metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[bis­[3,10-bis­(2-hydroxyethyl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­deca­ne]tetra-μ-cyanido-tetracyanidodicopper(II)molybdenum(IV)] tetra­hydrate]

aSchool of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
*Correspondence e-mail: aihuayuan@163.com

(Received 11 October 2008; accepted 4 November 2008; online 13 November 2008)

In the title complex, {[Cu2Mo(CN)8(C12H30N6O2)2]·4H2O}n, the polyhedron around Mo has site symmetry [\overline1] with a distorted square-antiprismatic shape, while the Cu atom (2 symmetry) is in a distorted axially elongated octa­hedral coordination environment. The uncoordinated water molecule is disordered over three sites with occupancies of 0.445 (7), 0.340 (7) and 0.215 (7). Mo and Cu atoms acting as basic components are connected by an Mo—CN—Cu—NC—Mo— linkage to form a distorted diamond-like network. Additional hydrogen bonding between the N—H groups and the water molecules stabilizes this arrangement.

Related literature

For background information, see: Larionova et al. (2004[Larionova, J., Willemin, S., Donnadieu, B., Henner, B., Guérin, C., Gillon, B. & Goujon, A. (2004). J. Phys. Chem. Solids, 65, 677-691.]); Przychodzeń et al. (2006[Przychodzeń, P., Korzeniak, T., Podgajny, R. & Sieklucka, B. (2006). Coord. Chem. Rev. 250, 2234-2260.]). For related structures, see: Chen et al. (2007[Chen, Y. Y., Zhou, H., Shen, X. P., Lu, H. F. & Yuan, A. H. (2007). J. Mol. Struct. 839, 64-68.]); Zhou et al. (2007[Zhou, H., Yuan, A. H., Shen, X. P., Chen, Y. Y., Price, D. J. & Kepert, C. J. (2007). Inorg. Chem. Commun. 10, 940-943.]; 2008[Zhou, H., Chen, Y. Y., Yuan, A. H. & Shen, X. P. (2008). Inorg. Chem. Commun. 11, 363-366.]). For literature related to the synthesis, see: Suh & Kang (1988[Suh, M. P. & Kang, S. G. (1988). Inorg. Chem. 27, 2544-2546.]); Leipoldt et al. (1974[Leipoldt, J. G., Bok, L. D. C. & Cillier, P. J. (1974). Z. Anorg. Allg. Chem. 409, 343-344.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2Mo(CN)8(C12H30N6O2)2]·4H2O

  • Mr = 1084.08

  • Tetragonal, I 41 /a

  • a = 20.0707 (10) Å

  • c = 15.4380 (17) Å

  • V = 6218.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 293 (2) K

  • 0.32 × 0.28 × 0.26 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.75, Tmax = 0.79

  • 16289 measured reflections

  • 3053 independent reflections

  • 2459 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.103

  • S = 1.06

  • 3053 reflections

  • 165 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3C⋯N2i 0.93 2.44 3.261 (4) 147
N5—H5C⋯O2ii 0.93 2.38 3.291 (8) 165
O1—H1C⋯O4iii 0.85 2.48 3.149 (7) 136
O4—H4D⋯N2iv 0.85 2.11 2.729 (6) 129
O4—H4E⋯O2v 0.85 2.47 3.279 (9) 159
Symmetry codes: (i) -x+2, -y+1, -z; (ii) [y+{\script{3\over 4}}, -x+{\script{3\over 4}}, z-{\script{1\over 4}}]; (iii) [-y+{\script{5\over 4}}, x+{\script{1\over 4}}, -z+{\script{5\over 4}}]; (iv) x-1, y, z+1; (v) [y-{\script{1\over 4}}, -x+{\script{1\over 4}}, -z+{\script{5\over 4}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, octacyanometalates [M(CN)8]3-/4- (M = Mo, W and Nb) have been found to be versatile building blocks and investigated extensively (Larionova et al., 2004; Przychodzeń et al., 2006). For [CuL]2+/[M(CN)8]3-/4- (L = macrocyclic ligands) bimetallic systems, macrocyclic ligands block partly coordination sites of the metal ions and release their apical ones, which can be used to construct cyano-bridged bimetallic complexes with octacyanometalate [M(CN)8]3-/4- ions. In a recent study, we chose [CuL]2+ (L = 3,10-diethanol-1,3,5,8,10,12-hexaazacyclotetradecane) as building block to synthesize successfully an octacyanometalate-based bimetallic complex [CuL]2[Mo(CN)8].4H2O, (I), with a distorted diamond network.

The title complex crystallizes in the tetragonal (I41/a) space group. As displayed in Fig. 1, the Mo atom is coordinated by eight CN groups in a distorted square antiprism. The Cu atom is in a distorted axially elongated octahedral coordination environment, in which four nitrogen atoms from the ligand (L) occupy the equatorial positions, while the axial sites are occupied by two nitrogen atoms from the bridging cyanide groups on different [Mo(CN)8]4- anions. The bonding parameters of the macrocyclic ligand L are reminiscent of those found in related complexes reported previously (Chen et al., 2007).

As shown in Fig. 2, Mo and Cu atoms acting as basic components (linker and connector, respectively) are connected by the Mo—CN—Cu—NC—Mo— linkages to form a three-dimensional structure. The network is composed of [CuL]2+ unit that is linked via cyanides to adjacent four-connected [Mo(CN)8(µ-CN)4]4- centers. From a topological standpoint, each [Mo(CN)8] unit is a tetrahedral four-connecting node. These nodes are linked to four adjacent [Mo(CN)8] units by the [CuL] units, acting as linear two-connectors. The result is a distorted diamond network (Fig. 2), which is similar to octacyanometalate-based bimetallic complexes reported previously (Zhou et al., 2007; 2008).

Related literature top

For background information, see: Larionova et al. (2004); Przychodzeń et al. (2006). For related structures, see: Chen et al. (2007); Zhou et al. (2007; 2008). For literature related to the synthesis, see: Suh & Kang (1988); Leipoldt et al. (1974).

Experimental top

Well shaped brown crystals of the title complex suitable for X-ray single-crystal structure determination were grown at room temperature by slow diffusion of a DMF solution (15 ml) of [CuL](ClO4)2 (0.30 mmol) (Suh and Kang, 1988) and an aqueous solution (15 ml) of K4[Mo(CN)8].2H2O (0.15 mmol) (Leipoldt et al., 1974) in a U-shaped tube containing agar for about one month. The resulting crystals were collected, washed with H2O and dried in air.

Refinement top

All hydrogen atoms except for hydrogen atoms bound to water molecules were calculated at idealized positions with C–H = 0.99, N–H = 0.93 and O–H = 0.85 Å and included in the refinement in a riding mode with Uiso for H assigned as 1.2 times Ueq of the attached atoms. The O atom of the water of hydration molecule was disordered over three sites with unequal site occupancy factors at locations O2, O3 and O4. The H atoms of the disordered water molecule were located from difference maps and were included in the refinements at geometrically idealized positions with O–H distances 0.85 Å and Uiso assigned as 1.2 times Ueq of the attached O atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SMART (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title complex, showing the atom labeling. Hydrogen atoms and water molecules are omitted for clarity. Symmetry codes: A: 2-x, 1-y, -z; B: 2-x, 0.5-y, z; C: 1.25-y, -0.75+x, 0.25-z.
[Figure 2] Fig. 2. Topological depiction of the title complex, where the Mo nodes and the Cu connectors are shown in pink and green colors, respectively.
Poly[[bis[3,10-bis(2-hydroxyethyl)-1,3,5,8,10,12-hexaazacyclotetradecane]tetra- µ-cyanido-tetracyanidodicopper(II)molybdenum(IV)] tetrahydrate] top
Crystal data top
[Cu2Mo(CN)8(C12H30N6O2)2]·4H2ODx = 1.158 Mg m3
Mr = 1084.08Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 3093 reflections
Hall symbol: -I 4adθ = 2.6–21.2°
a = 20.0707 (10) ŵ = 0.93 mm1
c = 15.4380 (17) ÅT = 293 K
V = 6218.9 (8) Å3Block, brown
Z = 40.32 × 0.28 × 0.26 mm
F(000) = 2256
Data collection top
Bruker SMART APEXII
diffractometer
3053 independent reflections
Radiation source: sealed tube2459 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
phi and ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 2424
Tmin = 0.75, Tmax = 0.79k = 1924
16289 measured reflectionsl = 1619
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0515P)2 + 3.1936P]
where P = (Fo2 + 2Fc2)/3
3053 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.23 e Å3
1 restraintΔρmin = 0.38 e Å3
Crystal data top
[Cu2Mo(CN)8(C12H30N6O2)2]·4H2OZ = 4
Mr = 1084.08Mo Kα radiation
Tetragonal, I41/aµ = 0.93 mm1
a = 20.0707 (10) ÅT = 293 K
c = 15.4380 (17) Å0.32 × 0.28 × 0.26 mm
V = 6218.9 (8) Å3
Data collection top
Bruker SMART APEXII
diffractometer
3053 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2459 reflections with I > 2σ(I)
Tmin = 0.75, Tmax = 0.79Rint = 0.058
16289 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.103H-atom parameters constrained
S = 1.06Δρmax = 0.23 e Å3
3053 reflectionsΔρmin = 0.38 e Å3
165 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.96688 (13)0.34611 (15)0.08263 (19)0.0392 (6)
C21.06251 (16)0.27104 (17)0.0121 (2)0.0485 (7)
C30.86789 (19)0.5451 (2)0.0135 (2)0.0615 (9)
H3A0.83640.58170.02690.074*
H3B0.84760.50250.03220.074*
C40.92199 (19)0.5426 (2)0.1513 (2)0.0610 (9)
H4A0.88630.57160.17460.073*
H4B0.90810.49570.15970.073*
C51.0360 (2)0.5073 (2)0.1850 (2)0.0627 (10)
H5A1.01950.46180.19710.075*
H5B1.07150.51720.22770.075*
C61.1181 (2)0.4567 (2)0.0813 (2)0.0649 (10)
H6A1.10230.41260.10130.078*
H6B1.15910.46820.11370.078*
C70.99694 (18)0.62268 (18)0.2106 (2)0.0570 (9)
H7A0.96230.64910.18050.068*
H7B1.03970.63170.18080.068*
C81.0028 (2)0.6495 (2)0.3018 (3)0.0694 (11)
H8A1.05050.65190.31750.083*
H8B0.98480.69540.30300.083*
Cu21.00000.50000.00000.04929 (18)
Mo11.00000.25000.12500.03165 (14)
N10.94948 (13)0.39753 (13)0.05790 (17)0.0467 (6)
N21.09533 (14)0.28414 (15)0.04505 (19)0.0554 (7)
N30.92993 (13)0.55566 (15)0.05812 (19)0.0539 (7)
H3C0.94170.60020.05140.065*
N40.98158 (17)0.55421 (16)0.1980 (3)0.0737 (9)
N51.06603 (14)0.50813 (15)0.09613 (16)0.0500 (7)
H5C1.08660.54930.08960.060*
O10.9722 (2)0.6148 (2)0.3594 (3)0.1107 (12)
H1C0.99170.57740.36510.133*
O20.1088 (4)0.4119 (4)0.3446 (5)0.072 (3)0.340 (7)
H2A0.08570.44730.34540.087*0.340 (7)
H2B0.09940.38930.38960.087*0.340 (7)
O30.2794 (8)0.5343 (7)0.0656 (10)0.088 (6)0.215 (7)
H3D0.29570.57080.08360.105*0.215 (7)
H3E0.31070.50760.05260.105*0.215 (7)
O40.2103 (3)0.2935 (3)0.8613 (3)0.065 (2)0.445 (7)
H4D0.18140.31660.88820.078*0.445 (7)
H4E0.19700.25340.85770.078*0.445 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0211 (12)0.0461 (17)0.0503 (17)0.0025 (11)0.0005 (11)0.0068 (13)
C20.0437 (17)0.0534 (19)0.0485 (18)0.0006 (14)0.0066 (14)0.0020 (15)
C30.058 (2)0.064 (2)0.063 (2)0.0125 (18)0.0127 (17)0.0055 (18)
C40.058 (2)0.083 (3)0.0428 (19)0.0050 (19)0.0110 (15)0.0042 (17)
C50.068 (2)0.079 (3)0.0419 (18)0.0000 (19)0.0184 (17)0.0064 (17)
C60.072 (2)0.079 (3)0.044 (2)0.007 (2)0.0283 (18)0.0000 (17)
C70.060 (2)0.056 (2)0.0550 (19)0.0147 (16)0.0152 (16)0.0383 (16)
C80.071 (2)0.068 (2)0.069 (3)0.003 (2)0.019 (2)0.024 (2)
Cu20.0514 (3)0.0560 (3)0.0405 (3)0.0020 (3)0.0059 (2)0.0008 (2)
Mo10.01805 (15)0.01805 (15)0.0589 (3)0.0000.0000.000
N10.0459 (14)0.0452 (14)0.0490 (15)0.0031 (11)0.0036 (12)0.0120 (12)
N20.0549 (17)0.0586 (17)0.0528 (17)0.0083 (14)0.0019 (14)0.0287 (14)
N30.0405 (14)0.0671 (18)0.0540 (16)0.0017 (13)0.0018 (12)0.0123 (14)
N40.071 (2)0.0478 (18)0.103 (3)0.0030 (15)0.018 (2)0.0012 (17)
N50.0521 (16)0.0572 (17)0.0406 (14)0.0061 (13)0.0163 (12)0.0079 (12)
O10.115 (3)0.113 (3)0.104 (3)0.004 (2)0.011 (2)0.006 (2)
O20.060 (5)0.092 (6)0.065 (5)0.023 (4)0.024 (4)0.028 (4)
O30.097 (11)0.063 (8)0.103 (11)0.006 (7)0.041 (9)0.006 (8)
O40.064 (4)0.091 (5)0.041 (3)0.014 (3)0.016 (2)0.009 (3)
Geometric parameters (Å, º) top
C1—N11.154 (4)C8—O11.285 (5)
C1—Mo12.143 (3)C8—H8A0.9900
C2—N21.132 (4)C8—H8B0.9900
C2—Mo12.188 (3)Cu2—N5i1.996 (2)
C3—N31.439 (4)Cu2—N51.996 (2)
C3—C6i1.490 (5)Cu2—N32.008 (3)
C3—H3A0.9900Cu2—N3i2.008 (3)
C3—H3B0.9900Cu2—N1i2.461 (3)
C4—N41.416 (5)Cu2—N12.461 (3)
C4—N31.470 (5)Mo1—C1ii2.143 (3)
C4—H4A0.9900Mo1—C1iii2.143 (3)
C4—H4B0.9900Mo1—C1iv2.143 (3)
C5—N41.457 (5)Mo1—C2iii2.188 (3)
C5—N51.499 (5)Mo1—C2iv2.188 (3)
C5—H5A0.9900Mo1—C2ii2.188 (3)
C5—H5B0.9900N3—H3C0.9300
C6—N51.487 (5)N5—H5C0.9300
C6—C3i1.490 (5)O1—H1C0.8501
C6—H6A0.9900O2—H2A0.8500
C6—H6B0.9900O2—H2B0.8500
C7—N41.422 (4)O3—H3D0.8500
C7—C81.512 (5)O3—H3E0.8500
C7—H7A0.9900O4—H4D0.8498
C7—H7B0.9900O4—H4E0.8498
N1—C1—Mo1178.4 (3)N3i—Cu2—N189.19 (10)
N2—C2—Mo1177.5 (3)N1i—Cu2—N1180.00 (11)
N3—C3—C6i108.1 (3)C1ii—Mo1—C1iii95.35 (5)
N3—C3—H3A110.1C1ii—Mo1—C1144.45 (16)
C6i—C3—H3A110.1C1iii—Mo1—C195.35 (5)
N3—C3—H3B110.1C1ii—Mo1—C1iv95.35 (5)
C6i—C3—H3B110.1C1iii—Mo1—C1iv144.45 (16)
H3A—C3—H3B108.4C1—Mo1—C1iv95.35 (5)
N4—C4—N3112.2 (3)C1ii—Mo1—C2iii145.00 (12)
N4—C4—H4A109.2C1iii—Mo1—C2iii76.18 (12)
N3—C4—H4A109.2C1—Mo1—C2iii70.56 (12)
N4—C4—H4B109.2C1iv—Mo1—C2iii75.69 (12)
N3—C4—H4B109.2C1ii—Mo1—C2iv70.56 (12)
H4A—C4—H4B107.9C1iii—Mo1—C2iv75.69 (12)
N4—C5—N5114.8 (3)C1—Mo1—C2iv144.99 (12)
N4—C5—H5A108.6C1iv—Mo1—C2iv76.18 (12)
N5—C5—H5A108.6C2iii—Mo1—C2iv74.44 (17)
N4—C5—H5B108.6C1ii—Mo1—C275.69 (12)
N5—C5—H5B108.6C1iii—Mo1—C2144.99 (12)
H5A—C5—H5B107.5C1—Mo1—C276.17 (12)
N5—C6—C3i107.5 (3)C1iv—Mo1—C270.55 (12)
N5—C6—H6A110.2C2iii—Mo1—C2129.35 (11)
C3i—C6—H6A110.2C2iv—Mo1—C2129.35 (11)
N5—C6—H6B110.2C1ii—Mo1—C2ii76.17 (12)
C3i—C6—H6B110.2C1iii—Mo1—C2ii70.55 (12)
H6A—C6—H6B108.5C1—Mo1—C2ii75.69 (12)
N4—C7—C8119.2 (4)C1iv—Mo1—C2ii144.99 (12)
N4—C7—H7A107.5C2iii—Mo1—C2ii129.36 (11)
C8—C7—H7A107.5C2iv—Mo1—C2ii129.35 (11)
N4—C7—H7B107.5C2—Mo1—C2ii74.44 (17)
C8—C7—H7B107.5C1—N1—Cu2137.9 (2)
H7A—C7—H7B107.0C3—N3—C4110.4 (3)
O1—C8—C7114.5 (4)C3—N3—Cu2108.1 (2)
O1—C8—H8A108.6C4—N3—Cu2114.4 (2)
C7—C8—H8A108.6C3—N3—H3C107.9
O1—C8—H8B108.6C4—N3—H3C107.9
C7—C8—H8B108.6Cu2—N3—H3C107.9
H8A—C8—H8B107.6C4—N4—C7114.3 (3)
N5i—Cu2—N5180.0C4—N4—C5117.2 (3)
N5i—Cu2—N384.99 (12)C7—N4—C5118.8 (3)
N5—Cu2—N395.01 (12)C6—N5—C5114.6 (3)
N5i—Cu2—N3i95.01 (12)C6—N5—Cu2107.20 (19)
N5—Cu2—N3i84.99 (12)C5—N5—Cu2114.4 (2)
N3—Cu2—N3i180.0C6—N5—H5C106.7
N5i—Cu2—N1i94.12 (11)C5—N5—H5C106.7
N5—Cu2—N1i85.88 (11)Cu2—N5—H5C106.7
N3—Cu2—N1i89.19 (10)C8—O1—H1C109.3
N3i—Cu2—N1i90.81 (10)H2A—O2—H2B108.2
N5i—Cu2—N185.88 (11)H3D—O3—H3E109.5
N5—Cu2—N194.12 (11)H4D—O4—H4E109.5
N3—Cu2—N190.81 (10)
N4—C7—C8—O122.2 (6)N3—C4—N4—C570.7 (4)
N5i—Cu2—N1—C1129.7 (4)C8—C7—N4—C4120.0 (4)
N5—Cu2—N1—C150.3 (4)C8—C7—N4—C594.9 (4)
N3—Cu2—N1—C1145.4 (4)N5—C5—N4—C466.8 (4)
N3i—Cu2—N1—C134.6 (4)N5—C5—N4—C777.3 (4)
C6i—C3—N3—C4166.9 (3)C3i—C6—N5—C5168.3 (3)
C6i—C3—N3—Cu241.1 (3)C3i—C6—N5—Cu240.2 (3)
N4—C4—N3—C3178.4 (3)N4—C5—N5—C6175.7 (3)
N4—C4—N3—Cu259.5 (4)N4—C5—N5—Cu251.3 (4)
N5i—Cu2—N3—C314.8 (2)N3—Cu2—N5—C6165.6 (2)
N5—Cu2—N3—C3165.2 (2)N3i—Cu2—N5—C614.4 (2)
N1i—Cu2—N3—C3109.0 (2)N1i—Cu2—N5—C6105.5 (2)
N1—Cu2—N3—C371.0 (2)N1—Cu2—N5—C674.5 (2)
N5i—Cu2—N3—C4138.2 (3)N3—Cu2—N5—C537.4 (3)
N5—Cu2—N3—C441.8 (3)N3i—Cu2—N5—C5142.6 (3)
N1i—Cu2—N3—C4127.6 (2)N1i—Cu2—N5—C5126.3 (3)
N1—Cu2—N3—C452.4 (2)N1—Cu2—N5—C553.7 (3)
N3—C4—N4—C775.0 (4)
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y+1/2, z; (iii) y+5/4, x3/4, z+1/4; (iv) y+3/4, x+5/4, z+1/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3C···N2i0.932.443.261 (4)147
N5—H5C···O2v0.932.383.291 (8)165
O1—H1C···O4vi0.852.483.149 (7)136
O4—H4D···N2vii0.852.112.729 (6)129
O4—H4E···O2viii0.852.473.279 (9)159
Symmetry codes: (i) x+2, y+1, z; (v) y+3/4, x+3/4, z1/4; (vi) y+5/4, x+1/4, z+5/4; (vii) x1, y, z+1; (viii) y1/4, x+1/4, z+5/4.

Experimental details

Crystal data
Chemical formula[Cu2Mo(CN)8(C12H30N6O2)2]·4H2O
Mr1084.08
Crystal system, space groupTetragonal, I41/a
Temperature (K)293
a, c (Å)20.0707 (10), 15.4380 (17)
V3)6218.9 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.32 × 0.28 × 0.26
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.75, 0.79
No. of measured, independent and
observed [I > 2σ(I)] reflections
16289, 3053, 2459
Rint0.058
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.103, 1.06
No. of reflections3053
No. of parameters165
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.38

Computer programs: APEX2 (Bruker, 2004), SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3C···N2i0.932.443.261 (4)147.3
N5—H5C···O2ii0.932.383.291 (8)164.9
O1—H1C···O4iii0.852.483.149 (7)136.0
O4—H4D···N2iv0.852.112.729 (6)128.9
O4—H4E···O2v0.852.473.279 (9)158.9
Symmetry codes: (i) x+2, y+1, z; (ii) y+3/4, x+3/4, z1/4; (iii) y+5/4, x+1/4, z+5/4; (iv) x1, y, z+1; (v) y1/4, x+1/4, z+5/4.
 

Acknowledgements

This work is supported by the University Natural Science Foundation of Jiangsu Province (grant No. 07KJB150030).

References

First citationBruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y. Y., Zhou, H., Shen, X. P., Lu, H. F. & Yuan, A. H. (2007). J. Mol. Struct. 839, 64–68.  Web of Science CSD CrossRef CAS Google Scholar
First citationLarionova, J., Willemin, S., Donnadieu, B., Henner, B., Guérin, C., Gillon, B. & Goujon, A. (2004). J. Phys. Chem. Solids, 65, 677–691.  Web of Science CrossRef CAS Google Scholar
First citationLeipoldt, J. G., Bok, L. D. C. & Cillier, P. J. (1974). Z. Anorg. Allg. Chem. 409, 343–344.  CrossRef CAS Web of Science Google Scholar
First citationPrzychodzeń, P., Korzeniak, T., Podgajny, R. & Sieklucka, B. (2006). Coord. Chem. Rev. 250, 2234–2260.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuh, M. P. & Kang, S. G. (1988). Inorg. Chem. 27, 2544–2546.  CrossRef CAS Web of Science Google Scholar
First citationZhou, H., Chen, Y. Y., Yuan, A. H. & Shen, X. P. (2008). Inorg. Chem. Commun. 11, 363–366.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, H., Yuan, A. H., Shen, X. P., Chen, Y. Y., Price, D. J. & Kepert, C. J. (2007). Inorg. Chem. Commun. 10, 940–943.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds