organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(5-Chloro-2-hy­droxy­benzyl­­idene)-p-toluene­sulfonohydrazide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran
*Correspondence e-mail: hkfun@usm.my

(Received 6 November 2008; accepted 19 November 2008; online 22 November 2008)

The title compound, C14H13ClN2O3S, features an intra­molecular O—H⋯N hydrogen bond which generates an S(6) ring motif. Inter­molecular N—H⋯O hydrogen bonds and C—H⋯O close contacts link neighbouring mol­ecules forming R22(13) ring motifs. In the crystal structure, mol­ecules are further linked by C—H⋯Cl inter­actions, forming one-dimensional extended chains along the c axis. The dihedral angle between the two benzene rings is 86.06 (3)°. The crystal structure is further stabilized by weak inter­molecular ππ inter­actions [inter­planar stacking distance = 3.357 (7) Å].

Related literature

For related structures and applications, see, for example: Kayser et al. (2004[Kayser, F. H., Bienz, K. A., Eckert, J. & Zinkernagel, R. M. (2004). Medical Microbiology, pp. 1-20. Berlin: Thieme Medical.]); Tierney et al. (2006[Tierney, L. M. Jr, McPhee, S. J. & Papadakis, M. A. (2006). Current Medical Diagnosis & Treatment, 45th ed., pp. 1-50. New York: McGraw-Hill Medical.]); Tabatabaee et al. (2007[Tabatabaee, M., Anari-Abbasnejad, M., Nozari, N., Sadegheian, S. & Ghasemzadeh, M. (2007). Acta Cryst. E63, o2099-o2100.]); Ali et al. (2007[Ali, H. M., Laila, M., Wan Jefrey, B. & Ng, S. W. (2007). Acta Cryst. E63, o1617-o1618.]); Mehrabi et al. (2008[Mehrabi, H., Kia, R., Hassanzadeh, A., Ghobadi, S. & Khavasi, H. R. (2008). Acta Cryst. E64, o1845.]); Kia et al. (2008[Kia, R., Fun, H.-K. & Kargar, H. (2008). Acta Cryst. E64, o2341.]). For the values of bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13ClN2O3S

  • Mr = 324.78

  • Monoclinic, P 21 /c

  • a = 15.7454 (3) Å

  • b = 9.8338 (2) Å

  • c = 9.8455 (2) Å

  • β = 105.941 (1)°

  • V = 1465.83 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 100.0 (1) K

  • 0.45 × 0.38 × 0.31 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.836, Tmax = 0.883

  • 16498 measured reflections

  • 5274 independent reflections

  • 4761 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.093

  • S = 1.10

  • 5274 reflections

  • 199 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N1 0.75 (2) 2.00 (2) 2.6690 (13) 149 (2)
N2—H1N2⋯O2i 0.881 (16) 1.961 (17) 2.8375 (12) 172.8 (17)
C7—H7A⋯O1i 0.93 2.59 3.3679 (14) 142
C10—H10A⋯Cl1ii 0.93 2.82 3.7256 (12) 164
C12—H12A⋯O3iii 0.93 2.48 3.3549 (14) 157
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Sulfonamides were the first class of antimicrobial agents to be discovered. Sulfonamides (sulfanilamide, sulfamethoxazole, sulfafurazole) are structural analogues of p-aminobenzoic acid (PABA) and compete with PABA to block its conversion to dihydrofolic acid (Kayser et al., 2004). These agents are generally used in combination with other drugs (usually sulfonamides) to prevent or treat a number of bacterial and parasitic infections (Tierney et al., 2006). With regard to all of the above important features, we report the crystal structure of the title compound.

The title compund (Fig. I), is a novel sulfonamide derivative. Bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable with those in related structures (Kia et al., 2008; Mehrabi et al., 2008; Ali et al. 2007). An intramolecular O—H···N hydrogen bond generates S(6) ring motif, and the molecule adopts a 'vault' shape. Intermolecular N—H···O and C—H···O interactions link neighbouring molecules by R22(13) ring motifs. The two benzene rings make a dihedral angle of 86.06 (3)°. In the crystal structure, molecules are linked together by intermolecular C—H···Cl, N—H···O and C—H···O interactions, forming one-dimensional extended chains along the c axis. The crystal structure is further stabilized by weak intermolecular π-π interactions [interplanar distance = 3.357 (7) Å].

Related literature top

For related structures and applications, see, for example: Kayser et al. (2004); Tierney et al. (2006);Tabatabaee et al. (2007); Ali et al. (2007); Mehrabi et al. (2008); Kia et al. (2008). For the values of bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The synthetic method has been described earlier (Kia et al., 2008). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

Refinement top

The H atoms bound to O1 and N2 were found in a difference Fourier map and refined freely. The rest of the hydrogen atoms were positioned geometrically and refined using a riding model. A rotating group model was used for the methyl hydrogens. The highest residual peak (0.44 e.Å-3) is located 0.66 Å from O2 and the deepest hole (-0.38 e.Å-3) is located 0.57 Å from S1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering scheme. The intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing viewed down the b-axis, showing one-dimensional extended chains along the c-axis. Intermolecular interactions are shown as dashed lines.
(E)-N'-(5-Chloro-2-hydroxybenzylidene)-p-toluenesulfonohydrazide top
Crystal data top
C14H13ClN2O3SF(000) = 672
Mr = 324.78Dx = 1.472 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9969 reflections
a = 15.7454 (3) Åθ = 2.7–36.2°
b = 9.8338 (2) ŵ = 0.41 mm1
c = 9.8455 (2) ÅT = 100 K
β = 105.941 (1)°Block, colourless
V = 1465.83 (5) Å30.45 × 0.38 × 0.31 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5274 independent reflections
Radiation source: fine-focus sealed tube4761 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 32.5°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1623
Tmin = 0.836, Tmax = 0.883k = 1114
16498 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0458P)2 + 0.5147P]
where P = (Fo2 + 2Fc2)/3
5274 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C14H13ClN2O3SV = 1465.83 (5) Å3
Mr = 324.78Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.7454 (3) ŵ = 0.41 mm1
b = 9.8338 (2) ÅT = 100 K
c = 9.8455 (2) Å0.45 × 0.38 × 0.31 mm
β = 105.941 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5274 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4761 reflections with I > 2σ(I)
Tmin = 0.836, Tmax = 0.883Rint = 0.020
16498 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.44 e Å3
5274 reflectionsΔρmin = 0.38 e Å3
199 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cryosystems Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.694874 (18)0.12795 (3)0.64129 (3)0.03146 (8)
S10.146818 (15)0.24140 (2)0.10615 (2)0.01365 (6)
O10.41411 (6)0.06452 (10)0.11049 (9)0.02515 (17)
O20.17263 (6)0.28771 (8)0.01531 (8)0.02080 (15)
O30.07539 (5)0.30583 (8)0.14463 (8)0.01865 (14)
N10.31124 (5)0.20818 (9)0.23227 (9)0.01581 (15)
N20.23293 (5)0.26798 (9)0.24403 (9)0.01551 (15)
C10.47774 (7)0.08266 (11)0.23401 (11)0.02019 (19)
C20.56194 (8)0.03165 (13)0.24406 (13)0.0267 (2)
H2A0.57310.01210.16700.032*
C30.62907 (8)0.04587 (13)0.36843 (14)0.0277 (2)
H3A0.68500.01130.37510.033*
C40.61217 (7)0.11203 (12)0.48286 (13)0.0234 (2)
C50.52935 (7)0.16436 (11)0.47481 (12)0.02130 (19)
H5A0.51910.20880.55220.026*
C60.46098 (6)0.15033 (10)0.34992 (11)0.01791 (18)
C70.37483 (7)0.20586 (11)0.34673 (11)0.01807 (18)
H7A0.36550.24050.42940.022*
C80.13003 (6)0.06529 (10)0.09358 (10)0.01422 (16)
C90.16949 (7)0.01247 (11)0.00975 (11)0.01837 (18)
H9A0.20110.02900.04600.022*
C100.16103 (7)0.15310 (11)0.01051 (11)0.01982 (19)
H10A0.18730.20560.04530.024*
C110.11378 (6)0.21695 (10)0.09355 (10)0.01714 (17)
C120.07307 (7)0.13615 (11)0.17433 (11)0.01804 (18)
H12A0.04000.17730.22800.022*
C130.08123 (6)0.00428 (10)0.17580 (10)0.01632 (17)
H13A0.05450.05710.23080.020*
C140.10817 (8)0.36948 (11)0.09768 (13)0.0235 (2)
H14A0.12040.40700.01500.035*
H14B0.04990.39580.10010.035*
H14C0.15060.40300.18050.035*
H1N20.2190 (11)0.2514 (16)0.3232 (17)0.028 (4)*
H1O10.3722 (14)0.093 (2)0.120 (2)0.050 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01936 (12)0.03239 (16)0.03641 (16)0.00588 (10)0.00283 (10)0.01246 (12)
S10.01639 (11)0.01291 (11)0.01269 (10)0.00087 (7)0.00572 (8)0.00034 (7)
O10.0244 (4)0.0326 (5)0.0194 (4)0.0074 (3)0.0076 (3)0.0000 (3)
O20.0311 (4)0.0184 (3)0.0158 (3)0.0000 (3)0.0114 (3)0.0026 (3)
O30.0183 (3)0.0169 (3)0.0220 (3)0.0041 (3)0.0076 (3)0.0002 (3)
N10.0157 (3)0.0144 (4)0.0188 (4)0.0000 (3)0.0072 (3)0.0004 (3)
N20.0154 (3)0.0173 (4)0.0151 (3)0.0003 (3)0.0064 (3)0.0029 (3)
C10.0208 (4)0.0195 (5)0.0215 (4)0.0030 (4)0.0079 (4)0.0043 (4)
C20.0249 (5)0.0272 (6)0.0307 (5)0.0076 (4)0.0123 (4)0.0047 (4)
C30.0197 (4)0.0264 (6)0.0384 (6)0.0053 (4)0.0101 (4)0.0096 (5)
C40.0170 (4)0.0210 (5)0.0300 (5)0.0019 (4)0.0026 (4)0.0084 (4)
C50.0191 (4)0.0194 (5)0.0244 (5)0.0022 (4)0.0042 (4)0.0019 (4)
C60.0170 (4)0.0156 (4)0.0214 (4)0.0002 (3)0.0059 (3)0.0021 (3)
C70.0181 (4)0.0169 (4)0.0195 (4)0.0008 (3)0.0057 (3)0.0020 (3)
C80.0148 (4)0.0136 (4)0.0140 (4)0.0000 (3)0.0036 (3)0.0005 (3)
C90.0231 (4)0.0164 (4)0.0182 (4)0.0009 (3)0.0099 (3)0.0018 (3)
C100.0238 (4)0.0165 (4)0.0207 (4)0.0007 (4)0.0087 (4)0.0033 (3)
C110.0168 (4)0.0145 (4)0.0179 (4)0.0004 (3)0.0009 (3)0.0000 (3)
C120.0169 (4)0.0177 (4)0.0201 (4)0.0017 (3)0.0060 (3)0.0019 (3)
C130.0158 (4)0.0168 (4)0.0176 (4)0.0002 (3)0.0067 (3)0.0004 (3)
C140.0267 (5)0.0151 (4)0.0265 (5)0.0005 (4)0.0037 (4)0.0006 (4)
Geometric parameters (Å, º) top
Cl1—C41.7429 (12)C5—H5A0.9300
S1—O31.4296 (7)C6—C71.4545 (14)
S1—O21.4386 (7)C7—H7A0.9300
S1—N21.6548 (9)C8—C91.3905 (13)
S1—C81.7512 (10)C8—C131.3954 (13)
O1—C11.3585 (14)C9—C101.3895 (15)
O1—H1O10.75 (2)C9—H9A0.9300
N1—C71.2858 (13)C10—C111.3965 (15)
N1—N21.3994 (11)C10—H10A0.9300
N2—H1N20.881 (17)C11—C121.3982 (15)
C1—C21.3954 (15)C11—C141.5037 (15)
C1—C61.4071 (15)C12—C131.3866 (14)
C2—C31.3875 (18)C12—H12A0.9300
C2—H2A0.9300C13—H13A0.9300
C3—C41.3886 (18)C14—H14A0.9600
C3—H3A0.9300C14—H14B0.9600
C4—C51.3838 (15)C14—H14C0.9600
C5—C61.4010 (14)
O3—S1—O2120.16 (5)C1—C6—C7122.79 (9)
O3—S1—N2103.86 (4)N1—C7—C6121.51 (9)
O2—S1—N2106.09 (5)N1—C7—H7A119.2
O3—S1—C8110.03 (5)C6—C7—H7A119.2
O2—S1—C8109.02 (5)C9—C8—C13120.99 (9)
N2—S1—C8106.73 (4)C9—C8—S1120.16 (7)
C1—O1—H1O1107.2 (16)C13—C8—S1118.73 (7)
C7—N1—N2115.26 (8)C10—C9—C8119.01 (9)
N1—N2—S1114.07 (6)C10—C9—H9A120.5
N1—N2—H1N2115.8 (11)C8—C9—H9A120.5
S1—N2—H1N2110.5 (11)C9—C10—C11121.19 (9)
O1—C1—C2117.97 (10)C9—C10—H10A119.4
O1—C1—C6122.12 (9)C11—C10—H10A119.4
C2—C1—C6119.91 (10)C10—C11—C12118.60 (9)
C3—C2—C1120.33 (11)C10—C11—C14120.60 (10)
C3—C2—H2A119.8C12—C11—C14120.79 (10)
C1—C2—H2A119.8C13—C12—C11121.08 (9)
C2—C3—C4119.61 (10)C13—C12—H12A119.5
C2—C3—H3A120.2C11—C12—H12A119.5
C4—C3—H3A120.2C12—C13—C8119.10 (9)
C5—C4—C3121.01 (11)C12—C13—H13A120.4
C5—C4—Cl1118.60 (10)C8—C13—H13A120.4
C3—C4—Cl1120.38 (9)C11—C14—H14A109.5
C4—C5—C6119.90 (11)C11—C14—H14B109.5
C4—C5—H5A120.0H14A—C14—H14B109.5
C6—C5—H5A120.0C11—C14—H14C109.5
C5—C6—C1119.23 (9)H14A—C14—H14C109.5
C5—C6—C7117.98 (9)H14B—C14—H14C109.5
C7—N1—N2—S1167.94 (8)C5—C6—C7—N1173.45 (10)
O3—S1—N2—N1177.60 (7)C1—C6—C7—N17.19 (16)
O2—S1—N2—N154.83 (8)O3—S1—C8—C9155.84 (8)
C8—S1—N2—N161.33 (8)O2—S1—C8—C922.10 (10)
O1—C1—C2—C3179.18 (11)N2—S1—C8—C992.09 (8)
C6—C1—C2—C30.77 (17)O3—S1—C8—C1328.14 (9)
C1—C2—C3—C40.41 (18)O2—S1—C8—C13161.88 (8)
C2—C3—C4—C50.12 (18)N2—S1—C8—C1383.93 (8)
C2—C3—C4—Cl1178.67 (9)C13—C8—C9—C101.10 (15)
C3—C4—C5—C60.28 (17)S1—C8—C9—C10174.83 (8)
Cl1—C4—C5—C6178.53 (8)C8—C9—C10—C110.05 (16)
C4—C5—C6—C10.08 (16)C9—C10—C11—C121.41 (16)
C4—C5—C6—C7179.47 (10)C9—C10—C11—C14177.60 (10)
O1—C1—C6—C5179.34 (10)C10—C11—C12—C131.86 (15)
C2—C1—C6—C50.60 (16)C14—C11—C12—C13177.14 (10)
O1—C1—C6—C70.01 (16)C11—C12—C13—C80.84 (15)
C2—C1—C6—C7179.95 (10)C9—C8—C13—C120.66 (15)
N2—N1—C7—C6178.29 (9)S1—C8—C13—C12175.32 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.75 (2)2.00 (2)2.6690 (13)149 (2)
N2—H1N2···O2i0.881 (16)1.961 (17)2.8375 (12)172.8 (17)
C7—H7A···O1i0.932.593.3679 (14)142
C10—H10A···Cl1ii0.932.823.7256 (12)164
C12—H12A···O3iii0.932.483.3549 (14)157
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H13ClN2O3S
Mr324.78
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)15.7454 (3), 9.8338 (2), 9.8455 (2)
β (°) 105.941 (1)
V3)1465.83 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.45 × 0.38 × 0.31
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.836, 0.883
No. of measured, independent and
observed [I > 2σ(I)] reflections
16498, 5274, 4761
Rint0.020
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.093, 1.10
No. of reflections5274
No. of parameters199
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.38

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.75 (2)2.00 (2)2.6690 (13)149 (2)
N2—H1N2···O2i0.881 (16)1.961 (17)2.8375 (12)172.8 (17)
C7—H7A···O1i0.93002.59003.3679 (14)142.00
C10—H10A···Cl1ii0.93002.82003.7256 (12)164.00
C12—H12A···O3iii0.93002.48003.3549 (14)157.00
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y1/2, z+1/2.
 

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK thanks PNU for financial support.

References

First citationAli, H. M., Laila, M., Wan Jefrey, B. & Ng, S. W. (2007). Acta Cryst. E63, o1617–o1618.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKayser, F. H., Bienz, K. A., Eckert, J. & Zinkernagel, R. M. (2004). Medical Microbiology, pp. 1–20. Berlin: Thieme Medical.  Google Scholar
First citationKia, R., Fun, H.-K. & Kargar, H. (2008). Acta Cryst. E64, o2341.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMehrabi, H., Kia, R., Hassanzadeh, A., Ghobadi, S. & Khavasi, H. R. (2008). Acta Cryst. E64, o1845.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTabatabaee, M., Anari-Abbasnejad, M., Nozari, N., Sadegheian, S. & Ghasemzadeh, M. (2007). Acta Cryst. E63, o2099–o2100.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTierney, L. M. Jr, McPhee, S. J. & Papadakis, M. A. (2006). Current Medical Diagnosis & Treatment, 45th ed., pp. 1–50. New York: McGraw-Hill Medical.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds