organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Acetyl-3,3-di­ethyl-5-hydr­­oxy-2-morpholino-2,3-di­hydro-1-benzo­furan

aUniversidad Andres Bello, Facultad de Ecología y Recursos Naturales, Departamento de Química, Chile, bDepartamento de Química Orgánica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile, and cCentro de Investigación Interdisciplinaria, Avanzada en Ciencia de los Materiales, Universidad de Chile, Chile
*Correspondence e-mail: raraya@ciq.uchile.cl

(Received 3 September 2008; accepted 17 October 2008; online 13 November 2008)

In the title compound, C18H25NO4, the benzofuran ring is almost planar and the morpholino ring displays a chair conformation. The packing of compound has a one-dimensional structure constructed through inter­molecular O—H⋯O hydrogen bonds. The conformation is stabilized by intra­molecular C—H⋯N and C—H⋯O inter­actions.

Related literature

For biological activity, see: Araya-Maturana et al. (2002[Araya-Maturana, R., Delgado-Castro, T., Garate, M., Ferreira, J., Pavani, M., Pessoa-Mahana, H. & Cassels, B. K. (2002). Bioorg. Med. Chem. 10, 3057-3060.], 2006[Araya-Maturana, R., Cardona, W., Cassels, B. K., Delgado-Castro, T., Soto-Delgado, J., Pessoa-Mahana, H., Weiss-Lopez, B., Pavani, M. & Ferreira, J. (2006). Bioorg. Med. Chem. 14, 4664-4669.]). For related structures, see: Dusausoy et al. (1973[Dusausoy, Y., Protas, J., Besancon, J. & Tirouflet, J. (1973). Acta Cryst. B29, 469-476.]); Filarowski et al. (2005[Filarowski, A., Kochel, A., Cieslik, K. & Koll, A. (2005). J. Phys. Org. Chem. 18, 986-993.]); Huang et al. (2004[Huang, H.-R., Xia, X.-K., She, Z.-G., Lin, Y.-C., Vrijmoed, L. L. P. & Jones, E. B. G. (2004). Acta Cryst. E60, o2509-o2510.]). For the synthesis, see: Castro et al. (1983[Castro, C. G., Santos, J. G., Valcarce, J. C. & Valderrama, J. A. (1983). J. Org. Chem. 48, 3026-3029.]). For hydrogen bonding, see: Desiraju (2002[Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565-573.]). For puckering parameters, see: Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C18H25NO4

  • Mr = 319.39

  • Orthorhombic, P b c a

  • a = 7.7769 (2) Å

  • b = 19.4256 (5) Å

  • c = 22.3875 (6) Å

  • V = 3382.10 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 (2) K

  • 0.43 × 0.30 × 0.30 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 1999[Bruker (1999). SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.974

  • 19635 measured reflections

  • 2988 independent reflections

  • 2537 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.099

  • S = 1.04

  • 2988 reflections

  • 215 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O4i 0.90 (2) 1.86 (2) 2.7639 (14) 177 (2)
C11—H11A⋯N1 0.98 2.61 3.205 (2) 119
C12—H12A⋯O3 0.99 2.54 3.333 (2) 137
C15—H15C⋯O2 0.98 2.46 3.037 (2) 118
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART-NT (Bruker, 2001[Bruker (2001). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-NT (Bruker, 1999[Bruker (1999). SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-NT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL-NT.

Supporting information


Comment top

The title compound, (I), is a structural model of its dimethyl analog (4-acetyl-3,3-dimethyl-5-hydroxy-2-morpholino-2,3-dihidrobenzo[b] furan). The later compound has been reported to be inactive as inhibitor of cellular respiration (Araya-Maturana et al., 2002), despite the close analogy with inhibitors incorporating a carbonyl group in the ortho position with respect to a phenol function (Araya-Maturana et al., 2002). The lack of activity has been atributed to the non-planarity of the acetyl group with respect to the phenolic moiety. Additionally, the O,N-acetal moiety of the molecule allows its use as starting point for the synthesis of biologically active quinones and hydroquinones (Araya-Maturana et al., 2006).

The molecule of (I) displays a 2,3-dihydrobenzo[b]furanic skeleton, substituted at position 5 with an hydroxy group. A morpholino, an acetyl and two gem ethyl groups at positions 2, 4 and 3,3 respectively, are also present in the molecule (Fig. 1). While the aromatic ring is essentially planar, as expected by the π-conjugation, the furan ring is far from being planar, C2 is 0.331 (2) Å out of the plane formed by the remaining atoms in the ring, giving it an envelop conformation. The morpholino ring displays a classical chair conformation with puckering parameters (Cremer & Pople, 1975): Q = 0.580 (2) Å, θ = 1.88 (14)° and ϕ = 161 (5)°.

