metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1595-m1596

catena-Poly[{di-μ-isonicotinato-bis­[di­aqua­isonicotinatoeuropium(III)]}-μ-isonicotinato-[diisonicotinatocopper(II)]-μ-isonicotinato]

aDepartment of Chemistry and Life Sciences, Quanzhou Normal University, Fujian 362000, People's Republic of China
*Correspondence e-mail: hml301@163.com

(Received 27 October 2008; accepted 18 November 2008; online 22 November 2008)

The title compound, [CuEu2(C6H4NO2)8(H2O)4]n, displays a one-dimensional chain structure. The four-coordinate CuII ion (site symmetry [{\overline 1}]) adopts a trans-CuN2O2 geometry and is bridged by two carboxyl­ate groups from two isonicotinate ligands. The EuIII ion adopts a distorted square-anti­prismatic geometry, being coordinated by four O atoms from bridging carboxyl­ate groups of four isonicotinate ligands, two O atoms from chelating carboxyl­ate groups of one isonicotinate ligand and two O atoms from coordinated water mol­ecules; adjacent EuIII ions in the chain are related by inversion. The water mol­ecules interact with the ligands via O—H⋯N hydrogen bonds [O⋯O = 2.782 (3)–2.881 (3) Å], which link the chains into a three-dimensional structure.

Related literature

For background literature, see: Zhao et al. (2006[Zhao, B., Gao, H.-L., Chen, X.-Y., Cheng, P., Shi, W., Liao, D.-Z., Yan, S. P. & Jiang, Z.-H. (2006). Chem. Eur. J. 12, 149-158.]); Ma et al. (2001[Ma, B.-Q., Gao, S., Su, G. & Xu, G.-X. (2001). Angew. Chem. Int. Ed. 40, 434-437.]). For related structures, see: Liang et al. (2007[Liang, F.-P., Huang, M.-L., Jiang, C.-F., Li, Y. & Hu, R.-X. (2007). J. Coord. Chem. pp. 2343-2350.]); Zhang et al. (2005[Zhang, M.-B., Zhang, J., Zheng, S.-T. & Yang, G.-Y. (2005). Angew. Chem. Int. Ed. 44, 1385-1388.]); Deng et al. (2008[Deng, H., Liu, Z.-H., Qiu, Y.-C., Li, Y.-H. & Zeller, M. (2008). Inorg. Chem. Commun. pp. 978-981.]).

[Scheme 1]

Experimental

Crystal data
  • [CuEu2(C6H4NO2)8(H2O)4]

  • Mr = 1416.34

  • Monoclinic, P 21 /n

  • a = 9.5218 (9) Å

  • b = 15.0371 (13) Å

  • c = 18.2850 (16) Å

  • β = 93.822 (1)°

  • V = 2612.2 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.86 mm−1

  • T = 295 (2) K

  • 0.40 × 0.30 × 0.27 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.397, Tmax = 0.517 (expected range = 0.355–0.462)

  • 18387 measured reflections

  • 4853 independent reflections

  • 4222 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.049

  • S = 1.04

  • 4853 reflections

  • 359 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H4W⋯O8i 0.83 1.97 2.782 (3) 165
O9—H2W⋯O1i 0.83 1.98 2.790 (3) 164
O10—H3W⋯N1ii 0.83 2.06 2.881 (3) 169
O9—H1W⋯N4iii 0.83 2.00 2.807 (3) 161
Symmetry codes: (i) -x, -y+2, -z; (ii) [x+{\script{1\over 2}}, -y+{\script{5\over 2}}, z-{\script{1\over 2}}]; (iii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In recent years, the study of heterometallic lanthanide-transition metal polymers has played an important role due to their potential applications in catalytic, magnetic and hochtemperatursupraleiter materials (Zhao et al., 2006; Ma et al., 2001). Isonicotinic acid is a good linear bridging ligand with oxygen and nitrogen donors on opposite sides. the crystal structures of heterometallic lanthanide-transition metal complexes with isonicotinate ligand have been reported (Liang et al., 2007; Zhang et al., 2005; Deng et al., 2008;). In order to extend further the study of these compounds, the title complex, (I), has been synthesized and its structure is presented in this article.

The molecular structure and the crystal packing diagram of the title compound are shown in Figs. 1 and 2, respectively. The complex structure is a one-dimensional chain consisting of two metal centres - Cu(II) and Eu(III), which are linked to each other by tridentate bridging isonicotinate ligands. It is worthwhile to note that one-dimensional chain is an axial-symmetric structure. Each Eu(III) cation is of an eight coordination consisting of eight oxygen atoms from four bridging carboxylate O atoms of four isonicotinate ligands [Eu—O distances ranging from 2.341 (2) to 2.366 (2) Å], two from chelating carboxylate O atoms of one isonicotinate ligand [Eu—O distances 2.477 (2) and 2.5428 (19) Å] and two water molecules [Eu—O distances 2.4133 (19) and 2.4548 (19) Å]. The O—Eu—O bond angles are in the range from 51.88 (6) to 152.34 (8)°. Therefore, the coordination polyhedron can be described as a distorted square antiprism. Two Eu(III) ions are connected by four bridging carboxylate groups of four isonicotinate ligands with a Eu···Eu distance of 4.5265 (4) Å. The Cu(II) cation, lies on an inversion center and is of four-coordination with an quadrilateral planar geometry, in which two coordinated oxygen atoms belong to two monodentate coordinating carboxylate O atoms of two isonicotinate ligands [Cu—O distance 1.9867 (19) Å] and two nitrogen atoms from two tridentate bridging isonicotinate ligands [Cu—N distance 2.011 (2) Å]. The O—Cu—N bond angles lie in a very narrow range of 89.26 (9) to 90.74 (9)°. Two weak Cu—N bonds with a distance of 2.654 (3)Å on both sides of the quadrilateral planar copper center are observed, in which the coordination N atoms come from pyridyl groups of two isonicotinate ligands bridging two Eu(III) ions via carboxylates in two adjacent molecular chains. The water molecules are hydrogen bonded to the N atoms of the pyridyl groups of the ligands via O—H···N type hydrogen bonds which link the complex into a three-dimensional structure (details of hydrogen bonding geometry are given in Table 1).

Related literature top

For background literature, see: Zhao et al. (2006); Ma et al. (2001). For related structures, see: Liang et al. (2007); Zhang et al. (2005); Deng et al. (2008).

Experimental top

A mixture of Eu2O3 (0.1811 g, 0.5 mmol), CuO (0.0801 g, 1 mmol), isonicotinic acid (0.4923 g, 4.0 mmol), and H2O (20.0 ml) was sealed in a 40 ml Teflon-lined stainless steel reactor, heated in an oven at 413 K for 72 h, and then slowly cooled to room temperature. The blue block single crystals suitable for X-ray analysis were collected.

Refinement top

H atoms bonded to C atoms were placed geometrically and treated as riding, (C—H distances are 0.93 Å), with Uiso(H) = 1.2Ueq(C). The water H atoms found from Fourier difference maps were included in the refinements with restraints for O—H distances (0.829–0.833 Å) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The ORTEP-3 (Farrugia, 1997) drawing of the title compound. Displacement ellipsoids are drawn at 30% probability level. Symmetry codes: (i) -x + 1, -y + 2, -z.
[Figure 2] Fig. 2. Projection showing the three-dimensional structure formed by H-bonding interaction of the compound (I).
catena-poly[{di-µ-isonicotinato-bis[diaquaisonicotinatoeuropium(III)]}-µ- isonicotinato-[diisonicotinatocopper(II)]-µ-isonicotinato] top
Crystal data top
[CuEu2(C6H4NO2)8(H2O)4]F(000) = 1398
Mr = 1416.34Dx = 1.801 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6922 reflections
a = 9.5218 (9) Åθ = 2.5–28.0°
b = 15.0371 (13) ŵ = 2.86 mm1
c = 18.2850 (16) ÅT = 295 K
β = 93.822 (1)°Block, green
V = 2612.2 (4) Å30.40 × 0.30 × 0.27 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
4853 independent reflections
Radiation source: fine-focus sealed tube4222 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1011
Tmin = 0.397, Tmax = 0.517k = 1718
18387 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.049 w = 1/[σ2(Fo2) + (0.0175P)2 + 1.449P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.006
4853 reflectionsΔρmax = 0.36 e Å3
359 parametersΔρmin = 0.37 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00683 (17)
Crystal data top
[CuEu2(C6H4NO2)8(H2O)4]V = 2612.2 (4) Å3
Mr = 1416.34Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.5218 (9) ŵ = 2.86 mm1
b = 15.0371 (13) ÅT = 295 K
c = 18.2850 (16) Å0.40 × 0.30 × 0.27 mm
β = 93.822 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4853 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4222 reflections with I > 2σ(I)
Tmin = 0.397, Tmax = 0.517Rint = 0.036
18387 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0216 restraints
wR(F2) = 0.049H-atom parameters constrained
S = 1.04Δρmax = 0.36 e Å3
4853 reflectionsΔρmin = 0.37 e Å3
359 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.303549 (14)1.084800 (9)0.000640 (7)0.01521 (6)
Cu10.00000.50000.00000.02112 (12)
O10.1022 (2)1.06985 (13)0.08317 (11)0.0256 (5)
O20.2241 (2)1.19395 (13)0.08933 (11)0.0319 (5)
O30.4104 (2)1.03423 (18)0.11132 (12)0.0440 (6)
O40.6048 (3)0.95248 (17)0.11231 (12)0.0437 (6)
O50.2714 (2)0.92881 (14)0.00398 (13)0.0378 (6)
O60.4704 (2)0.85317 (15)0.00984 (14)0.0454 (6)
O70.1420 (2)0.55366 (14)0.07136 (11)0.0276 (5)
O80.3139 (2)0.62128 (16)0.01438 (11)0.0370 (6)
N10.0769 (4)1.2279 (2)0.30315 (16)0.0494 (8)
N20.5926 (3)1.0505 (3)0.37273 (15)0.0521 (9)
N30.1135 (2)0.61288 (15)0.00239 (12)0.0193 (5)
N40.4825 (3)0.6230 (2)0.28160 (15)0.0448 (8)
C10.1334 (4)1.1683 (3)0.2564 (2)0.0579 (12)
H10.22131.14560.26560.069*
C20.0711 (4)1.1377 (3)0.1950 (2)0.0463 (10)
H20.11511.09490.16480.056*
C30.0576 (3)1.1721 (2)0.17983 (15)0.0259 (7)
C40.1180 (4)1.2343 (2)0.22750 (18)0.0420 (9)
H40.20501.25890.21890.050*
C50.0485 (4)1.2599 (3)0.2882 (2)0.0507 (10)
H50.09141.30150.32010.061*
C60.1329 (3)1.1432 (2)0.11331 (15)0.0226 (6)
C70.5089 (4)1.1027 (3)0.33001 (19)0.0462 (10)
H70.46561.15040.35180.055*
C80.4824 (4)1.0906 (2)0.25533 (17)0.0314 (7)
H80.42161.12830.22820.038*
C90.5483 (3)1.0211 (2)0.22209 (15)0.0229 (6)
C100.6410 (4)0.9697 (3)0.26468 (17)0.0406 (9)
H100.69130.92420.24390.049*
C110.6578 (4)0.9867 (3)0.33875 (19)0.0573 (12)
H110.71970.95070.36690.069*
C120.5193 (3)1.0016 (2)0.14180 (15)0.0252 (7)
C130.0470 (3)0.69169 (19)0.00148 (15)0.0233 (6)
H130.05080.69210.00040.028*
C140.1172 (3)0.77197 (19)0.00207 (15)0.0231 (6)
H140.06760.82520.00270.028*
C150.2621 (3)0.77222 (19)0.00173 (14)0.0207 (6)
C160.3327 (3)0.69096 (19)0.00510 (15)0.0241 (7)
H160.43050.68890.00720.029*
C170.2545 (3)0.6135 (2)0.00524 (15)0.0229 (6)
H170.30180.55940.00740.027*
C180.3420 (3)0.8586 (2)0.00392 (16)0.0254 (7)
C190.5216 (3)0.6665 (2)0.22291 (19)0.0408 (9)
H190.59950.70380.22880.049*
C200.4541 (3)0.6600 (2)0.15378 (17)0.0320 (7)
H200.48560.69260.11480.038*
C210.3387 (3)0.6041 (2)0.14357 (16)0.0258 (7)
C220.2961 (4)0.5588 (2)0.20395 (18)0.0420 (9)
H220.21910.52070.19940.050*
C230.3693 (4)0.5708 (3)0.2715 (2)0.0532 (11)
H230.33790.54100.31180.064*
C240.2594 (3)0.59323 (18)0.06933 (16)0.0239 (7)
O90.0897 (2)1.07055 (13)0.07832 (11)0.0284 (5)
H1W0.07571.09190.12020.043*
H2W0.03011.03140.07150.043*
O100.2777 (2)1.22483 (13)0.06923 (11)0.0299 (5)
H3W0.32081.23070.10680.045*
H4W0.27381.27290.04730.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.01495 (9)0.01529 (9)0.01549 (8)0.00210 (6)0.00169 (5)0.00087 (5)
Cu10.0205 (3)0.0153 (3)0.0264 (3)0.0064 (2)0.0071 (2)0.0056 (2)
O10.0249 (12)0.0272 (12)0.0251 (11)0.0042 (9)0.0061 (9)0.0054 (9)
O20.0394 (13)0.0233 (12)0.0351 (12)0.0072 (10)0.0194 (10)0.0044 (9)
O30.0394 (15)0.0656 (18)0.0255 (12)0.0092 (13)0.0078 (11)0.0041 (12)
O40.0550 (16)0.0506 (15)0.0274 (12)0.0129 (13)0.0161 (11)0.0074 (11)
O50.0373 (14)0.0178 (12)0.0576 (16)0.0060 (10)0.0016 (12)0.0012 (10)
O60.0214 (13)0.0354 (14)0.0796 (19)0.0127 (11)0.0041 (12)0.0022 (13)
O70.0268 (12)0.0267 (12)0.0281 (11)0.0024 (10)0.0083 (9)0.0054 (9)
O80.0475 (15)0.0358 (14)0.0272 (12)0.0008 (11)0.0022 (11)0.0020 (10)
N10.064 (2)0.0436 (19)0.0442 (18)0.0060 (17)0.0313 (16)0.0110 (15)
N20.046 (2)0.088 (3)0.0216 (15)0.0102 (19)0.0030 (14)0.0089 (16)
N30.0209 (13)0.0159 (12)0.0208 (12)0.0044 (10)0.0011 (10)0.0023 (9)
N40.049 (2)0.0461 (19)0.0368 (17)0.0086 (16)0.0195 (14)0.0070 (14)
C10.049 (2)0.062 (3)0.067 (3)0.017 (2)0.040 (2)0.023 (2)
C20.037 (2)0.050 (2)0.054 (2)0.0138 (18)0.0207 (18)0.0225 (18)
C30.0276 (17)0.0260 (17)0.0250 (16)0.0029 (14)0.0077 (13)0.0016 (13)
C40.045 (2)0.043 (2)0.041 (2)0.0128 (18)0.0190 (17)0.0108 (16)
C50.065 (3)0.045 (2)0.044 (2)0.013 (2)0.0199 (19)0.0180 (18)
C60.0195 (16)0.0263 (17)0.0219 (15)0.0037 (13)0.0021 (12)0.0027 (12)
C70.057 (3)0.050 (2)0.034 (2)0.007 (2)0.0143 (18)0.0162 (17)
C80.0341 (19)0.0342 (19)0.0267 (16)0.0047 (15)0.0072 (14)0.0006 (14)
C90.0208 (16)0.0294 (17)0.0184 (14)0.0025 (13)0.0018 (12)0.0014 (12)
C100.040 (2)0.054 (2)0.0282 (18)0.0150 (18)0.0034 (15)0.0054 (16)
C110.046 (2)0.100 (4)0.0249 (19)0.018 (2)0.0035 (17)0.011 (2)
C120.0283 (18)0.0276 (17)0.0198 (15)0.0068 (14)0.0032 (13)0.0029 (13)
C130.0177 (15)0.0229 (16)0.0289 (16)0.0017 (12)0.0013 (12)0.0014 (12)
C140.0211 (16)0.0169 (15)0.0313 (16)0.0008 (12)0.0003 (12)0.0002 (12)
C150.0217 (16)0.0209 (16)0.0190 (14)0.0076 (12)0.0011 (12)0.0006 (11)
C160.0168 (16)0.0236 (17)0.0319 (16)0.0036 (12)0.0015 (13)0.0012 (13)
C170.0221 (16)0.0184 (15)0.0278 (16)0.0002 (13)0.0006 (12)0.0017 (12)
C180.0270 (18)0.0219 (17)0.0268 (16)0.0085 (13)0.0021 (13)0.0001 (12)
C190.0283 (19)0.045 (2)0.047 (2)0.0097 (17)0.0104 (16)0.0023 (17)
C200.0272 (18)0.037 (2)0.0319 (17)0.0040 (15)0.0007 (14)0.0001 (14)
C210.0246 (17)0.0228 (17)0.0291 (16)0.0030 (13)0.0060 (13)0.0019 (12)
C220.046 (2)0.042 (2)0.0360 (19)0.0178 (18)0.0124 (17)0.0118 (16)
C230.062 (3)0.057 (3)0.038 (2)0.022 (2)0.0196 (19)0.0229 (18)
C240.0262 (17)0.0156 (15)0.0289 (16)0.0055 (13)0.0055 (13)0.0038 (12)
O90.0247 (12)0.0343 (13)0.0250 (11)0.0101 (10)0.0081 (9)0.0053 (9)
O100.0414 (13)0.0221 (11)0.0277 (11)0.0021 (10)0.0129 (10)0.0045 (9)
Geometric parameters (Å, º) top
Eu1—O4i2.341 (2)C3—C61.516 (4)
Eu1—O6i2.342 (2)C4—C51.385 (5)
Eu1—O32.351 (2)C4—H40.9300
Eu1—O52.366 (2)C5—H50.9300
Eu1—O92.4133 (19)C7—C81.384 (5)
Eu1—O102.4548 (19)C7—H70.9300
Eu1—O22.477 (2)C8—C91.381 (4)
Eu1—O12.5428 (19)C8—H80.9300
Eu1—C62.864 (3)C9—C101.376 (4)
Cu1—O7ii1.9867 (19)C9—C121.504 (4)
Cu1—O71.9867 (19)C10—C111.377 (5)
Cu1—N32.011 (2)C10—H100.9300
Cu1—N3ii2.011 (2)C11—H110.9300
O1—C61.259 (3)C13—C141.380 (4)
O2—C61.256 (3)C13—H130.9300
O3—C121.245 (4)C14—C151.380 (4)
O4—C121.248 (4)C14—H140.9300
O4—Eu1i2.341 (2)C15—C161.394 (4)
O5—C181.251 (4)C15—C181.513 (4)
O6—C181.237 (4)C16—C171.383 (4)
O6—Eu1i2.342 (2)C16—H160.9300
O7—C241.269 (4)C17—H170.9300
O8—C241.235 (4)C19—C201.383 (4)
N1—C11.326 (5)C19—H190.9300
N1—C51.333 (5)C20—C211.386 (4)
N2—C111.320 (5)C20—H200.9300
N2—C71.334 (5)C21—C221.381 (4)
N3—C171.340 (4)C21—C241.517 (4)
N3—C131.343 (4)C22—C231.389 (5)
N4—C191.331 (4)C22—H220.9300
N4—C231.336 (5)C23—H230.9300
C1—C21.382 (5)O9—H1W0.8334
C1—H10.9300O9—H2W0.8326
C2—C31.376 (4)O10—H3W0.8291
C2—H20.9300O10—H4W0.8292
C3—C41.378 (4)
O4i—Eu1—O6i76.87 (9)N1—C5—H5118.5
O4i—Eu1—O3121.14 (8)C4—C5—H5118.5
O6i—Eu1—O373.47 (9)O2—C6—O1121.7 (3)
O4i—Eu1—O578.18 (9)O2—C6—C3118.8 (3)
O6i—Eu1—O5120.90 (8)O1—C6—C3119.6 (3)
O3—Eu1—O575.49 (9)O2—C6—Eu159.57 (14)
O4i—Eu1—O979.30 (8)O1—C6—Eu162.56 (14)
O6i—Eu1—O9144.92 (8)C3—C6—Eu1173.2 (2)
O3—Eu1—O9141.54 (8)N2—C7—C8124.3 (3)
O5—Eu1—O978.12 (7)N2—C7—H7117.9
O4i—Eu1—O1077.90 (8)C8—C7—H7117.9
O6i—Eu1—O1076.15 (8)C7—C8—C9118.4 (3)
O3—Eu1—O10138.18 (8)C7—C8—H8120.8
O5—Eu1—O10145.98 (7)C9—C8—H8120.8
O9—Eu1—O1073.94 (7)C10—C9—C8118.0 (3)
O4i—Eu1—O2152.34 (8)C10—C9—C12120.8 (3)
O6i—Eu1—O290.07 (8)C8—C9—C12121.2 (3)
O3—Eu1—O276.68 (8)C9—C10—C11118.7 (3)
O5—Eu1—O2129.00 (7)C9—C10—H10120.6
O9—Eu1—O299.60 (7)C11—C10—H10120.6
O10—Eu1—O275.30 (7)N2—C11—C10124.8 (4)
O4i—Eu1—O1147.58 (8)N2—C11—H11117.6
O6i—Eu1—O1135.36 (8)C10—C11—H11117.6
O3—Eu1—O175.31 (7)O3—C12—O4126.0 (3)
O5—Eu1—O180.01 (7)O3—C12—C9117.0 (3)
O9—Eu1—O172.93 (7)O4—C12—C9117.0 (3)
O10—Eu1—O1109.25 (7)N3—C13—C14122.9 (3)
O2—Eu1—O151.88 (6)N3—C13—H13118.5
O4i—Eu1—C6165.98 (8)C14—C13—H13118.5
O6i—Eu1—C6112.40 (9)C15—C14—C13119.1 (3)
O3—Eu1—C672.50 (8)C15—C14—H14120.4
O5—Eu1—C6104.14 (8)C13—C14—H14120.4
O9—Eu1—C687.60 (8)C14—C15—C16118.5 (3)
O10—Eu1—C693.78 (7)C14—C15—C18120.7 (3)
O2—Eu1—C625.93 (7)C16—C15—C18120.8 (3)
O1—Eu1—C626.07 (7)C17—C16—C15118.7 (3)
O7ii—Cu1—O7180.0C17—C16—H16120.7
O7ii—Cu1—N389.26 (9)C15—C16—H16120.7
O7—Cu1—N390.74 (9)N3—C17—C16123.0 (3)
O7ii—Cu1—N3ii90.74 (9)N3—C17—H17118.5
O7—Cu1—N3ii89.26 (9)C16—C17—H17118.5
N3—Cu1—N3ii180.0O6—C18—O5126.2 (3)
C6—O1—Eu191.37 (16)O6—C18—C15116.9 (3)
C6—O2—Eu194.50 (17)O5—C18—C15116.8 (3)
C12—O3—Eu1144.7 (2)N4—C19—C20124.4 (3)
C12—O4—Eu1i144.1 (2)N4—C19—H19117.8
C18—O5—Eu1140.1 (2)C20—C19—H19117.8
C18—O6—Eu1i151.0 (2)C19—C20—C21118.8 (3)
C24—O7—Cu1137.19 (19)C19—C20—H20120.6
C1—N1—C5116.3 (3)C21—C20—H20120.6
C11—N2—C7115.7 (3)C22—C21—C20117.6 (3)
C17—N3—C13117.7 (2)C22—C21—C24120.5 (3)
C17—N3—Cu1122.85 (19)C20—C21—C24121.9 (3)
C13—N3—Cu1119.46 (19)C21—C22—C23119.3 (3)
C19—N4—C23116.3 (3)C21—C22—H22120.3
N1—C1—C2124.8 (3)C23—C22—H22120.3
N1—C1—H1117.6N4—C23—C22123.5 (3)
C2—C1—H1117.6N4—C23—H23118.2
C3—C2—C1118.3 (3)C22—C23—H23118.2
C3—C2—H2120.8O8—C24—O7127.0 (3)
C1—C2—H2120.8O8—C24—C21118.7 (3)
C2—C3—C4117.9 (3)O7—C24—C21114.3 (3)
C2—C3—C6122.0 (3)Eu1—O9—H1W125.7
C4—C3—C6120.1 (3)Eu1—O9—H2W122.1
C3—C4—C5119.6 (3)H1W—O9—H2W110.0
C3—C4—H4120.2Eu1—O10—H3W118.5
C5—C4—H4120.2Eu1—O10—H4W120.4
N1—C5—C4123.1 (3)H3W—O10—H4W110.4
O4i—Eu1—O1—C6154.11 (17)O10—Eu1—C6—O244.17 (18)
O6i—Eu1—O1—C633.3 (2)O1—Eu1—C6—O2172.2 (3)
O3—Eu1—O1—C680.12 (17)O4i—Eu1—C6—O175.1 (4)
O5—Eu1—O1—C6157.60 (17)O6i—Eu1—C6—O1155.36 (16)
O9—Eu1—O1—C6121.87 (17)O3—Eu1—C6—O192.26 (17)
O10—Eu1—O1—C656.31 (17)O5—Eu1—C6—O122.77 (18)
O2—Eu1—O1—C64.30 (16)O9—Eu1—C6—O154.35 (16)
O4i—Eu1—O2—C6148.82 (19)O10—Eu1—C6—O1128.07 (16)
O6i—Eu1—O2—C6150.30 (18)O2—Eu1—C6—O1172.2 (3)
O3—Eu1—O2—C677.32 (18)C11—N2—C7—C83.6 (6)
O5—Eu1—O2—C618.9 (2)N2—C7—C8—C91.3 (6)
O9—Eu1—O2—C663.58 (18)C7—C8—C9—C102.4 (5)
O10—Eu1—O2—C6134.05 (18)C7—C8—C9—C12177.2 (3)
O1—Eu1—O2—C64.33 (16)C8—C9—C10—C113.5 (5)
O4i—Eu1—O3—C1216.4 (4)C12—C9—C10—C11176.2 (3)
O6i—Eu1—O3—C1246.5 (4)C7—N2—C11—C102.4 (6)
O5—Eu1—O3—C1282.6 (4)C9—C10—C11—N21.1 (7)
O9—Eu1—O3—C12130.7 (4)Eu1—O3—C12—O429.2 (6)
O10—Eu1—O3—C1291.6 (4)Eu1—O3—C12—C9152.7 (3)
O2—Eu1—O3—C12140.6 (4)Eu1i—O4—C12—O326.5 (6)
O1—Eu1—O3—C12165.8 (4)Eu1i—O4—C12—C9155.4 (3)
C6—Eu1—O3—C12167.2 (4)C10—C9—C12—O3161.7 (3)
O4i—Eu1—O5—C1864.0 (3)C8—C9—C12—O317.9 (4)
O6i—Eu1—O5—C182.7 (4)C10—C9—C12—O416.6 (4)
O3—Eu1—O5—C1862.9 (3)C8—C9—C12—O4163.8 (3)
O9—Eu1—O5—C18145.3 (3)C17—N3—C13—C141.1 (4)
O10—Eu1—O5—C18110.1 (3)Cu1—N3—C13—C14179.2 (2)
O2—Eu1—O5—C18121.8 (3)N3—C13—C14—C151.7 (4)
O1—Eu1—O5—C18140.2 (3)C13—C14—C15—C163.7 (4)
C6—Eu1—O5—C18130.2 (3)C13—C14—C15—C18175.0 (3)
N3—Cu1—O7—C2495.7 (3)C14—C15—C16—C172.9 (4)
N3ii—Cu1—O7—C2484.3 (3)C18—C15—C16—C17175.7 (3)
O7ii—Cu1—N3—C1739.1 (2)C13—N3—C17—C161.9 (4)
O7—Cu1—N3—C17140.9 (2)Cu1—N3—C17—C16178.4 (2)
O7ii—Cu1—N3—C13140.6 (2)C15—C16—C17—N30.1 (4)
O7—Cu1—N3—C1339.4 (2)Eu1i—O6—C18—O522.8 (7)
C5—N1—C1—C20.6 (7)Eu1i—O6—C18—C15159.1 (3)
N1—C1—C2—C31.4 (7)Eu1—O5—C18—O68.6 (5)
C1—C2—C3—C41.0 (6)Eu1—O5—C18—C15173.3 (2)
C1—C2—C3—C6179.3 (3)C14—C15—C18—O6174.3 (3)
C2—C3—C4—C50.1 (5)C16—C15—C18—O64.3 (4)
C6—C3—C4—C5179.8 (3)C14—C15—C18—O53.9 (4)
C1—N1—C5—C40.4 (6)C16—C15—C18—O5177.5 (3)
C3—C4—C5—N10.7 (6)C23—N4—C19—C200.7 (6)
Eu1—O2—C6—O18.1 (3)N4—C19—C20—C210.7 (5)
Eu1—O2—C6—C3172.4 (2)C19—C20—C21—C221.1 (5)
Eu1—O1—C6—O27.9 (3)C19—C20—C21—C24179.8 (3)
Eu1—O1—C6—C3172.7 (2)C20—C21—C22—C230.0 (5)
C2—C3—C6—O2158.1 (3)C24—C21—C22—C23179.1 (3)
C4—C3—C6—O222.2 (4)C19—N4—C23—C221.9 (6)
C2—C3—C6—O121.4 (5)C21—C22—C23—N41.5 (7)
C4—C3—C6—O1158.3 (3)Cu1—O7—C24—O810.8 (5)
O4i—Eu1—C6—O297.1 (4)Cu1—O7—C24—C21168.0 (2)
O6i—Eu1—C6—O232.40 (19)C22—C21—C24—O8167.1 (3)
O3—Eu1—C6—O295.50 (18)C20—C21—C24—O813.9 (4)
O5—Eu1—C6—O2164.99 (17)C22—C21—C24—O711.8 (4)
O9—Eu1—C6—O2117.89 (18)C20—C21—C24—O7167.3 (3)
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H4W···O8iii0.831.972.782 (3)165
O9—H2W···O1iii0.831.982.790 (3)164
O10—H3W···N1iv0.832.062.881 (3)169
O9—H1W···N4v0.832.002.807 (3)161
Symmetry codes: (iii) x, y+2, z; (iv) x+1/2, y+5/2, z1/2; (v) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[CuEu2(C6H4NO2)8(H2O)4]
Mr1416.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)9.5218 (9), 15.0371 (13), 18.2850 (16)
β (°) 93.822 (1)
V3)2612.2 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.86
Crystal size (mm)0.40 × 0.30 × 0.27
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.397, 0.517
No. of measured, independent and
observed [I > 2σ(I)] reflections
18387, 4853, 4222
Rint0.036
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.049, 1.04
No. of reflections4853
No. of parameters359
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.37

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H4W···O8i0.831.972.782 (3)165
O9—H2W···O1i0.831.982.790 (3)164
O10—H3W···N1ii0.832.062.881 (3)169
O9—H1W···N4iii0.832.002.807 (3)161
Symmetry codes: (i) x, y+2, z; (ii) x+1/2, y+5/2, z1/2; (iii) x1/2, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Quanzhou Normal University of China (grant No. 2008 K J01).

References

First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, H., Liu, Z.-H., Qiu, Y.-C., Li, Y.-H. & Zeller, M. (2008). Inorg. Chem. Commun. pp. 978–981.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLiang, F.-P., Huang, M.-L., Jiang, C.-F., Li, Y. & Hu, R.-X. (2007). J. Coord. Chem. pp. 2343–2350.  Web of Science CSD CrossRef Google Scholar
First citationMa, B.-Q., Gao, S., Su, G. & Xu, G.-X. (2001). Angew. Chem. Int. Ed. 40, 434–437.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, M.-B., Zhang, J., Zheng, S.-T. & Yang, G.-Y. (2005). Angew. Chem. Int. Ed. 44, 1385–1388.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, B., Gao, H.-L., Chen, X.-Y., Cheng, P., Shi, W., Liao, D.-Z., Yan, S. P. & Jiang, Z.-H. (2006). Chem. Eur. J. 12, 149–158.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1595-m1596
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds