metal-organic compounds
Bis(dimethylmalonato-κ2O,O′)bis[4-(4-pyridylamino-κN4)pyridinium]nickel(II) hexahydrate
aLyman Briggs College, Department of Chemistry, Michigan State University, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu
In the title compound, [Ni(C5H6O4)2(C10H10N3)2]·6H2O, divalent nickel ions situated on the crystallographic twofold axis are octahedrally coordinated by four O atoms from two dimethylmalonate ligands in a 1,3-chelating mode and two N atoms from two protonated monodentate 4,4′-dipyridylamine molecules. The molecules link into chains via N—H⋯O hydrogen bonding mediated by protonated pyridyl groups. The chains form layer patterns via π–π stacking [centroid–centroid distance = 3.777 (2) Å] . Water molecule hexamers are generated from the unligated water molecules (three per asymmetric unit) by inversion centers at d. These clusters are situated between the pseudolayers, providing hydrogen-bonding pathways that build up the three-dimensional structure.
Related literature
For 4,4′-dipyridylamine (dpa) coordination polymers, see: Martin et al. (2007). For cobalt and nickel malonate dpa coordination polymers, see: Montney et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2006); cell SAINT-Plus (Bruker, 2006); data reduction: SAINT-Plus and CELL-NOW (Sheldrick, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Crystal Maker (Palmer, 2007); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S160053680803835X/pk2132sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680803835X/pk2132Isup2.hkl
All chemicals were obtained commercially. Nickel perchlorate hexahydrate (135 mg, 0.37 mmol) and dimethylmalonic acid (49 mg, 0.74 mmol) were dissolved in 3 ml water in a glass vial. A 1 ml
of a 1:1 water–ethanol was carefully layered onto the aqueous solution, followed by 3 ml of an ethanolic solution of dpa (127 mg, 0.74 mmol). Green blocks of the title compound formed after 1 week.All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 Å and refined in riding mode with Uiso = 1.2Ueq(C). The H atoms bound to O atoms were found via Fourier difference map, restrained at fixed positions or with O—H = 0.85 Å, and refined with Uiso = 1.2Ueq(O). The H atoms bound to N atoms were found via Fourier difference map, restrained with N—H = 0.89 Å, and refined with Uiso = 1.2Ueq(N).
Data collection: SMART (Bruker, 2006); cell
SMART (Bruker, 2006); data reduction: SAINT-Plus (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Crystal Maker (Palmer, 2007); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. A full molecular unit of the title compound, along with hydrogen bonded water molecule hexamer, showing 50% probability ellipsoids and the atom numbering scheme. Hydrogen atom positions are shown as gray sticks. Hydrogen bonding interactions are shown as dashed lines. Color codes: green Ni, light blue N, red O, black C. Symmetry codes: (i) -x, y, -z + 1/2; (ii) -x - 1/2, -y + 5/2, -z | |
Fig. 2. A single supramolecular layer in the title compound, formed from π–π stacking of hydrogen-bonded [Ni(dimethylmalonate)2(Hdpa)2]n supramolecular chains. Hydrogen bonding is indicated as dashed lines. | |
Fig. 3. Packing diagram illustrating the AB layer stacking pattern, which forms the 3-D crystal structure of the title compound through hydrogen bonding between water molecules of crystallization and the amine groups of the Hdpa ligands. Individual pseudolayers are shown in blue and red. The oxygen atoms of the water molecules of crystallization are shown in orange. |
[Ni(C5H6O4)2(C10H10N3)2]·6H2O | F(000) = 1624 |
Mr = 771.42 | Dx = 1.470 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 49338 reflections |
a = 18.428 (4) Å | θ = 1.7–28.1° |
b = 8.0473 (16) Å | µ = 0.63 mm−1 |
c = 23.731 (5) Å | T = 173 K |
β = 97.96 (3)° | Block, green |
V = 3485.4 (12) Å3 | 0.30 × 0.30 × 0.10 mm |
Z = 4 |
Bruker SMART 1K diffractometer | 3998 independent reflections |
Radiation source: fine-focus sealed tube | 3222 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.079 |
ω scans | θmax = 28.1°, θmin = 1.7° |
Absorption correction: multi-scan (TWINABS; Sheldrick, 2007) | h = −20→24 |
Tmin = 0.833, Tmax = 0.939 | k = −10→0 |
49338 measured reflections | l = −19→31 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.054 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.163 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0996P)2 + 4.676P] where P = (Fo2 + 2Fc2)/3 |
3998 reflections | (Δ/σ)max < 0.001 |
246 parameters | Δρmax = 0.84 e Å−3 |
10 restraints | Δρmin = −0.61 e Å−3 |
[Ni(C5H6O4)2(C10H10N3)2]·6H2O | V = 3485.4 (12) Å3 |
Mr = 771.42 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 18.428 (4) Å | µ = 0.63 mm−1 |
b = 8.0473 (16) Å | T = 173 K |
c = 23.731 (5) Å | 0.30 × 0.30 × 0.10 mm |
β = 97.96 (3)° |
Bruker SMART 1K diffractometer | 3998 independent reflections |
Absorption correction: multi-scan (TWINABS; Sheldrick, 2007) | 3222 reflections with I > 2σ(I) |
Tmin = 0.833, Tmax = 0.939 | Rint = 0.079 |
49338 measured reflections |
R[F2 > 2σ(F2)] = 0.054 | 10 restraints |
wR(F2) = 0.163 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | Δρmax = 0.84 e Å−3 |
3998 reflections | Δρmin = −0.61 e Å−3 |
246 parameters |
Experimental. Reflection data were collected on a non-merohedrally twinned crystal. The twin law was determined with CELL-NOW (Sheldrick, 2003). The structure was solved and refined using reflections from only the major twin component, whose reflection file was generated using TWINABS (Sheldrick, 2007). Composite reflections belonging to both twin domains were omitted from the reflection list, causing the loss of 252 reflections from the major twin component data. The data set was still 99.9% complete to 2θ of 50°. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.0000 | 0.68844 (6) | 0.2500 | 0.01265 (17) | |
O1 | −0.10290 (10) | 0.6794 (2) | 0.20559 (8) | 0.0169 (4) | |
O1W | −0.18013 (13) | 1.0666 (3) | 0.04163 (11) | 0.0386 (6) | |
H1WA | −0.2030 | 1.1538 | 0.0492 | 0.046* | |
H1WB | −0.198 (2) | 0.986 (3) | 0.0576 (16) | 0.046* | |
O2 | −0.03894 (10) | 0.5158 (2) | 0.30453 (7) | 0.0163 (4) | |
O2W | −0.26118 (12) | 0.8279 (3) | 0.09768 (9) | 0.0270 (5) | |
H2WA | −0.2400 (19) | 0.746 (3) | 0.1144 (14) | 0.032* | |
H2WB | −0.2807 (19) | 0.888 (4) | 0.1206 (13) | 0.032* | |
O3 | −0.20007 (10) | 0.5600 (3) | 0.15784 (8) | 0.0207 (4) | |
O3W | −0.2449 (2) | 1.1445 (4) | −0.06678 (12) | 0.0712 (11) | |
H3WA | −0.2253 | 1.1212 | −0.0331 | 0.085* | |
H3WB | −0.2620 | 1.0821 | −0.0944 | 0.085* | |
O4 | −0.14160 (11) | 0.4853 (3) | 0.34207 (8) | 0.0277 (5) | |
N1 | 0.02492 (12) | 0.8724 (3) | 0.19288 (9) | 0.0151 (5) | |
N2 | 0.08802 (13) | 1.1902 (3) | 0.06757 (10) | 0.0199 (5) | |
H2N | 0.1351 (10) | 1.203 (4) | 0.0737 (15) | 0.024* | |
N3 | 0.00229 (14) | 1.3886 (3) | −0.08748 (10) | 0.0231 (5) | |
H3N | −0.0118 (19) | 1.422 (5) | −0.1199 (16) | 0.028* | |
C1 | 0.07385 (18) | 1.3998 (4) | −0.06814 (12) | 0.0262 (7) | |
H1 | 0.1052 | 1.4516 | −0.0902 | 0.031* | |
C2 | 0.10115 (17) | 1.3359 (4) | −0.01648 (12) | 0.0236 (6) | |
H2 | 0.1508 | 1.3467 | −0.0031 | 0.028* | |
C3 | 0.05471 (16) | 1.2533 (4) | 0.01689 (11) | 0.0193 (6) | |
C4 | −0.01943 (16) | 1.2421 (4) | −0.00520 (12) | 0.0228 (6) | |
H4 | −0.0521 | 1.1883 | 0.0152 | 0.027* | |
C5 | −0.04357 (17) | 1.3111 (4) | −0.05712 (13) | 0.0251 (6) | |
H5 | −0.0930 | 1.3040 | −0.0716 | 0.030* | |
C6 | 0.09491 (14) | 0.9063 (4) | 0.18757 (11) | 0.0186 (6) | |
H6 | 0.1315 | 0.8551 | 0.2126 | 0.022* | |
C7 | 0.11574 (15) | 1.0124 (4) | 0.14740 (11) | 0.0193 (6) | |
H7 | 0.1651 | 1.0319 | 0.1457 | 0.023* | |
C8 | 0.06220 (15) | 1.0909 (3) | 0.10910 (11) | 0.0169 (5) | |
C9 | −0.01058 (15) | 1.0630 (4) | 0.11588 (11) | 0.0205 (6) | |
H9 | −0.0482 | 1.1167 | 0.0927 | 0.025* | |
C10 | −0.02595 (15) | 0.9540 (4) | 0.15780 (11) | 0.0193 (6) | |
H10 | −0.0749 | 0.9364 | 0.1618 | 0.023* | |
C11 | −0.14996 (13) | 0.5650 (3) | 0.19920 (10) | 0.0134 (5) | |
C12 | −0.14587 (14) | 0.4205 (3) | 0.24216 (11) | 0.0159 (5) | |
C13 | −0.22274 (15) | 0.3538 (4) | 0.24762 (12) | 0.0220 (6) | |
H13A | −0.2462 | 0.3181 | 0.2110 | 0.033* | |
H13B | −0.2513 | 0.4401 | 0.2618 | 0.033* | |
H13C | −0.2187 | 0.2615 | 0.2735 | 0.033* | |
C14 | −0.10114 (16) | 0.2814 (4) | 0.21810 (12) | 0.0211 (6) | |
H14A | −0.1258 | 0.2466 | 0.1817 | 0.032* | |
H14B | −0.0965 | 0.1887 | 0.2438 | 0.032* | |
H14C | −0.0533 | 0.3226 | 0.2138 | 0.032* | |
C15 | −0.10720 (14) | 0.4782 (3) | 0.30049 (11) | 0.0163 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0109 (3) | 0.0145 (3) | 0.0122 (2) | 0.000 | 0.00056 (16) | 0.000 |
O1 | 0.0145 (9) | 0.0167 (10) | 0.0186 (9) | −0.0025 (7) | −0.0008 (7) | 0.0019 (7) |
O1W | 0.0325 (13) | 0.0370 (15) | 0.0459 (15) | −0.0012 (11) | 0.0042 (11) | 0.0057 (11) |
O2 | 0.0152 (9) | 0.0195 (10) | 0.0137 (9) | −0.0010 (7) | −0.0003 (7) | 0.0010 (7) |
O2W | 0.0282 (12) | 0.0304 (13) | 0.0228 (11) | 0.0086 (9) | 0.0044 (9) | 0.0049 (9) |
O3 | 0.0183 (10) | 0.0239 (11) | 0.0180 (9) | −0.0021 (8) | −0.0049 (7) | −0.0008 (8) |
O3W | 0.108 (3) | 0.062 (2) | 0.0338 (15) | 0.026 (2) | −0.0247 (16) | −0.0222 (14) |
O4 | 0.0259 (11) | 0.0408 (14) | 0.0175 (10) | −0.0098 (10) | 0.0063 (8) | −0.0048 (9) |
N1 | 0.0149 (10) | 0.0150 (11) | 0.0157 (10) | −0.0010 (9) | 0.0030 (8) | −0.0010 (9) |
N2 | 0.0163 (11) | 0.0258 (13) | 0.0168 (11) | −0.0029 (10) | −0.0006 (9) | 0.0077 (9) |
N3 | 0.0323 (14) | 0.0223 (13) | 0.0134 (11) | 0.0046 (11) | −0.0014 (10) | 0.0017 (10) |
C1 | 0.0328 (16) | 0.0278 (17) | 0.0188 (13) | 0.0004 (13) | 0.0062 (11) | 0.0050 (12) |
C2 | 0.0246 (14) | 0.0294 (16) | 0.0169 (13) | −0.0007 (12) | 0.0031 (11) | 0.0023 (11) |
C3 | 0.0269 (15) | 0.0175 (14) | 0.0134 (12) | 0.0017 (11) | 0.0023 (10) | −0.0004 (10) |
C4 | 0.0223 (14) | 0.0276 (16) | 0.0179 (13) | −0.0046 (12) | 0.0004 (11) | −0.0013 (12) |
C5 | 0.0241 (15) | 0.0281 (16) | 0.0218 (14) | 0.0029 (12) | −0.0014 (11) | −0.0055 (12) |
C6 | 0.0160 (13) | 0.0210 (15) | 0.0174 (12) | −0.0008 (11) | −0.0024 (10) | 0.0023 (10) |
C7 | 0.0140 (12) | 0.0251 (15) | 0.0182 (13) | −0.0057 (11) | 0.0000 (10) | 0.0007 (11) |
C8 | 0.0206 (13) | 0.0177 (14) | 0.0126 (11) | −0.0039 (10) | 0.0036 (10) | −0.0009 (10) |
C9 | 0.0189 (13) | 0.0230 (15) | 0.0197 (13) | 0.0042 (11) | 0.0026 (10) | 0.0040 (11) |
C10 | 0.0157 (12) | 0.0214 (15) | 0.0209 (13) | 0.0023 (11) | 0.0027 (10) | 0.0009 (11) |
C11 | 0.0135 (12) | 0.0154 (13) | 0.0115 (11) | 0.0013 (10) | 0.0024 (9) | −0.0035 (9) |
C12 | 0.0164 (12) | 0.0153 (13) | 0.0155 (12) | −0.0015 (10) | 0.0002 (9) | 0.0020 (10) |
C13 | 0.0178 (13) | 0.0239 (15) | 0.0235 (14) | −0.0054 (11) | 0.0007 (11) | 0.0007 (11) |
C14 | 0.0231 (14) | 0.0172 (14) | 0.0223 (14) | −0.0001 (11) | 0.0005 (11) | −0.0022 (11) |
C15 | 0.0181 (13) | 0.0140 (13) | 0.0161 (12) | 0.0014 (10) | −0.0003 (10) | 0.0029 (10) |
Ni1—O1 | 2.0392 (19) | C1—H1 | 0.9300 |
Ni1—O1i | 2.0392 (19) | C2—C3 | 1.410 (4) |
Ni1—O2i | 2.0920 (19) | C2—H2 | 0.9300 |
Ni1—O2 | 2.0921 (19) | C3—C4 | 1.397 (4) |
Ni1—N1i | 2.100 (2) | C4—C5 | 1.368 (4) |
Ni1—N1 | 2.100 (2) | C4—H4 | 0.9300 |
O1—C11 | 1.259 (3) | C5—H5 | 0.9300 |
O1W—H1WA | 0.8506 | C6—C7 | 1.373 (4) |
O1W—H1WB | 0.840 (18) | C6—H6 | 0.9300 |
O2—C15 | 1.284 (3) | C7—C8 | 1.396 (4) |
O2W—H2WA | 0.840 (18) | C7—H7 | 0.9300 |
O2W—H2WB | 0.844 (18) | C8—C9 | 1.391 (4) |
O3—C11 | 1.252 (3) | C9—C10 | 1.385 (4) |
O3W—H3WA | 0.8502 | C9—H9 | 0.9300 |
O3W—H3WB | 0.8499 | C10—H10 | 0.9300 |
O4—C15 | 1.246 (3) | C11—C12 | 1.541 (4) |
N1—C10 | 1.337 (3) | C12—C13 | 1.537 (4) |
N1—C6 | 1.341 (3) | C12—C15 | 1.538 (4) |
N2—C3 | 1.370 (3) | C12—C14 | 1.545 (4) |
N2—C8 | 1.402 (3) | C13—H13A | 0.9600 |
N2—H2N | 0.866 (18) | C13—H13B | 0.9600 |
N3—C1 | 1.338 (4) | C13—H13C | 0.9600 |
N3—C5 | 1.338 (4) | C14—H14A | 0.9600 |
N3—H3N | 0.82 (4) | C14—H14B | 0.9600 |
C1—C2 | 1.360 (4) | C14—H14C | 0.9600 |
O1—Ni1—O1i | 175.89 (10) | N3—C5—H5 | 119.2 |
O1—Ni1—O2i | 91.75 (7) | C4—C5—H5 | 119.2 |
O1i—Ni1—O2i | 85.51 (7) | N1—C6—C7 | 123.8 (2) |
O1—Ni1—O2 | 85.51 (7) | N1—C6—H6 | 118.1 |
O1i—Ni1—O2 | 91.75 (7) | C7—C6—H6 | 118.1 |
O2i—Ni1—O2 | 96.77 (11) | C6—C7—C8 | 119.5 (2) |
O1—Ni1—N1i | 95.05 (8) | C6—C7—H7 | 120.2 |
O1i—Ni1—N1i | 87.85 (8) | C8—C7—H7 | 120.2 |
O2i—Ni1—N1i | 172.54 (8) | C9—C8—C7 | 117.2 (2) |
O2—Ni1—N1i | 86.81 (8) | C9—C8—N2 | 126.8 (2) |
O1—Ni1—N1 | 87.85 (8) | C7—C8—N2 | 115.9 (2) |
O1i—Ni1—N1 | 95.05 (8) | C10—C9—C8 | 118.8 (3) |
O2i—Ni1—N1 | 86.81 (8) | C10—C9—H9 | 120.6 |
O2—Ni1—N1 | 172.54 (8) | C8—C9—H9 | 120.6 |
N1i—Ni1—N1 | 90.39 (12) | N1—C10—C9 | 124.3 (3) |
C11—O1—Ni1 | 131.61 (17) | N1—C10—H10 | 117.9 |
H1WA—O1W—H1WB | 108.1 | C9—C10—H10 | 117.9 |
C15—O2—Ni1 | 121.78 (16) | O3—C11—O1 | 122.6 (2) |
H2WA—O2W—H2WB | 111 (3) | O3—C11—C12 | 117.2 (2) |
H3WA—O3W—H3WB | 131.1 | O1—C11—C12 | 120.1 (2) |
C10—N1—C6 | 116.2 (2) | C13—C12—C15 | 110.3 (2) |
C10—N1—Ni1 | 123.44 (18) | C13—C12—C11 | 111.0 (2) |
C6—N1—Ni1 | 120.21 (18) | C15—C12—C11 | 110.0 (2) |
C3—N2—C8 | 132.4 (2) | C13—C12—C14 | 108.9 (2) |
C3—N2—H2N | 115 (2) | C15—C12—C14 | 110.3 (2) |
C8—N2—H2N | 112 (2) | C11—C12—C14 | 106.4 (2) |
C1—N3—C5 | 120.8 (3) | C12—C13—H13A | 109.5 |
C1—N3—H3N | 118 (3) | C12—C13—H13B | 109.5 |
C5—N3—H3N | 121 (3) | H13A—C13—H13B | 109.5 |
N3—C1—C2 | 120.5 (3) | C12—C13—H13C | 109.5 |
N3—C1—H1 | 119.7 | H13A—C13—H13C | 109.5 |
C2—C1—H1 | 119.7 | H13B—C13—H13C | 109.5 |
C1—C2—C3 | 120.5 (3) | C12—C14—H14A | 109.5 |
C1—C2—H2 | 119.8 | C12—C14—H14B | 109.5 |
C3—C2—H2 | 119.8 | H14A—C14—H14B | 109.5 |
N2—C3—C4 | 127.0 (3) | C12—C14—H14C | 109.5 |
N2—C3—C2 | 115.8 (3) | H14A—C14—H14C | 109.5 |
C4—C3—C2 | 117.2 (3) | H14B—C14—H14C | 109.5 |
C5—C4—C3 | 119.4 (3) | O4—C15—O2 | 122.0 (2) |
C5—C4—H4 | 120.3 | O4—C15—C12 | 120.2 (2) |
C3—C4—H4 | 120.3 | O2—C15—C12 | 117.7 (2) |
N3—C5—C4 | 121.5 (3) | ||
O1i—Ni1—O1—C11 | 18.9 (2) | C3—C4—C5—N3 | 0.3 (5) |
O2i—Ni1—O1—C11 | 67.1 (2) | C10—N1—C6—C7 | −2.8 (4) |
O2—Ni1—O1—C11 | −29.5 (2) | Ni1—N1—C6—C7 | 173.3 (2) |
N1i—Ni1—O1—C11 | −115.9 (2) | N1—C6—C7—C8 | −0.3 (4) |
N1—Ni1—O1—C11 | 153.9 (2) | C6—C7—C8—C9 | 3.3 (4) |
O1—Ni1—O2—C15 | −9.1 (2) | C6—C7—C8—N2 | −176.7 (3) |
O1i—Ni1—O2—C15 | 174.0 (2) | C3—N2—C8—C9 | −17.2 (5) |
O2i—Ni1—O2—C15 | −100.3 (2) | C3—N2—C8—C7 | 162.8 (3) |
N1i—Ni1—O2—C15 | 86.2 (2) | C7—C8—C9—C10 | −3.2 (4) |
N1—Ni1—O2—C15 | 18.1 (7) | N2—C8—C9—C10 | 176.8 (3) |
O1—Ni1—N1—C10 | 15.1 (2) | C6—N1—C10—C9 | 2.9 (4) |
O1i—Ni1—N1—C10 | −167.8 (2) | Ni1—N1—C10—C9 | −173.1 (2) |
O2i—Ni1—N1—C10 | 107.0 (2) | C8—C9—C10—N1 | 0.1 (4) |
O2—Ni1—N1—C10 | −12.0 (7) | Ni1—O1—C11—O3 | −157.24 (19) |
N1i—Ni1—N1—C10 | −80.0 (2) | Ni1—O1—C11—C12 | 20.7 (3) |
O1—Ni1—N1—C6 | −160.7 (2) | O3—C11—C12—C13 | −32.9 (3) |
O1i—Ni1—N1—C6 | 16.4 (2) | O1—C11—C12—C13 | 149.1 (2) |
O2i—Ni1—N1—C6 | −68.9 (2) | O3—C11—C12—C15 | −155.2 (2) |
O2—Ni1—N1—C6 | 172.2 (5) | O1—C11—C12—C15 | 26.7 (3) |
N1i—Ni1—N1—C6 | 104.2 (2) | O3—C11—C12—C14 | 85.4 (3) |
C5—N3—C1—C2 | −1.6 (5) | O1—C11—C12—C14 | −92.7 (3) |
N3—C1—C2—C3 | 1.6 (5) | Ni1—O2—C15—O4 | −127.2 (2) |
C8—N2—C3—C4 | 5.0 (5) | Ni1—O2—C15—C12 | 53.7 (3) |
C8—N2—C3—C2 | −174.0 (3) | C13—C12—C15—O4 | −8.5 (4) |
C1—C2—C3—N2 | 178.5 (3) | C11—C12—C15—O4 | 114.2 (3) |
C1—C2—C3—C4 | −0.6 (4) | C14—C12—C15—O4 | −128.8 (3) |
N2—C3—C4—C5 | −179.3 (3) | C13—C12—C15—O2 | 170.6 (2) |
C2—C3—C4—C5 | −0.3 (4) | C11—C12—C15—O2 | −66.6 (3) |
C1—N3—C5—C4 | 0.6 (5) | C14—C12—C15—O2 | 50.3 (3) |
Symmetry code: (i) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O3Wii | 0.85 | 1.96 | 2.811 (4) | 180 |
O1W—H1WB···O2W | 0.84 (2) | 2.05 (2) | 2.870 (3) | 166 (4) |
O2W—H2WA···O3 | 0.84 (2) | 1.90 (2) | 2.741 (3) | 174 (4) |
O2W—H2WB···O4iii | 0.84 (2) | 1.95 (2) | 2.751 (3) | 158 (4) |
O3W—H3WA···O1W | 0.85 | 1.90 | 2.754 (4) | 179 |
O3W—H3WB···O3iv | 0.85 | 1.94 | 2.793 (3) | 179 |
N2—H2N···O2Wv | 0.87 (2) | 2.16 (2) | 2.985 (3) | 158 (3) |
N3—H3N···O2vi | 0.82 (4) | 1.86 (4) | 2.683 (3) | 176 (4) |
Symmetry codes: (ii) −x−1/2, −y+5/2, −z; (iii) −x−1/2, y+1/2, −z+1/2; (iv) −x−1/2, −y+3/2, −z; (v) x+1/2, y+1/2, z; (vi) x, −y+2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C5H6O4)2(C10H10N3)2]·6H2O |
Mr | 771.42 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 173 |
a, b, c (Å) | 18.428 (4), 8.0473 (16), 23.731 (5) |
β (°) | 97.96 (3) |
V (Å3) | 3485.4 (12) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.63 |
Crystal size (mm) | 0.30 × 0.30 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART 1K diffractometer |
Absorption correction | Multi-scan (TWINABS; Sheldrick, 2007) |
Tmin, Tmax | 0.833, 0.939 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 49338, 3998, 3222 |
Rint | 0.079 |
(sin θ/λ)max (Å−1) | 0.662 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.054, 0.163, 1.09 |
No. of reflections | 3998 |
No. of parameters | 246 |
No. of restraints | 10 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.84, −0.61 |
Computer programs: SMART (Bruker, 2006), SAINT-Plus (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Crystal Maker (Palmer, 2007).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O3Wi | 0.85 | 1.96 | 2.811 (4) | 179.6 |
O1W—H1WB···O2W | 0.840 (18) | 2.05 (2) | 2.870 (3) | 166 (4) |
O2W—H2WA···O3 | 0.840 (18) | 1.904 (19) | 2.741 (3) | 174 (4) |
O2W—H2WB···O4ii | 0.844 (18) | 1.95 (2) | 2.751 (3) | 158 (4) |
O3W—H3WA···O1W | 0.85 | 1.90 | 2.754 (4) | 179.0 |
O3W—H3WB···O3iii | 0.85 | 1.94 | 2.793 (3) | 179.2 |
N2—H2N···O2Wiv | 0.866 (18) | 2.16 (2) | 2.985 (3) | 158 (3) |
N3—H3N···O2v | 0.82 (4) | 1.86 (4) | 2.683 (3) | 176 (4) |
Symmetry codes: (i) −x−1/2, −y+5/2, −z; (ii) −x−1/2, y+1/2, −z+1/2; (iii) −x−1/2, −y+3/2, −z; (iv) x+1/2, y+1/2, z; (v) x, −y+2, z−1/2. |
Acknowledgements
The authors gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund and Michigan State University for funding this work.
References
Bruker (2006). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Martin, D. P., Supkowski, R. M. & LaDuca, R. L. (2007). Inorg. Chem. 46, 7917–7922. Web of Science CSD CrossRef PubMed CAS Google Scholar
Montney, M. R., Supkowski, R. M. & LaDuca, R. L. (2008). Polyhedron, 27, 2997–3003. Web of Science CSD CrossRef CAS Google Scholar
Palmer, D. (2007). Crystal Maker. CrystalMaker Software, Bicester, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (2003). CELL-NOW. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2007). TWINABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The dipodal tethering ligand 4,4'-dipyridylamine (dpa) has proven beneficial for the construction of coordination polymer solids with novel topologies (Martin et al., 2007). Isostructural cobalt and nickel malonate dpa coordination polymers possess a three-dimensional 4466 sqp (square pyramidal) topology (Montney et al., 2008). In an attempt to probe the effect of alkyl group substitution on coordination polymer structure by using dimethylmalonate, green crystals of the title compound were obtained.
The asymmetric unit of the title compound contains a nickel atom on a crystallographic two-fold axis, one dimethylmalonate dianion, one protonated Hdpa+ ligand and three water molecules of crystallization. Operation of the two-fold axis generates a neutral molecular complex, {[Ni(dimethylmalonate)2(Hdpa)2].6H2O}, in which the nickel atom is octahedrally coordinated (Fig. 1). The dimethylmalonate ligands bind in a 1,3-chelating fashion, each bridging two cis coordination sites. The Hdpa ligands are disposed in a cis fashion relative to each other.
Neighboring [Ni(dimethylmalonate)2(Hdpa)2 molecules are connected into supramolecular chain patterns, parallel to the c crystal direction, through hydrogen bonding between the protonated pyridyl termini of the Hdpa ligands and unligated dimethylmalonate oxygen atoms. These chains interact via π–π stacking between protonated pyridyl rings to form supramolecular layers oriented parallel to the bc crystal planes (Fig. 2). The supramolecular layers interact with each other by hydrogen bonding patterns between the dpa central amine groups or dimethylmalonate carboxylate groups and water molecules of crystallization to form the three-dimensional structure of the title compound (Fig. 3). The unligated water molecules themselves form a hydrogen bonded hexameric cluster centered on a cyclic tetrameric unit, as seen in Fig. 1. The centroids of the clusters rest on crystallographic inversion centers (Wyckoff position d).