Surprisingly, the acetyl group at position 4 is not coplanar with the aromatic ring; the dihedral angle between the two least-squares planes is 66.84 (6)°, precluding the formation of an intramolecular hydrogen bond with the hydroxy group at position 5. This differs from the observation made in molecules like 2-hydroxy-6-methoxyacetophenone (Filarowski et al., 2005) or 2,6-di-hydroxy-acetophenone (Huang et al., 2004) where both, the acetyl and the phenyl ring are almost coplanar and, a rather strong (Desiraju, 2002) intramolecular hydrogen bond to the hydroxo group is defined. This is the case still for η6-2-hydroxyacetophenone-tricarbonylcrommium(0) (Dusausoy et al., 1973) where coordination to the metal could withdraw electron density from the aromatic ring, weakening conjugation to the acetyl carbonyl group.

It is interesting to note that the non-planarity have been previously predicted from solution data (Araya-Maturana et al., 2002), suggesting the steric repulsion with the gem ethyl groups at position 3 is stronger than the intramolecular hydrogen bond. Finally, the analysis establishes that the conformation of the molecule is preserved at this respect in solution.

The packing of the molecule displays an intermolecular hydrogen bond between hydroxy hydrogen atom and the morpholino oxygen atom of an adjacent molecule (-x + 1, y + 1/2, -z + 1/2), with O···O of 2.764 (1) Å. This head to tail interaction leads to the formation of zigzag chains along the b-axis (Fig. 2). The structure is stabilized by intramolecular interactions of the types C—H···N and C—H···O (details are given in Table 1).

The structure detemination supports the hypothesis that relates the lack of activity of the compound as a cell respiration inhibitor with the non planarity of the acetyl group in relation to the phenolic core.

Related literature top

For biological activity, see: Araya-Maturana et al. (2002, 2006). For related structures, see: Dusausoy et al. (1973); Filarowski et al. (2005); Huang et al. (2004). For the synthesi, see: Castro et al. (1983). For hydrogen bonding, see: Desiraju (2002). For puckering parameters, see: Cremer & Pople, 1975)

Experimental top

The title compound was prepared from reaction of 4-(2-ethyl-but-1-enyl)-morpholine with 2-acetyl-1,4-benzoquinone (see Scheme 2), following the procedure described for the 3,3-dimethyl analog (Castro et al., 1983). The reaction time was 2 h. X-ray quality crystals were obtained from the resulting solution after volume reduction and addition of a few drops of methanol.

Refinement top

The hydrogen atoms were included in the refinements at geometrically idealized positions using a riding model, with C—H distances in the range 0.96 to 1.00 Å and Uiso(H) values were set equal to 1.5Ueq of the parent carbon atom for methyl groups and 1.2Ueq for the others. The hydroxyl hydrogen atom was located in a difference Fourier map and refined without any constrain.

Computing details top

Data collection: SMART-NT (Bruker, 2001); cell refinement: SAINT-NT (Bruker, 1999); data reduction: SAINT-NT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-NT (Sheldrick, 2008); software used to prepare material for publication: SHELXTL-NT (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing numbering scheme. Displacement ellipsoids have been plotted at 50% probability level and H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the unit cell down the a-axis showing intermolecular hydrogen bonds leading to the formation of zigzag chains along the b-axis. Symmetry code: A = -x + 1, y + 1/2, -z + 1/2.
[Figure 3] Fig. 3. The formation of the title compound.
4-Acetyl-3,3-diethyl-5-hydroxy-2-morpholino-2,3-dihydro-1-benzofuran top
Crystal data top
C18H25NO4F(000) = 1376
Mr = 319.39Dx = 1.255 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6371 reflections
a = 7.7769 (2) Åθ = 2.3–24.8°
b = 19.4256 (5) ŵ = 0.09 mm1
c = 22.3875 (6) ÅT = 150 K
V = 3382.10 (15) Å3Block, colorless
Z = 80.43 × 0.30 × 0.30 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
2988 independent reflections
Radiation source: fine-focus sealed tube2537 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: part of the refinement model (ΔF)
(SADABS; Bruker 1999)
h = 99
Tmin = 0.963, Tmax = 0.974k = 2323
19635 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0508P)2 + 1.1025P]
where P = (Fo2 + 2Fc2)/3
2988 reflections(Δ/σ)max = 0.001
215 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C18H25NO4V = 3382.10 (15) Å3
Mr = 319.39Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.7769 (2) ŵ = 0.09 mm1
b = 19.4256 (5) ÅT = 150 K
c = 22.3875 (6) Å0.43 × 0.30 × 0.30 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
2988 independent reflections
Absorption correction: part of the refinement model (ΔF)
(SADABS; Bruker 1999)
2537 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.974Rint = 0.027
19635 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.22 e Å3
2988 reflectionsΔρmin = 0.15 e Å3
215 parameters
Special details top

Experimental. Proton and 13C NMR spectra were acquired using a Bruker AVANCE DRX 300 spectrometer operating at 300.13 MHz (1H) or 75.47 MHz (13 C). All measurements were carried out at a probe temperature of 300 K.

1H-RMN(CDCl3): 0.65(3H, t, J = 7 Hz); 1.05(3H, t, J = 7 Hz); 1.59–1.85 (4H, m, 2XCH2-CH3); 2.55(3H, S, CH3CO); 2.51–2.61(2H, m, CH2); 2.66–2.78(2H, m, CH2); 3.55–3.70(4H, m, 2XCH2); 4.71(1H, s, CH); 6.19(1H, s broad, OH); 6.56(1H, d, J = 8.5 Hz); 6.62(1H, d, J = 8.5 Hz).

13C-RMN(CDCl3): 8.36; 10.18; 25.45; 32.68; 32.90; 49.81; 52.00; 66.93; 106.51; 109.63; 115.36; 126.63; 129.92; 146.31; 153.25; 205.62.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

7.0500 (0.0020) x + 7.3246 (0.0105) y + 4.2493 (0.0126) z = 12.9211 (0.0092)

* -0.0040 (0.0010) C4 * 0.0120 (0.0009) C5 * -0.0103 (0.0010) C6 * 0.0006 (0.0010) C7 * 0.0076 (0.0011) C8 * -0.0059 (0.0010) C9

Rms deviation of fitted atoms = 0.0078

1.4062(0.0062) x + 16.5869(0.0074) y - 10.9267(0.0135) z = 13.1527(0.0123)

Angle to previous plane (with approximate e.s.d.) =S 66.84 (0.06)

* 0.0007 (0.0003) C5 * -0.0022 (0.0011) C14 * 0.0007 (0.0003) C15 * 0.0009 (0.0004) O3

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.80326 (14)0.80844 (5)0.31337 (4)0.0345 (3)
C20.74318 (19)0.78750 (7)0.37275 (6)0.0280 (3)
H200.84280.76590.39390.034*
N10.60986 (15)0.73632 (6)0.36854 (5)0.0270 (3)
C160.6798 (2)0.66749 (7)0.35651 (7)0.0328 (3)
H16A0.77120.65670.38590.039*
H16B0.73140.66640.31610.039*
C170.5395 (2)0.61465 (8)0.36064 (7)0.0360 (4)
H17A0.58790.56840.35270.043*
H17B0.49130.61460.40160.043*
O40.40535 (14)0.62893 (5)0.31851 (5)0.0367 (3)
C180.3362 (2)0.69617 (7)0.32890 (7)0.0355 (4)
H18A0.28270.69760.36900.043*
H18B0.24570.70590.29900.043*
C190.47396 (19)0.75074 (8)0.32496 (6)0.0320 (3)
H19A0.52320.75140.28420.038*
H19B0.42320.79650.33310.038*
C30.69878 (18)0.85594 (7)0.40661 (6)0.0264 (3)
C100.53656 (19)0.85133 (7)0.44592 (6)0.0292 (3)
H10A0.51180.89780.46190.035*
H10B0.43850.83800.42020.035*
C110.5450 (2)0.80105 (8)0.49828 (7)0.0399 (4)
H11A0.57570.75520.48350.060*
H11B0.43270.79910.51800.060*
H11C0.63210.81670.52690.060*
C120.85520 (19)0.87683 (8)0.44551 (7)0.0328 (3)
H12A0.82710.92050.46610.039*
H12B0.87130.84120.47670.039*
C131.0247 (2)0.88622 (10)0.41292 (8)0.0492 (4)
H13A1.05830.84270.39420.074*
H13B1.11360.90040.44140.074*
H13C1.01170.92170.38210.074*
C40.67804 (17)0.90534 (7)0.35435 (6)0.0248 (3)
C50.61288 (17)0.97222 (7)0.35094 (6)0.0239 (3)
C140.55496 (19)1.01250 (7)0.40490 (6)0.0262 (3)
O30.65792 (14)1.02913 (5)0.44311 (4)0.0361 (3)
C150.3689 (2)1.03120 (8)0.40908 (7)0.0356 (4)
H15A0.34771.05540.44680.053*
H15B0.29900.98930.40770.053*
H15C0.33811.06120.37550.053*
C60.60992 (18)1.00459 (7)0.29479 (6)0.0257 (3)
O20.54332 (14)1.07011 (5)0.29248 (5)0.0315 (3)
C70.67545 (19)0.97197 (7)0.24488 (6)0.0303 (3)
H70.67430.99510.20750.036*
C80.7427 (2)0.90606 (7)0.24851 (7)0.0333 (3)
H80.78850.88370.21430.040*
C90.74103 (18)0.87401 (7)0.30338 (6)0.0284 (3)
H20.562 (3)1.0879 (10)0.2559 (10)0.063 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0429 (6)0.0272 (5)0.0333 (6)0.0089 (5)0.0125 (5)0.0046 (4)
C20.0319 (7)0.0258 (7)0.0265 (7)0.0034 (6)0.0022 (6)0.0045 (6)
N10.0327 (6)0.0213 (6)0.0270 (6)0.0044 (5)0.0028 (5)0.0003 (5)
C160.0385 (8)0.0254 (7)0.0344 (8)0.0067 (6)0.0023 (7)0.0021 (6)
C170.0466 (9)0.0255 (7)0.0359 (8)0.0036 (7)0.0054 (7)0.0019 (6)
O40.0447 (6)0.0306 (6)0.0349 (6)0.0018 (5)0.0063 (5)0.0089 (4)
C180.0387 (8)0.0343 (8)0.0334 (8)0.0064 (7)0.0059 (7)0.0076 (6)
C190.0398 (8)0.0288 (7)0.0274 (7)0.0075 (7)0.0043 (6)0.0005 (6)
C30.0305 (7)0.0222 (7)0.0263 (7)0.0007 (6)0.0004 (6)0.0026 (5)
C100.0362 (8)0.0248 (7)0.0265 (7)0.0007 (6)0.0046 (6)0.0005 (6)
C110.0569 (10)0.0318 (8)0.0311 (8)0.0051 (7)0.0082 (7)0.0046 (6)
C120.0366 (8)0.0286 (8)0.0333 (8)0.0005 (6)0.0056 (6)0.0051 (6)
C130.0362 (9)0.0511 (11)0.0603 (11)0.0074 (8)0.0052 (8)0.0048 (9)
C40.0241 (7)0.0252 (7)0.0252 (7)0.0020 (5)0.0009 (5)0.0029 (5)
C50.0245 (7)0.0216 (7)0.0257 (7)0.0044 (5)0.0000 (5)0.0007 (5)
C140.0360 (8)0.0176 (6)0.0249 (7)0.0042 (6)0.0015 (6)0.0031 (5)
O30.0437 (6)0.0339 (6)0.0306 (6)0.0042 (5)0.0063 (5)0.0040 (4)
C150.0388 (9)0.0380 (8)0.0301 (8)0.0050 (7)0.0022 (6)0.0037 (6)
C60.0279 (7)0.0207 (7)0.0284 (7)0.0036 (6)0.0025 (6)0.0022 (5)
O20.0446 (6)0.0210 (5)0.0288 (5)0.0013 (4)0.0005 (5)0.0042 (4)
C70.0374 (8)0.0304 (7)0.0231 (7)0.0019 (6)0.0032 (6)0.0066 (6)
C80.0406 (8)0.0314 (8)0.0278 (7)0.0028 (6)0.0106 (7)0.0008 (6)
C90.0301 (7)0.0238 (7)0.0314 (7)0.0023 (6)0.0055 (6)0.0018 (6)
Geometric parameters (Å, º) top
O1—C91.3808 (17)C11—H11A0.9800
O1—C21.4665 (16)C11—H11B0.9800
C2—N11.4395 (18)C11—H11C0.9800
C2—C31.5690 (19)C12—C131.518 (2)
C2—H201.0000C12—H12A0.9900
N1—C191.4654 (18)C12—H12B0.9900
N1—C161.4683 (17)C13—H13A0.9800
C16—C171.501 (2)C13—H13B0.9800
C16—H16A0.9900C13—H13C0.9800
C16—H16B0.9900C4—C91.3828 (19)
C17—O41.4338 (18)C4—C51.3966 (19)
C17—H17A0.9900C5—C61.4057 (18)
C17—H17B0.9900C5—C141.5082 (18)
O4—C181.4315 (17)C14—O31.2154 (17)
C18—C191.510 (2)C14—C151.494 (2)
C18—H18A0.9900C15—H15A0.9800
C18—H18B0.9900C15—H15B0.9800
C19—H19A0.9900C15—H15C0.9800
C19—H19B0.9900C6—O21.3752 (16)
C3—C41.5218 (18)C6—C71.382 (2)
C3—C101.5409 (19)O2—H20.90 (2)
C3—C121.550 (2)C7—C81.385 (2)
C10—C111.5270 (19)C7—H70.9500
C10—H10A0.9900C8—C91.377 (2)
C10—H10B0.9900C8—H80.9500
C9—O1—C2106.92 (10)C10—C11—H11A109.5
N1—C2—O1111.21 (11)C10—C11—H11B109.5
N1—C2—C3117.28 (11)H11A—C11—H11B109.5
O1—C2—C3105.85 (10)C10—C11—H11C109.5
N1—C2—H20107.4H11A—C11—H11C109.5
O1—C2—H20107.4H11B—C11—H11C109.5
C3—C2—H20107.4C13—C12—C3116.30 (13)
C2—N1—C19115.54 (11)C13—C12—H12A108.2
C2—N1—C16111.96 (11)C3—C12—H12A108.2
C19—N1—C16108.62 (11)C13—C12—H12B108.2
N1—C16—C17110.01 (12)C3—C12—H12B108.2
N1—C16—H16A109.7H12A—C12—H12B107.4
C17—C16—H16A109.7C12—C13—H13A109.5
N1—C16—H16B109.7C12—C13—H13B109.5
C17—C16—H16B109.7H13A—C13—H13B109.5
H16A—C16—H16B108.2C12—C13—H13C109.5
O4—C17—C16110.86 (12)H13A—C13—H13C109.5
O4—C17—H17A109.5H13B—C13—H13C109.5
C16—C17—H17A109.5C9—C4—C5119.53 (12)
O4—C17—H17B109.5C9—C4—C3108.62 (12)
C16—C17—H17B109.5C5—C4—C3131.84 (12)
H17A—C17—H17B108.1C4—C5—C6118.09 (12)
C18—O4—C17110.06 (11)C4—C5—C14123.18 (12)
O4—C18—C19111.39 (12)C6—C5—C14118.64 (12)
O4—C18—H18A109.4O3—C14—C15121.94 (13)
C19—C18—H18A109.4O3—C14—C5120.33 (13)
O4—C18—H18B109.4C15—C14—C5117.73 (12)
C19—C18—H18B109.4C14—C15—H15A109.5
H18A—C18—H18B108.0C14—C15—H15B109.5
N1—C19—C18109.80 (12)H15A—C15—H15B109.5
N1—C19—H19A109.7C14—C15—H15C109.5
C18—C19—H19A109.7H15A—C15—H15C109.5
N1—C19—H19B109.7H15B—C15—H15C109.5
C18—C19—H19B109.7O2—C6—C7122.20 (12)
H19A—C19—H19B108.2O2—C6—C5116.99 (12)
C4—C3—C10112.89 (11)C7—C6—C5120.79 (12)
C4—C3—C12110.49 (11)C6—O2—H2109.1 (13)
C10—C3—C12109.69 (11)C6—C7—C8121.04 (13)
C4—C3—C2100.72 (10)C6—C7—H7119.5
C10—C3—C2114.01 (11)C8—C7—H7119.5
C12—C3—C2108.70 (11)C9—C8—C7117.80 (13)
C11—C10—C3116.13 (13)C9—C8—H8121.1
C11—C10—H10A108.3C7—C8—H8121.1
C3—C10—H10A108.3C8—C9—O1123.93 (12)
C11—C10—H10B108.3C8—C9—C4122.71 (13)
C3—C10—H10B108.3O1—C9—C4113.36 (12)
H10A—C10—H10B107.4
O1—C2—C3—C419.89 (13)C10—C3—C4—C9134.46 (13)
C2—C3—C4—C912.49 (15)C12—C3—C4—C9102.28 (14)
C3—C4—C9—O10.16 (17)C10—C3—C4—C546.6 (2)
N1—C16—C17—O459.38 (15)C12—C3—C4—C576.61 (19)
O4—C18—C19—N158.28 (15)C2—C3—C4—C5168.61 (14)
C9—O1—C2—N1107.54 (12)C9—C4—C5—C61.7 (2)
C9—O1—C2—C320.87 (14)C3—C4—C5—C6179.54 (13)
O1—C2—N1—C1946.17 (15)C9—C4—C5—C14174.88 (13)
C3—C2—N1—C1975.82 (15)C3—C4—C5—C143.9 (2)
O1—C2—N1—C1678.87 (13)C4—C5—C14—O364.89 (18)
C3—C2—N1—C16159.14 (12)C6—C5—C14—O3111.63 (15)
C2—N1—C16—C17172.46 (11)C4—C5—C14—C15115.53 (15)
C19—N1—C16—C1758.76 (15)C6—C5—C14—C1567.95 (17)
C16—C17—O4—C1858.14 (16)C4—C5—C6—O2179.26 (12)
C17—O4—C18—C1957.71 (15)C14—C5—C6—O24.04 (19)
C2—N1—C19—C18175.35 (11)C4—C5—C6—C72.3 (2)
C16—N1—C19—C1857.90 (15)C14—C5—C6—C7174.40 (13)
N1—C2—C3—C4104.83 (13)O2—C6—C7—C8179.62 (13)
N1—C2—C3—C1016.35 (17)C5—C6—C7—C81.3 (2)
O1—C2—C3—C10141.07 (11)C6—C7—C8—C90.4 (2)
N1—C2—C3—C12139.05 (12)C7—C8—C9—O1179.80 (13)
O1—C2—C3—C1296.23 (13)C7—C8—C9—C41.1 (2)
C4—C3—C10—C11178.14 (12)C2—O1—C9—C8167.31 (14)
C12—C3—C10—C1158.16 (16)C2—O1—C9—C413.50 (16)
C2—C3—C10—C1163.99 (16)C5—C4—C9—C80.0 (2)
C4—C3—C12—C1352.74 (17)C3—C4—C9—C8179.04 (14)
C10—C3—C12—C13177.83 (13)C5—C4—C9—O1179.21 (12)
C2—C3—C12—C1356.91 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O4i0.90 (2)1.86 (2)2.7639 (14)177 (2)
C11—H11A···N10.982.613.205 (2)119
C12—H12A···O30.992.543.333 (2)137
C15—H15C···O20.982.463.037 (2)118
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H25NO4
Mr319.39
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)150
a, b, c (Å)7.7769 (2), 19.4256 (5), 22.3875 (6)
V3)3382.10 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.43 × 0.30 × 0.30
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(SADABS; Bruker 1999)
Tmin, Tmax0.963, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
19635, 2988, 2537
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.099, 1.04
No. of reflections2988
No. of parameters215
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.15

Computer programs: SMART-NT (Bruker, 2001), SAINT-NT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-NT (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O4i0.90 (2)1.86 (2)2.7639 (14)177 (2)
C11—H11A···N10.982.613.205 (2)119
C12—H12A···O30.992.543.333 (2)137
C15—H15C···O20.982.463.037 (2)118
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge generous financial support from FONDECYT 1071077

References

First citationAraya-Maturana, R., Cardona, W., Cassels, B. K., Delgado-Castro, T., Soto-Delgado, J., Pessoa-Mahana, H., Weiss-Lopez, B., Pavani, M. & Ferreira, J. (2006). Bioorg. Med. Chem. 14, 4664–4669.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAraya-Maturana, R., Delgado-Castro, T., Garate, M., Ferreira, J., Pavani, M., Pessoa-Mahana, H. & Cassels, B. K. (2002). Bioorg. Med. Chem. 10, 3057–3060.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1999). SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastro, C. G., Santos, J. G., Valcarce, J. C. & Valderrama, J. A. (1983). J. Org. Chem. 48, 3026–3029.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. R. (2002). Acc. Chem. Res. 35, 565–573.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDusausoy, Y., Protas, J., Besancon, J. & Tirouflet, J. (1973). Acta Cryst. B29, 469–476.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFilarowski, A., Kochel, A., Cieslik, K. & Koll, A. (2005). J. Phys. Org. Chem. 18, 986–993.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, H.-R., Xia, X.-K., She, Z.-G., Lin, Y.-C., Vrijmoed, L. L. P. & Jones, E. B. G. (2004). Acta Cryst. E60, o2509–o2510.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds