metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(di­methyl­malonato-κ2O,O′)bis­­[4-(4-pyridylamino-κN4)pyridinium]nickel(II) hexa­hydrate

aLyman Briggs College, Department of Chemistry, Michigan State University, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

(Received 30 October 2008; accepted 17 November 2008; online 22 November 2008)

In the title compound, [Ni(C5H6O4)2(C10H10N3)2]·6H2O, divalent nickel ions situated on the crystallographic twofold axis are octa­hedrally coordinated by four O atoms from two dimethyl­malonate ligands in a 1,3-chelating mode and two N atoms from two protonated monodentate 4,4′-dipyridylamine mol­ecules. The mol­ecules link into chains via N—H⋯O hydrogen bonding mediated by protonated pyridyl groups. The chains form layer patterns via ππ stacking [centroid–centroid distance = 3.777 (2) Å] . Water mol­ecule hexa­mers are generated from the unligated water mol­ecules (three per asymmetric unit) by inversion centers at Wyckoff position d. These clusters are situated between the pseudolayers, providing hydrogen-bonding pathways that build up the three-dimensional structure.

Related literature

For 4,4′-dipyridylamine (dpa) coordination polymers, see: Martin et al. (2007[Martin, D. P., Supkowski, R. M. & LaDuca, R. L. (2007). Inorg. Chem. 46, 7917-7922.]). For cobalt and nickel malonate dpa coordination polymers, see: Montney et al. (2008[Montney, M. R., Supkowski, R. M. & LaDuca, R. L. (2008). Polyhedron, 27, 2997-3003.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C5H6O4)2(C10H10N3)2]·6H2O

  • Mr = 771.42

  • Monoclinic, C 2/c

  • a = 18.428 (4) Å

  • b = 8.0473 (16) Å

  • c = 23.731 (5) Å

  • β = 97.96 (3)°

  • V = 3485.4 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 173 (2) K

  • 0.30 × 0.30 × 0.10 mm

Data collection
  • Bruker SMART 1K diffractometer

  • Absorption correction: multi-scan (TWINABS; Sheldrick, 2007[Sheldrick, G. M. (2007). TWINABS. University of Göttingen, Germany.]) Tmin = 0.833, Tmax = 0.939

  • 49338 measured reflections

  • 3998 independent reflections

  • 3222 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.163

  • S = 1.09

  • 3998 reflections

  • 246 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O3Wi 0.85 1.96 2.811 (4) 180
O1W—H1WB⋯O2W 0.840 (18) 2.05 (2) 2.870 (3) 166 (4)
O2W—H2WA⋯O3 0.840 (18) 1.904 (19) 2.741 (3) 174 (4)
O2W—H2WB⋯O4ii 0.844 (18) 1.95 (2) 2.751 (3) 158 (4)
O3W—H3WA⋯O1W 0.85 1.90 2.754 (4) 179
O3W—H3WB⋯O3iii 0.85 1.94 2.793 (3) 179
N2—H2N⋯O2Wiv 0.866 (18) 2.16 (2) 2.985 (3) 158 (3)
N3—H3N⋯O2v 0.82 (4) 1.86 (4) 2.683 (3) 176 (4)
Symmetry codes: (i) [-x-{\script{1\over 2}}, -y+{\script{5\over 2}}, -z]; (ii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (iv) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (v) [x, -y+2, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2006[Bruker (2006). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2006[Bruker (2006). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and CELL-NOW (Sheldrick, 2003[Sheldrick, G. M. (2003). CELL-NOW. University of Göttingen, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Crystal Maker (Palmer, 2007[Palmer, D. (2007). Crystal Maker. CrystalMaker Software, Bicester, Oxfordshire, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The dipodal tethering ligand 4,4'-dipyridylamine (dpa) has proven beneficial for the construction of coordination polymer solids with novel topologies (Martin et al., 2007). Isostructural cobalt and nickel malonate dpa coordination polymers possess a three-dimensional 4466 sqp (square pyramidal) topology (Montney et al., 2008). In an attempt to probe the effect of alkyl group substitution on coordination polymer structure by using dimethylmalonate, green crystals of the title compound were obtained.

The asymmetric unit of the title compound contains a nickel atom on a crystallographic two-fold axis, one dimethylmalonate dianion, one protonated Hdpa+ ligand and three water molecules of crystallization. Operation of the two-fold axis generates a neutral molecular complex, {[Ni(dimethylmalonate)2(Hdpa)2].6H2O}, in which the nickel atom is octahedrally coordinated (Fig. 1). The dimethylmalonate ligands bind in a 1,3-chelating fashion, each bridging two cis coordination sites. The Hdpa ligands are disposed in a cis fashion relative to each other.

Neighboring [Ni(dimethylmalonate)2(Hdpa)2 molecules are connected into supramolecular chain patterns, parallel to the c crystal direction, through hydrogen bonding between the protonated pyridyl termini of the Hdpa ligands and unligated dimethylmalonate oxygen atoms. These chains interact via ππ stacking between protonated pyridyl rings to form supramolecular layers oriented parallel to the bc crystal planes (Fig. 2). The supramolecular layers interact with each other by hydrogen bonding patterns between the dpa central amine groups or dimethylmalonate carboxylate groups and water molecules of crystallization to form the three-dimensional structure of the title compound (Fig. 3). The unligated water molecules themselves form a hydrogen bonded hexameric cluster centered on a cyclic tetrameric unit, as seen in Fig. 1. The centroids of the clusters rest on crystallographic inversion centers (Wyckoff position d).

Related literature top

For 4,4'-dipyridylamine (dpa) coordination polymers, see: Martin et al. (2007). For cobalt and nickel malonate dpa coordination polymers, see: Montney et al. (2008).

Experimental top

All chemicals were obtained commercially. Nickel perchlorate hexahydrate (135 mg, 0.37 mmol) and dimethylmalonic acid (49 mg, 0.74 mmol) were dissolved in 3 ml water in a glass vial. A 1 ml aliquot of a 1:1 water–ethanol was carefully layered onto the aqueous solution, followed by 3 ml of an ethanolic solution of dpa (127 mg, 0.74 mmol). Green blocks of the title compound formed after 1 week.

Refinement top

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 Å and refined in riding mode with Uiso = 1.2Ueq(C). The H atoms bound to O atoms were found via Fourier difference map, restrained at fixed positions or with O—H = 0.85 Å, and refined with Uiso = 1.2Ueq(O). The H atoms bound to N atoms were found via Fourier difference map, restrained with N—H = 0.89 Å, and refined with Uiso = 1.2Ueq(N).

Computing details top

Data collection: SMART (Bruker, 2006); cell refinement: SMART (Bruker, 2006); data reduction: SAINT-Plus (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Crystal Maker (Palmer, 2007); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A full molecular unit of the title compound, along with hydrogen bonded water molecule hexamer, showing 50% probability ellipsoids and the atom numbering scheme. Hydrogen atom positions are shown as gray sticks. Hydrogen bonding interactions are shown as dashed lines. Color codes: green Ni, light blue N, red O, black C. Symmetry codes: (i) -x, y, -z + 1/2; (ii) -x - 1/2, -y + 5/2, -z
[Figure 2] Fig. 2. A single supramolecular layer in the title compound, formed from ππ stacking of hydrogen-bonded [Ni(dimethylmalonate)2(Hdpa)2]n supramolecular chains. Hydrogen bonding is indicated as dashed lines.
[Figure 3] Fig. 3. Packing diagram illustrating the AB layer stacking pattern, which forms the 3-D crystal structure of the title compound through hydrogen bonding between water molecules of crystallization and the amine groups of the Hdpa ligands. Individual pseudolayers are shown in blue and red. The oxygen atoms of the water molecules of crystallization are shown in orange.
Bis(dimethylmalonato-κ2O,O')bis[4-(4-pyridylamino- κN4)pyridinium]nickel(II) hexahydrate top
Crystal data top
[Ni(C5H6O4)2(C10H10N3)2]·6H2OF(000) = 1624
Mr = 771.42Dx = 1.470 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 49338 reflections
a = 18.428 (4) Åθ = 1.7–28.1°
b = 8.0473 (16) ŵ = 0.63 mm1
c = 23.731 (5) ÅT = 173 K
β = 97.96 (3)°Block, green
V = 3485.4 (12) Å30.30 × 0.30 × 0.10 mm
Z = 4
Data collection top
Bruker SMART 1K
diffractometer
3998 independent reflections
Radiation source: fine-focus sealed tube3222 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
ω scansθmax = 28.1°, θmin = 1.7°
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2007)
h = 2024
Tmin = 0.833, Tmax = 0.939k = 100
49338 measured reflectionsl = 1931
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0996P)2 + 4.676P]
where P = (Fo2 + 2Fc2)/3
3998 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.84 e Å3
10 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Ni(C5H6O4)2(C10H10N3)2]·6H2OV = 3485.4 (12) Å3
Mr = 771.42Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.428 (4) ŵ = 0.63 mm1
b = 8.0473 (16) ÅT = 173 K
c = 23.731 (5) Å0.30 × 0.30 × 0.10 mm
β = 97.96 (3)°
Data collection top
Bruker SMART 1K
diffractometer
3998 independent reflections
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2007)
3222 reflections with I > 2σ(I)
Tmin = 0.833, Tmax = 0.939Rint = 0.079
49338 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05410 restraints
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.84 e Å3
3998 reflectionsΔρmin = 0.61 e Å3
246 parameters
Special details top

Experimental. Reflection data were collected on a non-merohedrally twinned crystal. The twin law was determined with CELL-NOW (Sheldrick, 2003). The structure was solved and refined using reflections from only the major twin component, whose reflection file was generated using TWINABS (Sheldrick, 2007). Composite reflections belonging to both twin domains were omitted from the reflection list, causing the loss of 252 reflections from the major twin component data. The data set was still 99.9% complete to 2θ of 50°.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.68844 (6)0.25000.01265 (17)
O10.10290 (10)0.6794 (2)0.20559 (8)0.0169 (4)
O1W0.18013 (13)1.0666 (3)0.04163 (11)0.0386 (6)
H1WA0.20301.15380.04920.046*
H1WB0.198 (2)0.986 (3)0.0576 (16)0.046*
O20.03894 (10)0.5158 (2)0.30453 (7)0.0163 (4)
O2W0.26118 (12)0.8279 (3)0.09768 (9)0.0270 (5)
H2WA0.2400 (19)0.746 (3)0.1144 (14)0.032*
H2WB0.2807 (19)0.888 (4)0.1206 (13)0.032*
O30.20007 (10)0.5600 (3)0.15784 (8)0.0207 (4)
O3W0.2449 (2)1.1445 (4)0.06678 (12)0.0712 (11)
H3WA0.22531.12120.03310.085*
H3WB0.26201.08210.09440.085*
O40.14160 (11)0.4853 (3)0.34207 (8)0.0277 (5)
N10.02492 (12)0.8724 (3)0.19288 (9)0.0151 (5)
N20.08802 (13)1.1902 (3)0.06757 (10)0.0199 (5)
H2N0.1351 (10)1.203 (4)0.0737 (15)0.024*
N30.00229 (14)1.3886 (3)0.08748 (10)0.0231 (5)
H3N0.0118 (19)1.422 (5)0.1199 (16)0.028*
C10.07385 (18)1.3998 (4)0.06814 (12)0.0262 (7)
H10.10521.45160.09020.031*
C20.10115 (17)1.3359 (4)0.01648 (12)0.0236 (6)
H20.15081.34670.00310.028*
C30.05471 (16)1.2533 (4)0.01689 (11)0.0193 (6)
C40.01943 (16)1.2421 (4)0.00520 (12)0.0228 (6)
H40.05211.18830.01520.027*
C50.04357 (17)1.3111 (4)0.05712 (13)0.0251 (6)
H50.09301.30400.07160.030*
C60.09491 (14)0.9063 (4)0.18757 (11)0.0186 (6)
H60.13150.85510.21260.022*
C70.11574 (15)1.0124 (4)0.14740 (11)0.0193 (6)
H70.16511.03190.14570.023*
C80.06220 (15)1.0909 (3)0.10910 (11)0.0169 (5)
C90.01058 (15)1.0630 (4)0.11588 (11)0.0205 (6)
H90.04821.11670.09270.025*
C100.02595 (15)0.9540 (4)0.15780 (11)0.0193 (6)
H100.07490.93640.16180.023*
C110.14996 (13)0.5650 (3)0.19920 (10)0.0134 (5)
C120.14587 (14)0.4205 (3)0.24216 (11)0.0159 (5)
C130.22274 (15)0.3538 (4)0.24762 (12)0.0220 (6)
H13A0.24620.31810.21100.033*
H13B0.25130.44010.26180.033*
H13C0.21870.26150.27350.033*
C140.10114 (16)0.2814 (4)0.21810 (12)0.0211 (6)
H14A0.12580.24660.18170.032*
H14B0.09650.18870.24380.032*
H14C0.05330.32260.21380.032*
C150.10720 (14)0.4782 (3)0.30049 (11)0.0163 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0109 (3)0.0145 (3)0.0122 (2)0.0000.00056 (16)0.000
O10.0145 (9)0.0167 (10)0.0186 (9)0.0025 (7)0.0008 (7)0.0019 (7)
O1W0.0325 (13)0.0370 (15)0.0459 (15)0.0012 (11)0.0042 (11)0.0057 (11)
O20.0152 (9)0.0195 (10)0.0137 (9)0.0010 (7)0.0003 (7)0.0010 (7)
O2W0.0282 (12)0.0304 (13)0.0228 (11)0.0086 (9)0.0044 (9)0.0049 (9)
O30.0183 (10)0.0239 (11)0.0180 (9)0.0021 (8)0.0049 (7)0.0008 (8)
O3W0.108 (3)0.062 (2)0.0338 (15)0.026 (2)0.0247 (16)0.0222 (14)
O40.0259 (11)0.0408 (14)0.0175 (10)0.0098 (10)0.0063 (8)0.0048 (9)
N10.0149 (10)0.0150 (11)0.0157 (10)0.0010 (9)0.0030 (8)0.0010 (9)
N20.0163 (11)0.0258 (13)0.0168 (11)0.0029 (10)0.0006 (9)0.0077 (9)
N30.0323 (14)0.0223 (13)0.0134 (11)0.0046 (11)0.0014 (10)0.0017 (10)
C10.0328 (16)0.0278 (17)0.0188 (13)0.0004 (13)0.0062 (11)0.0050 (12)
C20.0246 (14)0.0294 (16)0.0169 (13)0.0007 (12)0.0031 (11)0.0023 (11)
C30.0269 (15)0.0175 (14)0.0134 (12)0.0017 (11)0.0023 (10)0.0004 (10)
C40.0223 (14)0.0276 (16)0.0179 (13)0.0046 (12)0.0004 (11)0.0013 (12)
C50.0241 (15)0.0281 (16)0.0218 (14)0.0029 (12)0.0014 (11)0.0055 (12)
C60.0160 (13)0.0210 (15)0.0174 (12)0.0008 (11)0.0024 (10)0.0023 (10)
C70.0140 (12)0.0251 (15)0.0182 (13)0.0057 (11)0.0000 (10)0.0007 (11)
C80.0206 (13)0.0177 (14)0.0126 (11)0.0039 (10)0.0036 (10)0.0009 (10)
C90.0189 (13)0.0230 (15)0.0197 (13)0.0042 (11)0.0026 (10)0.0040 (11)
C100.0157 (12)0.0214 (15)0.0209 (13)0.0023 (11)0.0027 (10)0.0009 (11)
C110.0135 (12)0.0154 (13)0.0115 (11)0.0013 (10)0.0024 (9)0.0035 (9)
C120.0164 (12)0.0153 (13)0.0155 (12)0.0015 (10)0.0002 (9)0.0020 (10)
C130.0178 (13)0.0239 (15)0.0235 (14)0.0054 (11)0.0007 (11)0.0007 (11)
C140.0231 (14)0.0172 (14)0.0223 (14)0.0001 (11)0.0005 (11)0.0022 (11)
C150.0181 (13)0.0140 (13)0.0161 (12)0.0014 (10)0.0003 (10)0.0029 (10)
Geometric parameters (Å, º) top
Ni1—O12.0392 (19)C1—H10.9300
Ni1—O1i2.0392 (19)C2—C31.410 (4)
Ni1—O2i2.0920 (19)C2—H20.9300
Ni1—O22.0921 (19)C3—C41.397 (4)
Ni1—N1i2.100 (2)C4—C51.368 (4)
Ni1—N12.100 (2)C4—H40.9300
O1—C111.259 (3)C5—H50.9300
O1W—H1WA0.8506C6—C71.373 (4)
O1W—H1WB0.840 (18)C6—H60.9300
O2—C151.284 (3)C7—C81.396 (4)
O2W—H2WA0.840 (18)C7—H70.9300
O2W—H2WB0.844 (18)C8—C91.391 (4)
O3—C111.252 (3)C9—C101.385 (4)
O3W—H3WA0.8502C9—H90.9300
O3W—H3WB0.8499C10—H100.9300
O4—C151.246 (3)C11—C121.541 (4)
N1—C101.337 (3)C12—C131.537 (4)
N1—C61.341 (3)C12—C151.538 (4)
N2—C31.370 (3)C12—C141.545 (4)
N2—C81.402 (3)C13—H13A0.9600
N2—H2N0.866 (18)C13—H13B0.9600
N3—C11.338 (4)C13—H13C0.9600
N3—C51.338 (4)C14—H14A0.9600
N3—H3N0.82 (4)C14—H14B0.9600
C1—C21.360 (4)C14—H14C0.9600
O1—Ni1—O1i175.89 (10)N3—C5—H5119.2
O1—Ni1—O2i91.75 (7)C4—C5—H5119.2
O1i—Ni1—O2i85.51 (7)N1—C6—C7123.8 (2)
O1—Ni1—O285.51 (7)N1—C6—H6118.1
O1i—Ni1—O291.75 (7)C7—C6—H6118.1
O2i—Ni1—O296.77 (11)C6—C7—C8119.5 (2)
O1—Ni1—N1i95.05 (8)C6—C7—H7120.2
O1i—Ni1—N1i87.85 (8)C8—C7—H7120.2
O2i—Ni1—N1i172.54 (8)C9—C8—C7117.2 (2)
O2—Ni1—N1i86.81 (8)C9—C8—N2126.8 (2)
O1—Ni1—N187.85 (8)C7—C8—N2115.9 (2)
O1i—Ni1—N195.05 (8)C10—C9—C8118.8 (3)
O2i—Ni1—N186.81 (8)C10—C9—H9120.6
O2—Ni1—N1172.54 (8)C8—C9—H9120.6
N1i—Ni1—N190.39 (12)N1—C10—C9124.3 (3)
C11—O1—Ni1131.61 (17)N1—C10—H10117.9
H1WA—O1W—H1WB108.1C9—C10—H10117.9
C15—O2—Ni1121.78 (16)O3—C11—O1122.6 (2)
H2WA—O2W—H2WB111 (3)O3—C11—C12117.2 (2)
H3WA—O3W—H3WB131.1O1—C11—C12120.1 (2)
C10—N1—C6116.2 (2)C13—C12—C15110.3 (2)
C10—N1—Ni1123.44 (18)C13—C12—C11111.0 (2)
C6—N1—Ni1120.21 (18)C15—C12—C11110.0 (2)
C3—N2—C8132.4 (2)C13—C12—C14108.9 (2)
C3—N2—H2N115 (2)C15—C12—C14110.3 (2)
C8—N2—H2N112 (2)C11—C12—C14106.4 (2)
C1—N3—C5120.8 (3)C12—C13—H13A109.5
C1—N3—H3N118 (3)C12—C13—H13B109.5
C5—N3—H3N121 (3)H13A—C13—H13B109.5
N3—C1—C2120.5 (3)C12—C13—H13C109.5
N3—C1—H1119.7H13A—C13—H13C109.5
C2—C1—H1119.7H13B—C13—H13C109.5
C1—C2—C3120.5 (3)C12—C14—H14A109.5
C1—C2—H2119.8C12—C14—H14B109.5
C3—C2—H2119.8H14A—C14—H14B109.5
N2—C3—C4127.0 (3)C12—C14—H14C109.5
N2—C3—C2115.8 (3)H14A—C14—H14C109.5
C4—C3—C2117.2 (3)H14B—C14—H14C109.5
C5—C4—C3119.4 (3)O4—C15—O2122.0 (2)
C5—C4—H4120.3O4—C15—C12120.2 (2)
C3—C4—H4120.3O2—C15—C12117.7 (2)
N3—C5—C4121.5 (3)
O1i—Ni1—O1—C1118.9 (2)C3—C4—C5—N30.3 (5)
O2i—Ni1—O1—C1167.1 (2)C10—N1—C6—C72.8 (4)
O2—Ni1—O1—C1129.5 (2)Ni1—N1—C6—C7173.3 (2)
N1i—Ni1—O1—C11115.9 (2)N1—C6—C7—C80.3 (4)
N1—Ni1—O1—C11153.9 (2)C6—C7—C8—C93.3 (4)
O1—Ni1—O2—C159.1 (2)C6—C7—C8—N2176.7 (3)
O1i—Ni1—O2—C15174.0 (2)C3—N2—C8—C917.2 (5)
O2i—Ni1—O2—C15100.3 (2)C3—N2—C8—C7162.8 (3)
N1i—Ni1—O2—C1586.2 (2)C7—C8—C9—C103.2 (4)
N1—Ni1—O2—C1518.1 (7)N2—C8—C9—C10176.8 (3)
O1—Ni1—N1—C1015.1 (2)C6—N1—C10—C92.9 (4)
O1i—Ni1—N1—C10167.8 (2)Ni1—N1—C10—C9173.1 (2)
O2i—Ni1—N1—C10107.0 (2)C8—C9—C10—N10.1 (4)
O2—Ni1—N1—C1012.0 (7)Ni1—O1—C11—O3157.24 (19)
N1i—Ni1—N1—C1080.0 (2)Ni1—O1—C11—C1220.7 (3)
O1—Ni1—N1—C6160.7 (2)O3—C11—C12—C1332.9 (3)
O1i—Ni1—N1—C616.4 (2)O1—C11—C12—C13149.1 (2)
O2i—Ni1—N1—C668.9 (2)O3—C11—C12—C15155.2 (2)
O2—Ni1—N1—C6172.2 (5)O1—C11—C12—C1526.7 (3)
N1i—Ni1—N1—C6104.2 (2)O3—C11—C12—C1485.4 (3)
C5—N3—C1—C21.6 (5)O1—C11—C12—C1492.7 (3)
N3—C1—C2—C31.6 (5)Ni1—O2—C15—O4127.2 (2)
C8—N2—C3—C45.0 (5)Ni1—O2—C15—C1253.7 (3)
C8—N2—C3—C2174.0 (3)C13—C12—C15—O48.5 (4)
C1—C2—C3—N2178.5 (3)C11—C12—C15—O4114.2 (3)
C1—C2—C3—C40.6 (4)C14—C12—C15—O4128.8 (3)
N2—C3—C4—C5179.3 (3)C13—C12—C15—O2170.6 (2)
C2—C3—C4—C50.3 (4)C11—C12—C15—O266.6 (3)
C1—N3—C5—C40.6 (5)C14—C12—C15—O250.3 (3)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O3Wii0.851.962.811 (4)180
O1W—H1WB···O2W0.84 (2)2.05 (2)2.870 (3)166 (4)
O2W—H2WA···O30.84 (2)1.90 (2)2.741 (3)174 (4)
O2W—H2WB···O4iii0.84 (2)1.95 (2)2.751 (3)158 (4)
O3W—H3WA···O1W0.851.902.754 (4)179
O3W—H3WB···O3iv0.851.942.793 (3)179
N2—H2N···O2Wv0.87 (2)2.16 (2)2.985 (3)158 (3)
N3—H3N···O2vi0.82 (4)1.86 (4)2.683 (3)176 (4)
Symmetry codes: (ii) x1/2, y+5/2, z; (iii) x1/2, y+1/2, z+1/2; (iv) x1/2, y+3/2, z; (v) x+1/2, y+1/2, z; (vi) x, y+2, z1/2.

Experimental details

Crystal data
Chemical formula[Ni(C5H6O4)2(C10H10N3)2]·6H2O
Mr771.42
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)18.428 (4), 8.0473 (16), 23.731 (5)
β (°) 97.96 (3)
V3)3485.4 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.30 × 0.30 × 0.10
Data collection
DiffractometerBruker SMART 1K
diffractometer
Absorption correctionMulti-scan
(TWINABS; Sheldrick, 2007)
Tmin, Tmax0.833, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
49338, 3998, 3222
Rint0.079
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.163, 1.09
No. of reflections3998
No. of parameters246
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.84, 0.61

Computer programs: SMART (Bruker, 2006), SAINT-Plus (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Crystal Maker (Palmer, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O3Wi0.851.962.811 (4)179.6
O1W—H1WB···O2W0.840 (18)2.05 (2)2.870 (3)166 (4)
O2W—H2WA···O30.840 (18)1.904 (19)2.741 (3)174 (4)
O2W—H2WB···O4ii0.844 (18)1.95 (2)2.751 (3)158 (4)
O3W—H3WA···O1W0.851.902.754 (4)179.0
O3W—H3WB···O3iii0.851.942.793 (3)179.2
N2—H2N···O2Wiv0.866 (18)2.16 (2)2.985 (3)158 (3)
N3—H3N···O2v0.82 (4)1.86 (4)2.683 (3)176 (4)
Symmetry codes: (i) x1/2, y+5/2, z; (ii) x1/2, y+1/2, z+1/2; (iii) x1/2, y+3/2, z; (iv) x+1/2, y+1/2, z; (v) x, y+2, z1/2.
 

Acknowledgements

The authors gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund and Michigan State University for funding this work.

References

First citationBruker (2006). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMartin, D. P., Supkowski, R. M. & LaDuca, R. L. (2007). Inorg. Chem. 46, 7917–7922.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMontney, M. R., Supkowski, R. M. & LaDuca, R. L. (2008). Polyhedron, 27, 2997–3003.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalmer, D. (2007). Crystal Maker. CrystalMaker Software, Bicester, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2003). CELL-NOW. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2007). TWINABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds