metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(μ2-4-amino­benzene­sulfonato-κ2O:O)disilver]-bis­­(μ2-4,4′-bi­pyridine-κ2N:N′)]

aDepartment of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou, Hunan 425100, People's Republic of China
*Correspondence e-mail: ouguangchuan@yahoo.com.cn

(Received 30 September 2008; accepted 16 November 2008; online 22 November 2008)

In the title compound, [Ag2(C6H6NO3S)2(C10H8N2)2]n, the AgI atom is four-coordinated by two N atoms from two symmetry-related 4,4′-bipyridine (bipy) and two O atoms from two independent 4-amino­benzene­sulfonate (ABS) ligands. The two inter-chain AgI atoms are bridged by two independent ABS ligands through weak Ag—O bonds and Ag⋯Ag attractions, forming a ladder-like chain coordination polymer [Ag2(ABS)2(bipy)2]n parallel to [001], which is further linked to generate a two-dimensional structure via N—H⋯O hydrogen-bonding inter­actions.

Related literature

For general background, see: Liu, Kuroda-Sowa et al. (2005[Liu, S. Q., Kuroda-Sowa, T., Konaka, H., Suenaga, Y., Maekawa, M., Mizutani, T., Ning, G. L. & Munakata, M. (2005). Inorg. Chem. 44, 1031-1036.]); Liu, Liu et al. (2005[Liu, Z., Liu, P., Chen, Y., Wang, J. & Huang, M. H. (2005). New J. Chem. 29, 474-478.]); Feng et al. (2003[Feng, L. Y., Wang, Y. H., Hu, C. W., Li, Y. G. & Wang, E. B. (2003). J. Mol. Struct. 650, 115-122.]); Wei et al. (2004[Wei, Q., Nieuwenhuyzen, M., Meunier, F., Hardacre, C. & James, S. L. (2004). J. Chem. Soc. Dalton Trans., pp. 1807-1811.]); Dong et al. (2005[Dong, Y. B., Geng, Y., Ma, J. P. & Huang, R. Q. (2005). Inorg. Chem. 44, 1693-1703.]); Bi et al. (2003[Bi, W. H., Cao, R., Sun, D. F., Yuan, D. Q., Li, X. & Hong, M. C. (2003). Inorg. Chem. Commun. 6, 1426-1428.]); Ding et al. (2005[Ding, B., Yi, L., Liu, Y., Cheng, P., Dong, Y. B. & Ma, J. P. (2005). Inorg. Chem. Commun. 8, 38-40.]); Yang et al. (2004[Yang, J. H., Zheng, S. L., Yu, X. L. & Chen, X. M. (2004). Cryst. Growth Des. 4, 831-836.]). For related structures, see: Sampanthar & Vittal (2000[Sampanthar, J. T. & Vittal, J. J. (2000). Cryst. Eng. 3, 117-120.]); Tong et al. (2000[Tong, M. L., Chen, X. M. & Seik, W. N. (2000). Inorg. Chem. Commun. 3, 436-438.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(C6H6NO3S)2(C10H8N2)2]

  • Mr = 872.46

  • Monoclinic, P 21 /n

  • a = 9.2105 (19) Å

  • b = 15.774 (3) Å

  • c = 11.433 (2) Å

  • β = 108.004 (4)°

  • V = 1579.8 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.43 mm−1

  • T = 173 (2) K

  • 0.42 × 0.13 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.585, Tmax = 0.847

  • 7741 measured reflections

  • 3375 independent reflections

  • 2774 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.088

  • S = 1.11

  • 3375 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯O2i 0.88 2.04 2.850 (5) 153
N3—H3C⋯O3ii 0.88 2.25 2.905 (4) 131
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x-1, y, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the construction of inorganic–organic supramolecular complexes, the AgI is often a favorable candidate due to its flexible coordination modes and Ag–Ag attractions (Liu et al., 2005; Dong et al., 2005; Bi et al., 2003; Ding et al., 2005; Yang et al., 2004). Bipy (4,4'-bipyridine) and ABS (4-aminobenzenesulfonic acid) are useful building blocks because they contain bifunctional groups, which can coordinate with metal ions in various coordination modes through the oxygen atoms of sulfonic group and the nitrogen atoms of pyridyl ring (Liu et al., 2005; Feng et al., 2003; Wei et al., 2004). Therefore, we also extended these investigations to the use of the ligand ABS and obtained various framework structures. In this paper, we report the structure of the title compound, (I).

As illustrated in Fig. 1, each AgI atom in the title compound is four-coordinated by two nitrogen atoms from bipy (Ag1—N1 = 2.187 (3) Å, Ag1—N2 = 2.179 (3) Å) and two oxygen atoms from two independent ABS (Ag1—O1 = 2.572 (2) Å and Ag1—O1# = 2.654 (2) Å, # 1 - x, -y, 1 - z). These coordination modes are different from those found in structures similar to (I), wherein both oxygen atoms of acetic acid are linked to Ag atoms (Sampanthar & Vittal, 2000; Tong et al., 2000). The two inter-chain AgI atoms are bridged by two independent ABS ligands through week Ag—O bonds and Ag–Ag attractions (Ag1–Ag1# = 3.903 Å, # 1 - x, -y, 1 - z), forming a one-dimensional ladder-like chain coordination polymer [Ag2(bipy)2(ABS)2]n with periodical distance of 11.43 Å, which is further linked to generate a two-dimensional structure via hydrogen-bonding interactions with an average O–O distance of 2.877 Å (Fig. 2).

Related literature top

For general background, see: Liu, Kuroda-Sowa et al., 2005; Liu, Liu et al. (2005); Feng et al. (2003); Wei et al. (2004); Dong et al. (2005); Bi et al. (2003); Ding et al. (2005); Yang et al. (2004). For related structures, see: Sampanthar & Vittal (2000); Tong et al. (2000).

Experimental top

To a mixture of bipy (0.032 g, 0.2 mmol), ABS (0.017 g, 0.1 mmol) and Ag2O (0.028 g, 0.05 mmol) in CH3OH (10 ml) was added ammonia water resulting in a clear solution. After heating at 323 K for 0.5 h, the solution was evaporated slowly in the dark. Five days later, slightly yellow crystals were formed from the solution.

Refinement top

H atoms bound to C or N atoms were positioned geometrically and refined using the riding model, and with C—H = 0.95 Å and N—H = 0.88 Å, and with U(H) set to 1.2Ueq(C, N). A small degree of thermal disorder in O2 and O3 atoms could not be ruled out as reflected by large atomic displacement parameters of these atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 1997); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 30% probability level; H-atoms have been excluded for clarity. The symmetry codes for the generated atoms: a (1 - x, -y, 1 - z), b (1 - x, -y, 2 - z), c (x, y, 1 + z), d (x, y, -1 + z), e (1 - x, -y, -z).
[Figure 2] Fig. 2. A view of the packing of the title compound along b axis.
catena-Poly[[bis(µ2-4-aminobenzenesulfonato-κ2O:O)disilver]- bis(µ2-4,4'-bipyridine-κ2N:N')] top
Crystal data top
[Ag2(C6H6NO3S)2(C10H8N2)2]F(000) = 872
Mr = 872.46Dx = 1.834 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2489 reflections
a = 9.2105 (19) Åθ = 2.5–27.0°
b = 15.774 (3) ŵ = 1.43 mm1
c = 11.433 (2) ÅT = 173 K
β = 108.004 (4)°Prism, light-yellow
V = 1579.8 (6) Å30.42 × 0.13 × 0.12 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3375 independent reflections
Radiation source: fine-focus sealed tube2774 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.585, Tmax = 0.847k = 1720
7741 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0458P)2 + 0.7557P]
where P = (Fo2 + 2Fc2)/3
3375 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Ag2(C6H6NO3S)2(C10H8N2)2]V = 1579.8 (6) Å3
Mr = 872.46Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.2105 (19) ŵ = 1.43 mm1
b = 15.774 (3) ÅT = 173 K
c = 11.433 (2) Å0.42 × 0.13 × 0.12 mm
β = 108.004 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3375 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2774 reflections with I > 2σ(I)
Tmin = 0.585, Tmax = 0.847Rint = 0.023
7741 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.11Δρmax = 0.79 e Å3
3375 reflectionsΔρmin = 0.69 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.72113 (3)0.011584 (16)0.56851 (2)0.02788 (10)
S10.43413 (9)0.19537 (5)0.48987 (9)0.0333 (2)
N10.7468 (3)0.01972 (15)0.3849 (2)0.0216 (5)
N20.7473 (3)0.01021 (16)0.7646 (2)0.0250 (6)
C20.7508 (3)0.01617 (18)0.1402 (3)0.0203 (6)
C120.1224 (3)0.19650 (18)0.4380 (3)0.0236 (6)
H12A0.11750.18650.35490.028*
C140.0062 (3)0.2155 (2)0.5922 (3)0.0274 (7)
C10.7521 (3)0.01415 (18)0.0111 (3)0.0211 (6)
O10.4856 (2)0.10869 (15)0.5186 (2)0.0362 (6)
C110.2636 (3)0.20524 (19)0.5282 (3)0.0228 (6)
C150.1367 (4)0.2258 (2)0.6808 (3)0.0299 (7)
H15A0.14270.23680.76380.036*
C100.6969 (4)0.0780 (2)0.8123 (3)0.0282 (7)
H10A0.66070.12560.76070.034*
C70.8025 (4)0.0552 (2)0.8414 (3)0.0273 (7)
H7A0.83880.10360.80970.033*
C160.2681 (4)0.2204 (2)0.6487 (3)0.0288 (7)
H16A0.36410.22700.71030.035*
C130.0112 (3)0.2024 (2)0.4698 (3)0.0258 (7)
H13A0.10720.19740.40780.031*
C30.8647 (3)0.02265 (19)0.2346 (3)0.0240 (6)
H3A0.94630.05140.21710.029*
C60.6367 (3)0.0573 (2)0.2940 (3)0.0249 (6)
H6A0.55630.08550.31410.030*
C50.6351 (3)0.0569 (2)0.1740 (3)0.0258 (7)
H5A0.55470.08460.11320.031*
C40.8586 (4)0.01927 (19)0.3527 (3)0.0261 (7)
H4A0.93790.04600.41550.031*
O20.3940 (4)0.2091 (3)0.3591 (3)0.0931 (15)
N30.1373 (3)0.2149 (2)0.6265 (3)0.0483 (9)
H3B0.13140.22110.70430.058*
H3C0.22690.20840.57050.058*
O30.5398 (3)0.25465 (19)0.5646 (4)0.0858 (13)
C80.8091 (4)0.0555 (2)0.9632 (3)0.0260 (7)
H80.85180.10241.01430.031*
C90.6953 (4)0.0818 (2)0.9318 (3)0.0277 (7)
H90.65550.13040.96040.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.03363 (16)0.03836 (16)0.01360 (14)0.00271 (10)0.01013 (10)0.00153 (10)
S10.0248 (4)0.0333 (5)0.0465 (5)0.0039 (3)0.0178 (4)0.0092 (4)
N10.0276 (13)0.0222 (13)0.0164 (12)0.0020 (10)0.0090 (10)0.0024 (10)
N20.0300 (14)0.0297 (14)0.0160 (13)0.0008 (11)0.0082 (11)0.0003 (11)
C20.0287 (15)0.0198 (14)0.0139 (14)0.0011 (12)0.0085 (12)0.0014 (11)
C120.0287 (16)0.0210 (15)0.0198 (15)0.0019 (12)0.0054 (13)0.0011 (12)
C140.0216 (15)0.0269 (16)0.0351 (19)0.0021 (12)0.0109 (14)0.0026 (14)
C10.0267 (15)0.0211 (14)0.0153 (14)0.0017 (12)0.0060 (12)0.0013 (11)
O10.0277 (12)0.0297 (13)0.0522 (16)0.0044 (9)0.0138 (11)0.0036 (11)
C110.0188 (14)0.0234 (15)0.0272 (16)0.0013 (11)0.0086 (12)0.0005 (13)
C150.0338 (17)0.0356 (18)0.0223 (17)0.0021 (14)0.0115 (14)0.0086 (14)
C100.0416 (18)0.0236 (16)0.0194 (16)0.0030 (13)0.0094 (14)0.0033 (13)
C70.0338 (17)0.0296 (17)0.0196 (16)0.0051 (13)0.0099 (13)0.0007 (13)
C160.0258 (16)0.0323 (18)0.0235 (17)0.0009 (13)0.0005 (13)0.0066 (13)
C130.0208 (15)0.0274 (16)0.0251 (16)0.0004 (12)0.0010 (13)0.0013 (13)
C30.0248 (15)0.0269 (16)0.0198 (16)0.0053 (12)0.0062 (12)0.0004 (12)
C60.0266 (15)0.0278 (16)0.0200 (15)0.0046 (12)0.0071 (12)0.0025 (13)
C50.0257 (15)0.0335 (18)0.0175 (15)0.0061 (13)0.0054 (12)0.0002 (13)
C40.0288 (16)0.0270 (16)0.0208 (16)0.0046 (13)0.0053 (13)0.0017 (13)
O20.064 (2)0.163 (4)0.070 (2)0.054 (2)0.0474 (19)0.071 (3)
N30.0304 (16)0.080 (2)0.0402 (19)0.0081 (16)0.0189 (14)0.0024 (18)
O30.0339 (15)0.0463 (18)0.185 (4)0.0175 (14)0.045 (2)0.046 (2)
C80.0345 (17)0.0243 (16)0.0193 (15)0.0075 (13)0.0085 (13)0.0024 (13)
C90.0390 (18)0.0246 (16)0.0210 (16)0.0068 (13)0.0114 (13)0.0010 (13)
Geometric parameters (Å, º) top
Ag1—N22.179 (3)C11—C161.387 (4)
Ag1—N12.187 (3)C15—C161.372 (5)
Ag1—O12.571 (2)C15—H15A0.9500
S1—O31.428 (3)C10—C91.372 (4)
S1—O21.441 (3)C10—H10A0.9500
S1—O11.451 (2)C7—C81.375 (4)
S1—C111.763 (3)C7—H7A0.9500
N1—C41.345 (4)C16—H16A0.9500
N1—C61.345 (4)C13—H13A0.9500
N2—C101.347 (4)C3—C41.370 (5)
N2—C71.348 (4)C3—H3A0.9500
C2—C31.393 (4)C6—C51.368 (4)
C2—C51.398 (4)C6—H6A0.9500
C2—C11.480 (4)C5—H5A0.9500
C12—C131.390 (4)C4—H4A0.9500
C12—C111.394 (4)N3—H3B0.8800
C12—H12A0.9500N3—H3C0.8800
C14—N31.380 (4)C8—C1ii1.399 (4)
C14—C151.400 (4)C8—H80.9500
C14—C131.401 (4)C9—C1ii1.393 (4)
C1—C9i1.393 (4)C9—H90.9500
C1—C8i1.399 (4)
N2—Ag1—N1167.73 (10)N2—C10—C9123.4 (3)
N2—Ag1—O192.98 (9)N2—C10—H10A118.3
N1—Ag1—O194.93 (9)C9—C10—H10A118.3
O3—S1—O2115.6 (2)N2—C7—C8123.5 (3)
O3—S1—O1111.53 (19)N2—C7—H7A118.2
O2—S1—O1109.7 (2)C8—C7—H7A118.2
O3—S1—C11106.77 (17)C15—C16—C11121.2 (3)
O2—S1—C11106.38 (16)C15—C16—H16A119.4
O1—S1—C11106.33 (14)C11—C16—H16A119.4
C4—N1—C6116.7 (3)C12—C13—C14120.8 (3)
C4—N1—Ag1123.7 (2)C12—C13—H13A119.6
C6—N1—Ag1119.2 (2)C14—C13—H13A119.6
C10—N2—C7116.8 (3)C4—C3—C2119.8 (3)
C10—N2—Ag1117.8 (2)C4—C3—H3A120.1
C7—N2—Ag1125.3 (2)C2—C3—H3A120.1
C3—C2—C5116.4 (3)N1—C6—C5123.0 (3)
C3—C2—C1121.8 (3)N1—C6—H6A118.5
C5—C2—C1121.8 (3)C5—C6—H6A118.5
C13—C12—C11119.9 (3)C6—C5—C2120.4 (3)
C13—C12—H12A120.0C6—C5—H5A119.8
C11—C12—H12A120.0C2—C5—H5A119.8
N3—C14—C15120.3 (3)N1—C4—C3123.8 (3)
N3—C14—C13121.4 (3)N1—C4—H4A118.1
C15—C14—C13118.2 (3)C3—C4—H4A118.1
C9i—C1—C8i117.2 (3)C14—N3—H3B120.0
C9i—C1—C2121.0 (3)C14—N3—H3C120.0
C8i—C1—C2121.8 (3)H3B—N3—H3C120.0
S1—O1—Ag1143.69 (14)C7—C8—C1ii119.3 (3)
C16—C11—C12119.1 (3)C7—C8—H8120.4
C16—C11—S1120.5 (2)C1ii—C8—H8120.4
C12—C11—S1120.4 (2)C10—C9—C1ii119.8 (3)
C16—C15—C14120.6 (3)C10—C9—H9120.1
C16—C15—H15A119.7C1ii—C9—H9120.1
C14—C15—H15A119.7
N2—Ag1—N1—C449.1 (6)N3—C14—C15—C16175.3 (3)
O1—Ag1—N1—C4179.0 (2)C13—C14—C15—C162.2 (5)
N2—Ag1—N1—C6138.8 (4)C7—N2—C10—C92.1 (5)
O1—Ag1—N1—C68.9 (2)Ag1—N2—C10—C9174.4 (3)
N1—Ag1—N2—C10102.1 (5)C10—N2—C7—C80.1 (5)
O1—Ag1—N2—C1028.0 (2)Ag1—N2—C7—C8176.1 (2)
N1—Ag1—N2—C781.8 (5)C14—C15—C16—C110.6 (5)
O1—Ag1—N2—C7148.2 (3)C12—C11—C16—C150.8 (5)
C3—C2—C1—C9i147.0 (3)S1—C11—C16—C15178.2 (3)
C5—C2—C1—C9i33.1 (4)C11—C12—C13—C141.2 (5)
C3—C2—C1—C8i33.5 (4)N3—C14—C13—C12174.9 (3)
C5—C2—C1—C8i146.4 (3)C15—C14—C13—C122.5 (5)
O3—S1—O1—Ag141.8 (3)C5—C2—C3—C40.0 (4)
O2—S1—O1—Ag187.6 (3)C1—C2—C3—C4179.9 (3)
C11—S1—O1—Ag1157.8 (2)C4—N1—C6—C50.1 (4)
N2—Ag1—O1—S1102.2 (3)Ag1—N1—C6—C5172.5 (2)
N1—Ag1—O1—S168.4 (3)N1—C6—C5—C20.1 (5)
C13—C12—C11—C160.5 (5)C3—C2—C5—C60.2 (4)
C13—C12—C11—S1178.4 (2)C1—C2—C5—C6179.7 (3)
O3—S1—C11—C1637.0 (3)C6—N1—C4—C30.3 (5)
O2—S1—C11—C16160.9 (3)Ag1—N1—C4—C3172.0 (2)
O1—S1—C11—C1682.2 (3)C2—C3—C4—N10.3 (5)
O3—S1—C11—C12144.1 (3)N2—C7—C8—C1ii1.9 (5)
O2—S1—C11—C1220.2 (3)N2—C10—C9—C1ii2.0 (5)
O1—S1—C11—C1296.7 (3)
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O2iii0.882.042.850 (5)153
N3—H3C···O3iv0.882.252.905 (4)131
Symmetry codes: (iii) x1/2, y+1/2, z+1/2; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formula[Ag2(C6H6NO3S)2(C10H8N2)2]
Mr872.46
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)9.2105 (19), 15.774 (3), 11.433 (2)
β (°) 108.004 (4)
V3)1579.8 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.43
Crystal size (mm)0.42 × 0.13 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.585, 0.847
No. of measured, independent and
observed [I > 2σ(I)] reflections
7741, 3375, 2774
Rint0.023
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.088, 1.11
No. of reflections3375
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.69

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O2i0.882.042.850 (5)153
N3—H3C···O3ii0.882.252.905 (4)131
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x1, y, z.
 

Acknowledgements

The authors thank the Key Subject Construction Project of Hunan Province (grant No. 2006-180), the Scientific Research Project of the Hunan Provincial Finance Bureau and Education Department (grant No. 08C366), and the Foundation for University Key Teachers of the Education Department of Hunan Province for supporting this study.

References

First citationBi, W. H., Cao, R., Sun, D. F., Yuan, D. Q., Li, X. & Hong, M. C. (2003). Inorg. Chem. Commun. 6, 1426–1428.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDing, B., Yi, L., Liu, Y., Cheng, P., Dong, Y. B. & Ma, J. P. (2005). Inorg. Chem. Commun. 8, 38–40.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, Y. B., Geng, Y., Ma, J. P. & Huang, R. Q. (2005). Inorg. Chem. 44, 1693–1703.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFeng, L. Y., Wang, Y. H., Hu, C. W., Li, Y. G. & Wang, E. B. (2003). J. Mol. Struct. 650, 115–122.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, S. Q., Kuroda-Sowa, T., Konaka, H., Suenaga, Y., Maekawa, M., Mizutani, T., Ning, G. L. & Munakata, M. (2005). Inorg. Chem. 44, 1031–1036.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, Z., Liu, P., Chen, Y., Wang, J. & Huang, M. H. (2005). New J. Chem. 29, 474–478.  Web of Science CSD CrossRef CAS Google Scholar
First citationSampanthar, J. T. & Vittal, J. J. (2000). Cryst. Eng. 3, 117–120.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTong, M. L., Chen, X. M. & Seik, W. N. (2000). Inorg. Chem. Commun. 3, 436–438.  Web of Science CSD CrossRef CAS Google Scholar
First citationWei, Q., Nieuwenhuyzen, M., Meunier, F., Hardacre, C. & James, S. L. (2004). J. Chem. Soc. Dalton Trans., pp. 1807–1811.  Google Scholar
First citationYang, J. H., Zheng, S. L., Yu, X. L. & Chen, X. M. (2004). Cryst. Growth Des. 4, 831–836.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds