organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(5-Bromo-2-hy­droxy­benzyl­­idene)-3,4,5-tri­meth­oxy­benzohydrazide

aInstitute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, People's Republic of China
*Correspondence e-mail: minwangyu@126.com

(Received 3 November 2008; accepted 18 November 2008; online 22 November 2008)

The mol­ecule of the title compound, C17H17BrN2O5, assumes an E configuration, with the 5-bromo-2-hydroxy­phenyl and benzohydrazide units located on opposite sites of the C=N double bond. The dihedral angle between the planes of the two benzene rings is 32.48 (15)°. The crystal structure is stabilized by intra­molecular O—H⋯N and inter­molecular N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Yang et al. (1996[Yang, Z. Y., Yang, R. D. & Yu, K. B. (1996). Polyhedron, 15, 3749-3753.]); Nawar & Hosny (2000[Nawar, N. & Hosny, N. M. (2000). Transition Met. Chem. 25, 1-8.]); Pelagatti et al. (1999[Pelagatti, P., Bacchi, A., Carcelli, M., Costa, M., Fochi, A., Ghidini, P., Leporati, E., Masi, M., Pelizzi, C. & Pelizzi, G. (1999). J. Organomet. Chem. 583, 94-105.]); Ainscough et al. (1998[Ainscough, E. W., Brodie, A. M., Dobbs, A. J., Ranford, J. D. & Waters, J. M. (1998). Inorg Chim. Acta, 267, 27-38.]). For related structures, see: Diao & Yu (2006[Diao, C.-H. & Yu, M. (2006). Acta Cryst. E62, o5278-o5279.]); Jing et al. (2005[Jing, Z.-L., Fan, Z., Yu, M., Chen, X. & Deng, Q.-L. (2005). Acta Cryst. E61, o3495-o3496.]); Wang et al. (2008[Wang, Y.-M., Zhao, Z.-D., Chen, Y.-X. & Bi, L.-W. (2008). Acta Cryst. E64, o1009.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17BrN2O5

  • Mr = 409.24

  • Monoclinic, P 21 /c

  • a = 11.4157 (19) Å

  • b = 16.279 (3) Å

  • c = 9.3738 (16) Å

  • β = 100.210 (3)°

  • V = 1714.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.43 mm−1

  • T = 273 (2) K [Unusual. Please check]

  • 0.15 × 0.10 × 0.06 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.712, Tmax = 0.868

  • 8954 measured reflections

  • 3037 independent reflections

  • 2065 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.097

  • S = 1.01

  • 3037 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.82 1.92 2.642 (3) 145
N1—H1A⋯O2i 0.86 2.14 2.888 (3) 146
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Salicyladelhyde hydrazones have received considerable attention because of their possible applications in catalysis and pharmacology (Yang et al., 1996; Nawar & Hosny, 2000; Pelagatti et al., 1999; Ainscough et al., 1998). As part of our ongoing investigation on acylhydrazone compounds (Wang et al., 2008) and their metal complexes, we have obtained the title compound, (I), from a condensation of 3,4,5-trimethoxybenzohydrazide and 5-bromo-2-hydroxybenzaldehyde, and report its crystal structure in this paper.

The molecular structure of (I) (Fig. 1) contains 3,4,5-trimethoxybenzohydrazide and 5-bromo-2-hydroxybenzaldehyde moities that are located on opposite sides of the CN double bond exhibiting an E configuration about CN. The dihedral angle between the mean-planes of the two benzene rings is 32.48 (15)°. The crystal structure involves an intramolecular hydrogen bond O1–H1···N2, and is further stabilized by an intermolecular hydrogen bonds N1–H1A···O2, resulting in chains of molecules extended along the c-axis; details are given in Table 1 and Fig. 2. The bond distances and bond angles in (I) are in agreement with the corresponding dimensions reported for some structures closely related to (I) (Diao & Yu, 2006; Jing et al., 2005; Wang et al., 2008). (

Related literature top

For related literature, see: Yang et al. (1996); Nawar & Hosny (2000); Pelagatti et al. (1999); Ainscough et al. (1998). For related structures, see: Diao & Yu (2006); Jing et al. (2005); Wang et al. (2008).

Experimental top

An ethanol solution (50 ml) of 3,4,5-trimethoxybenzohydrazide (0.01 mol) and 5-bromo-2-hydroxybenzaldehyde (0.01 mol) was refluxed and stirred for 2h ; the mixture was cooled and the resulting solid product, (I), was collected by filtration. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in THF.

Refinement top

All H atoms were placed geometrically at the distances: C—H(methyl) = 0.96, C—H(aryl) = 0.93, N—H = 0.86 and O—H = 0.82 Å and included in the refinement in riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. The packing of (I), showing the intermolecular hydrogen-bonded extended network.
(E)-N'-(5-Bromo-2-hydroxybenzylidene)-3,4,5- trimethoxybenzohydrazide top
Crystal data top
C17H17BrN2O5F(000) = 832
Mr = 409.24Dx = 1.586 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2452 reflections
a = 11.4157 (19) Åθ = 2.5–22.8°
b = 16.279 (3) ŵ = 2.43 mm1
c = 9.3738 (16) ÅT = 273 K
β = 100.210 (3)°Block, colourless
V = 1714.4 (5) Å30.15 × 0.10 × 0.06 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
3037 independent reflections
Radiation source: fine-focus sealed tube2065 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1312
Tmin = 0.712, Tmax = 0.868k = 1919
8954 measured reflectionsl = 118
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0439P)2 + 0.6769P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.002
3037 reflectionsΔρmax = 0.43 e Å3
228 parametersΔρmin = 0.54 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0171 (11)
Crystal data top
C17H17BrN2O5V = 1714.4 (5) Å3
Mr = 409.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.4157 (19) ŵ = 2.43 mm1
b = 16.279 (3) ÅT = 273 K
c = 9.3738 (16) Å0.15 × 0.10 × 0.06 mm
β = 100.210 (3)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
3037 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2065 reflections with I > 2σ(I)
Tmin = 0.712, Tmax = 0.868Rint = 0.033
8954 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.01Δρmax = 0.43 e Å3
3037 reflectionsΔρmin = 0.54 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.94048 (4)1.21831 (2)0.94475 (6)0.0865 (2)
O10.9086 (2)0.92631 (14)1.3259 (2)0.0609 (6)
H10.86770.88971.28240.091*
O20.74380 (19)0.70776 (12)1.2188 (2)0.0493 (5)
O30.6562 (2)0.42963 (12)0.9513 (2)0.0605 (6)
O40.4797 (2)0.47058 (14)0.7287 (2)0.0661 (7)
O50.42036 (19)0.62400 (14)0.6698 (2)0.0595 (6)
N10.7240 (2)0.78966 (13)1.0217 (2)0.0413 (6)
H1A0.69800.79440.93020.050*
N20.7787 (2)0.85483 (14)1.0984 (2)0.0392 (6)
C10.9120 (3)0.99080 (18)1.2363 (3)0.0446 (7)
C20.8549 (2)0.98993 (16)1.0913 (3)0.0400 (7)
C30.8637 (3)1.05886 (18)1.0069 (3)0.0485 (8)
H30.82521.05960.91070.058*
C40.9282 (3)1.12578 (18)1.0634 (4)0.0542 (8)
C50.9863 (3)1.1252 (2)1.2051 (4)0.0592 (9)
H51.03161.17021.24270.071*
C60.9772 (3)1.0587 (2)1.2899 (4)0.0573 (9)
H61.01581.05911.38610.069*
C70.7914 (2)0.91924 (17)1.0253 (3)0.0417 (7)
H70.75880.92060.92710.050*
C80.7105 (2)0.71797 (17)1.0892 (3)0.0369 (6)
C90.6508 (2)0.65335 (17)0.9912 (3)0.0381 (7)
C100.6826 (3)0.57283 (17)1.0217 (3)0.0416 (7)
H100.73970.56001.10230.050*
C110.6292 (3)0.51139 (17)0.9317 (3)0.0450 (7)
C120.5412 (3)0.52992 (18)0.8141 (3)0.0460 (7)
C130.5089 (3)0.61112 (19)0.7852 (3)0.0445 (7)
C140.5643 (2)0.67246 (18)0.8733 (3)0.0413 (7)
H140.54340.72700.85340.050*
C150.7519 (3)0.4079 (2)1.0611 (4)0.0713 (10)
H15A0.82330.43401.04310.107*
H15B0.76220.34931.06180.107*
H15C0.73550.42551.15330.107*
C160.5452 (4)0.4238 (2)0.6446 (4)0.0853 (12)
H16A0.57910.45950.58120.128*
H16B0.49350.38480.58800.128*
H16C0.60770.39520.70710.128*
C170.3907 (3)0.7059 (2)0.6315 (4)0.0697 (10)
H17A0.35380.73080.70520.105*
H17B0.33640.70700.54070.105*
H17C0.46160.73570.62250.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0686 (3)0.0506 (3)0.1438 (5)0.00267 (18)0.0284 (3)0.0265 (2)
O10.0746 (17)0.0646 (15)0.0377 (12)0.0140 (12)0.0059 (11)0.0017 (11)
O20.0660 (14)0.0498 (12)0.0287 (11)0.0048 (10)0.0008 (10)0.0018 (9)
O30.0799 (16)0.0411 (12)0.0584 (14)0.0084 (11)0.0066 (13)0.0024 (11)
O40.0701 (16)0.0687 (15)0.0606 (15)0.0312 (12)0.0147 (13)0.0247 (12)
O50.0551 (14)0.0737 (16)0.0426 (13)0.0110 (12)0.0106 (11)0.0072 (11)
N10.0504 (14)0.0429 (14)0.0266 (12)0.0088 (11)0.0039 (11)0.0032 (11)
N20.0450 (14)0.0359 (13)0.0336 (13)0.0029 (11)0.0019 (11)0.0071 (11)
C10.0470 (17)0.0485 (18)0.0377 (17)0.0016 (14)0.0053 (15)0.0063 (14)
C20.0383 (16)0.0407 (16)0.0394 (17)0.0028 (13)0.0032 (14)0.0047 (13)
C30.0459 (18)0.0463 (18)0.0512 (19)0.0034 (14)0.0031 (15)0.0013 (15)
C40.0466 (19)0.0399 (17)0.079 (3)0.0017 (14)0.0184 (19)0.0001 (17)
C50.051 (2)0.0457 (19)0.082 (3)0.0077 (15)0.0138 (19)0.0220 (19)
C60.052 (2)0.063 (2)0.054 (2)0.0096 (16)0.0002 (16)0.0239 (18)
C70.0454 (17)0.0456 (17)0.0304 (15)0.0010 (14)0.0032 (13)0.0056 (14)
C80.0372 (15)0.0422 (16)0.0308 (16)0.0025 (13)0.0051 (13)0.0042 (13)
C90.0416 (16)0.0406 (16)0.0325 (15)0.0050 (13)0.0077 (13)0.0048 (13)
C100.0436 (17)0.0463 (17)0.0339 (16)0.0040 (14)0.0043 (13)0.0037 (13)
C110.0531 (19)0.0387 (16)0.0471 (18)0.0075 (14)0.0194 (16)0.0045 (14)
C120.0483 (18)0.0507 (18)0.0400 (18)0.0182 (15)0.0107 (15)0.0130 (15)
C130.0396 (17)0.060 (2)0.0333 (17)0.0103 (14)0.0033 (14)0.0069 (14)
C140.0429 (17)0.0436 (17)0.0371 (16)0.0028 (13)0.0064 (14)0.0015 (13)
C150.084 (3)0.0450 (19)0.083 (3)0.0038 (18)0.010 (2)0.0028 (18)
C160.113 (3)0.066 (2)0.075 (3)0.008 (2)0.011 (3)0.035 (2)
C170.056 (2)0.084 (3)0.061 (2)0.0003 (19)0.0123 (18)0.004 (2)
Geometric parameters (Å, º) top
Br1—C41.892 (3)C5—H50.9300
O1—C11.350 (4)C6—H60.9300
O1—H10.8200C7—H70.9300
O2—C81.219 (3)C8—C91.481 (4)
O3—C111.371 (3)C9—C101.377 (4)
O3—C151.407 (4)C9—C141.381 (4)
O4—C121.366 (3)C10—C111.379 (4)
O4—C161.403 (4)C10—H100.9300
O5—C131.359 (3)C11—C121.386 (4)
O5—C171.406 (4)C12—C131.386 (4)
N1—C81.349 (3)C13—C141.376 (4)
N1—N21.369 (3)C14—H140.9300
N1—H1A0.8600C15—H15A0.9600
N2—C71.274 (3)C15—H15B0.9600
C1—C61.378 (4)C15—H15C0.9600
C1—C21.399 (4)C16—H16A0.9600
C2—C31.387 (4)C16—H16B0.9600
C2—C71.440 (4)C16—H16C0.9600
C3—C41.368 (4)C17—H17A0.9600
C3—H30.9300C17—H17B0.9600
C4—C51.375 (5)C17—H17C0.9600
C5—C61.357 (5)
C1—O1—H1109.5C14—C9—C8121.4 (3)
C11—O3—C15118.0 (2)C9—C10—C11119.4 (3)
C12—O4—C16116.3 (3)C9—C10—H10120.3
C13—O5—C17117.4 (2)C11—C10—H10120.3
C8—N1—N2120.2 (2)O3—C11—C10123.9 (3)
C8—N1—H1A119.9O3—C11—C12115.6 (3)
N2—N1—H1A119.9C10—C11—C12120.5 (3)
C7—N2—N1116.1 (2)O4—C12—C13117.9 (3)
O1—C1—C6118.1 (3)O4—C12—C11122.4 (3)
O1—C1—C2122.5 (3)C13—C12—C11119.5 (3)
C6—C1—C2119.4 (3)O5—C13—C14124.3 (3)
C3—C2—C1118.5 (3)O5—C13—C12115.9 (3)
C3—C2—C7118.9 (3)C14—C13—C12119.8 (3)
C1—C2—C7122.5 (3)C13—C14—C9120.3 (3)
C4—C3—C2120.8 (3)C13—C14—H14119.9
C4—C3—H3119.6C9—C14—H14119.9
C2—C3—H3119.6O3—C15—H15A109.5
C3—C4—C5120.2 (3)O3—C15—H15B109.5
C3—C4—Br1119.8 (3)H15A—C15—H15B109.5
C5—C4—Br1120.0 (3)O3—C15—H15C109.5
C6—C5—C4119.9 (3)H15A—C15—H15C109.5
C6—C5—H5120.1H15B—C15—H15C109.5
C4—C5—H5120.1O4—C16—H16A109.5
C5—C6—C1121.2 (3)O4—C16—H16B109.5
C5—C6—H6119.4H16A—C16—H16B109.5
C1—C6—H6119.4O4—C16—H16C109.5
N2—C7—C2121.6 (3)H16A—C16—H16C109.5
N2—C7—H7119.2H16B—C16—H16C109.5
C2—C7—H7119.2O5—C17—H17A109.5
O2—C8—N1123.0 (2)O5—C17—H17B109.5
O2—C8—C9123.3 (3)H17A—C17—H17B109.5
N1—C8—C9113.7 (2)O5—C17—H17C109.5
C10—C9—C14120.4 (3)H17A—C17—H17C109.5
C10—C9—C8118.2 (3)H17B—C17—H17C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.821.922.642 (3)145
N1—H1A···O2i0.862.142.888 (3)146
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC17H17BrN2O5
Mr409.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)11.4157 (19), 16.279 (3), 9.3738 (16)
β (°) 100.210 (3)
V3)1714.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.43
Crystal size (mm)0.15 × 0.10 × 0.06
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.712, 0.868
No. of measured, independent and
observed [I > 2σ(I)] reflections
8954, 3037, 2065
Rint0.033
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.01
No. of reflections3037
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.54

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.821.922.642 (3)145
N1—H1A···O2i0.862.142.888 (3)146
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of China (grant No. 30571466).

References

First citationAinscough, E. W., Brodie, A. M., Dobbs, A. J., Ranford, J. D. & Waters, J. M. (1998). Inorg Chim. Acta, 267, 27–38.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDiao, C.-H. & Yu, M. (2006). Acta Cryst. E62, o5278–o5279.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJing, Z.-L., Fan, Z., Yu, M., Chen, X. & Deng, Q.-L. (2005). Acta Cryst. E61, o3495–o3496.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNawar, N. & Hosny, N. M. (2000). Transition Met. Chem. 25, 1–8.  Web of Science CrossRef CAS Google Scholar
First citationPelagatti, P., Bacchi, A., Carcelli, M., Costa, M., Fochi, A., Ghidini, P., Leporati, E., Masi, M., Pelizzi, C. & Pelizzi, G. (1999). J. Organomet. Chem. 583, 94–105.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y.-M., Zhao, Z.-D., Chen, Y.-X. & Bi, L.-W. (2008). Acta Cryst. E64, o1009.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, Z. Y., Yang, R. D. & Yu, K. B. (1996). Polyhedron, 15, 3749–3753.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds