.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.442 (3) ŵ = 0.50 mm1
b = 5.6798 (11) ÅT = 293 K
c = 13.313 (3) Å0.34 × 0.21 × 0.15 mm
β = 112.76 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1915 reflections with I > 2σ(I)
8343 measured reflectionsRint = 0.030
2016 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.13Δρmax = 0.21 e Å3
2016 reflectionsΔρmin = 0.22 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.07965 (3)0.52934 (7)0.33331 (3)0.02469 (14)
Cl10.46689 (3)0.71315 (8)0.06338 (3)0.03512 (15)
O10.27367 (8)1.17756 (19)0.37317 (10)0.0302 (3)
N20.16368 (9)0.5912 (2)0.19639 (11)0.0244 (3)
C30.40564 (10)0.7898 (3)0.13961 (12)0.0229 (3)
N10.20390 (8)0.8283 (2)0.35254 (10)0.0216 (3)
C100.15500 (10)0.6503 (3)0.28595 (12)0.0201 (3)
C40.40148 (10)0.6326 (3)0.21690 (12)0.0232 (3)
H4A0.43150.49010.22810.028*
N30.08333 (10)0.2509 (3)0.08619 (14)0.0426 (4)
C70.26182 (10)0.9843 (3)0.33103 (12)0.0220 (3)
C60.30963 (9)0.9060 (3)0.26219 (12)0.0197 (3)
C80.16984 (11)0.9017 (3)0.43566 (13)0.0263 (4)
H8A0.12701.02720.40770.032*
H8B0.21760.95740.50070.032*
C10.31667 (10)1.0641 (3)0.18625 (13)0.0227 (3)
H1A0.28961.21060.17790.027*
C90.12728 (11)0.6865 (3)0.46101 (13)0.0268 (4)
H9A0.08200.73120.48720.032*
H9B0.17080.59010.51580.032*
C110.11795 (11)0.4075 (3)0.14112 (14)0.0275 (4)
C50.35225 (10)0.6895 (3)0.27740 (12)0.0222 (3)
H5A0.34770.58330.32810.027*
C20.36370 (10)1.0057 (3)0.12284 (13)0.0244 (3)
H2B0.36691.10930.07040.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0224 (2)0.0236 (2)0.0314 (2)0.00304 (16)0.01415 (17)0.00002 (16)
Cl10.0368 (3)0.0412 (3)0.0340 (2)0.00200 (19)0.02096 (19)0.00607 (19)
O10.0369 (7)0.0210 (6)0.0374 (7)0.0065 (5)0.0194 (5)0.0072 (5)
N20.0252 (7)0.0244 (7)0.0252 (7)0.0060 (6)0.0115 (6)0.0039 (6)
C30.0187 (7)0.0266 (8)0.0226 (8)0.0038 (6)0.0071 (6)0.0060 (6)
N10.0246 (7)0.0207 (7)0.0217 (6)0.0036 (5)0.0114 (5)0.0012 (5)
C100.0185 (7)0.0167 (7)0.0243 (8)0.0018 (6)0.0075 (6)0.0039 (6)
C40.0194 (8)0.0190 (7)0.0273 (8)0.0006 (6)0.0047 (6)0.0016 (6)
N30.0337 (8)0.0427 (10)0.0586 (11)0.0120 (8)0.0257 (8)0.0256 (9)
C70.0218 (8)0.0201 (8)0.0229 (8)0.0012 (6)0.0072 (6)0.0024 (6)
C60.0171 (7)0.0187 (7)0.0219 (7)0.0047 (6)0.0062 (6)0.0019 (6)
C80.0293 (8)0.0284 (8)0.0244 (8)0.0013 (7)0.0140 (7)0.0026 (7)
C10.0209 (8)0.0171 (7)0.0289 (8)0.0013 (6)0.0082 (6)0.0017 (6)
C90.0248 (8)0.0326 (9)0.0236 (8)0.0002 (7)0.0101 (7)0.0028 (7)
C110.0230 (8)0.0303 (9)0.0348 (9)0.0025 (7)0.0172 (7)0.0056 (8)
C50.0226 (8)0.0192 (8)0.0227 (8)0.0029 (6)0.0064 (6)0.0022 (6)
C20.0242 (8)0.0248 (8)0.0245 (8)0.0030 (7)0.0099 (6)0.0040 (7)
Geometric parameters (Å, º) top
S1—C101.7347 (15)N3—C111.152 (2)
S1—C91.8082 (17)C7—C61.488 (2)
Cl1—C31.7390 (16)C6—C11.390 (2)
O1—C71.2136 (19)C6—C51.391 (2)
N2—C101.299 (2)C8—C91.510 (2)
N2—C111.329 (2)C8—H8A0.9700
C3—C21.382 (2)C8—H8B0.9700
C3—C41.384 (2)C1—C21.388 (2)
N1—C101.379 (2)C1—H1A0.9300
N1—C71.409 (2)C9—H9A0.9700
N1—C81.4804 (19)C9—H9B0.9700
C4—C51.383 (2)C5—H5A0.9300
C4—H4A0.9300C2—H2B0.9300
C10—S1—C992.05 (8)N1—C8—H8A110.5
C10—N2—C11118.14 (14)C9—C8—H8A110.5
C2—C3—C4121.83 (14)N1—C8—H8B110.5
C2—C3—Cl1119.55 (12)C9—C8—H8B110.5
C4—C3—Cl1118.61 (12)H8A—C8—H8B108.7
C10—N1—C7127.01 (13)C2—C1—C6120.72 (14)
C10—N1—C8113.06 (12)C2—C1—H1A119.6
C7—N1—C8117.11 (13)C6—C1—H1A119.6
N2—C10—N1122.40 (14)C8—C9—S1105.01 (11)
N2—C10—S1125.37 (12)C8—C9—H9A110.7
N1—C10—S1112.17 (11)S1—C9—H9A110.7
C5—C4—C3119.40 (14)C8—C9—H9B110.7
C5—C4—H4A120.3S1—C9—H9B110.7
C3—C4—H4A120.3H9A—C9—H9B108.8
O1—C7—N1118.36 (14)N3—C11—N2172.67 (18)
O1—C7—C6121.78 (14)C4—C5—C6119.80 (14)
N1—C7—C6119.80 (13)C4—C5—H5A120.1
C1—C6—C5119.87 (14)C6—C5—H5A120.1
C1—C6—C7117.87 (14)C3—C2—C1118.32 (14)
C5—C6—C7122.08 (14)C3—C2—H2B120.8
N1—C8—C9106.32 (13)C1—C2—H2B120.8
C11—N2—C10—N1175.68 (14)N1—C7—C6—C1138.53 (15)
C11—N2—C10—S17.2 (2)O1—C7—C6—C5130.83 (17)
C7—N1—C10—N26.7 (2)N1—C7—C6—C546.3 (2)
C8—N1—C10—N2167.01 (14)C10—N1—C8—C929.96 (17)
C7—N1—C10—S1170.72 (12)C7—N1—C8—C9167.65 (13)
C8—N1—C10—S110.44 (16)C5—C6—C1—C21.9 (2)
C9—S1—C10—N2172.92 (14)C7—C6—C1—C2177.18 (14)
C9—S1—C10—N19.73 (12)N1—C8—C9—S134.60 (15)
C2—C3—C4—C51.7 (2)C10—S1—C9—C825.81 (12)
Cl1—C3—C4—C5179.26 (11)C3—C4—C5—C61.8 (2)
C10—N1—C7—O1152.51 (15)C1—C6—C5—C40.0 (2)
C8—N1—C7—O17.1 (2)C7—C6—C5—C4175.00 (14)
C10—N1—C7—C630.2 (2)C4—C3—C2—C10.2 (2)
C8—N1—C7—C6170.18 (13)Cl1—C3—C2—C1178.80 (12)
O1—C7—C6—C144.3 (2)C6—C1—C2—C32.1 (2)

Experimental details

Crystal data
Chemical formulaC11H8ClN3OS
Mr265.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)16.442 (3), 5.6798 (11), 13.313 (3)
β (°) 112.76 (3)
V3)1146.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.34 × 0.21 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8343, 2016, 1915
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.066, 1.13
No. of reflections2016
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.22

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin.  Google Scholar
First citationHuang, Z. T. & Shi, X. (1990). Synthesis, 2, 162–167.  CrossRef Google Scholar
First citationIwata, C., Watanabe, M., Okamoto, S., Fujimoto, M., Sakae, M., Katstrada, M. & Imanishi, T. (1988). Synthesis, 3, 261–262.  Google Scholar
First citationJian, F.-F., Zhuang, R.-R., Wang, K.-F., Zhao, P.-S. & Xiao, H.-L. (2006). Acta Cryst. E62, o3198–o3199.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchroth, W., Hintzsche, E., Jordan, H., Jende, T., Spitzner, R. & Thondorf, I. (1997). Tetrahedron, 53, 7509–7528.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds