organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-(4-Fluoro­benzyl­­idene)cyclo­octanone

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: yulinzhu2002@yahoo.com.cn

(Received 6 October 2008; accepted 13 November 2008; online 22 November 2008)

The title compound, C15H17FO, was prepared directly from the aldol condensation of cyclo­octa­none with 4-fluoro­benz­aldehyde, catalysed by Pd(Ni,Ce) in the presence of trimethyl­silyl chloride. The eight-membered ring adopts a boat-chair conformation.

Related literature

For related structures, see: Huang, Zhu & Pan (2004[Huang, S.-L., Zhu, Y.-L. & Pan, Y.-J. (2004). Acta Cryst. E60, o1000-o1002.]); Huang, Zhu, Pan & Wan (2004[Huang, S.-L., Zhu, Y.-L., Pan, Y.-J. & Wan, H.-T. (2004). Acta Cryst. E60, o1504-o1506.]); Zhu & Pan (2004[Zhu, Y. & Pan, Y. (2004). Chem. Lett. 33, 668-669.]). For general background, see: Amal Raj & Raghathan (2002[Amal Raj, A. & Raghathan, R. (2002). Synth. Commun. 32, 3295-3300.]); Deli et al. (1984[Deli, J., Lorand, T., Szabo, D. & Foldesi, A. (1984). Pharmazie, 39, 539-540.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17FO

  • Mr = 232.29

  • Orthorhombic, P n a 21

  • a = 12.0310 (2) Å

  • b = 8.6056 (1) Å

  • c = 12.2438 (2) Å

  • V = 1267.65 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 273 (2) K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.983, Tmax = 0.998

  • 10067 measured reflections

  • 1584 independent reflections

  • 1584 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.082

  • S = 1.07

  • 1584 reflections

  • 155 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.11 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Arylmethyllidenecycloalkanones are a particularly important class of compounds which are used as precursors for the synthesis bioactive pyrimidine derivatives (Amal Raj & Raghathan, 2002; Deli et al.1984.) The aldol reaction, which is performed in the presence of strong acids, is one of the most useful reactions in organic chemistry. The reaction between cyclooctanone with 4-fluorobenzaldehyde afforded (E)-2-(4-fluorobenzylidene)cyclooctanone, I, (other than (2,8)-di-4-fluorobenzylidenecyclooctanone in excellent yield in the presence of Pd(Ni, Ce)-TMSCl system, where TMSCl is trimethylsilyl chloride, (Fig. 1) (Huang, Zhu & Pan, 2004; Huang, Zhu, Pan & Wan, 2004; Zhu & Pan, 2004). The molecule of I contains one eight-membered ring which adopts a boat-chair conformation and a phenyl ring. The boat-chair conformation is favourable for the cyclooctanone ring of I (Fig. 2). There are no unusual bond lengths and angles in the I. The C5/C7/C8/C15 torsion angle of -3.2 (3)°, to gather with C5/C7/C8/C9 torsion angle of 179.99 (17)°, describes the E-configuration of the molecule about the C7C8 bond. The C7C8 bond doesn't conjugate with C9O1 bond due to the C7/C8/C9/O1 torsion angle has a value of -31.6 (3)° and the length of the double bonds is also normal. Similarly, the C4/C5/C7/C8 torsion angle has a value of -44.6 (3)° and the dihedral angel between the C7C8–C5 plane with phenyl ring plane, so the C7C8 bond do not conjugate with the phenyl ring. From the crystal packing of the title compound, the packing of molecule involves van der Waals interactions.

Related literature top

For related structures, see: Huang, Zhu & Pan (2004); Huang, Zhu, Pan & Wan (2004); Zhu & Pan (2004). For general background, see: Amal Raj & Raghathan (2002); Deli et al. (1984).

Experimental top

A mixture of cyclooctanone (10 mmol), 4-fluorobenzaldehyde (10 mmol), palladium (0.10 mmol), and TMSCl (11 mmol) was refluxed in acetonitrile (12 ml) under 353 K for 5 h. After being cooled to room temperature, the reaction mixture was poured into water, the residue was filtration through a silica pad, and then washed twice with water, dried under vacuum to yield the products I. Single crystal of the I was obtained by slow evaporation from ethanol at room temperature.

Refinement top

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C–H = 0.93 and 0.97 Å, and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Pd(Ni, Ce)-TMSCl catalyzed synthesis of the title compound.
[Figure 2] Fig. 2. A view of the molecule of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as a small spheres of arbitrary radius.
(E)-2-(4-Fluorobenzylidene)cyclooctanone top
Crystal data top
C15H17FOF(000) = 496
Mr = 232.29Dx = 1.217 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2166 reflections
a = 12.0310 (2) Åθ = 2.9–22.2°
b = 8.6056 (1) ŵ = 0.08 mm1
c = 12.2438 (2) ÅT = 273 K
V = 1267.65 (3) Å3Block, colourless
Z = 40.20 × 0.15 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
1584 independent reflections
Radiation source: Fine-focus sealed tube1584 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 27.9°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1512
Tmin = 0.983, Tmax = 0.998k = 1110
10067 measured reflectionsl = 1613
Refinement top
Refinement on F2Hydrogen site location: Geom
Least-squares matrix: FullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0347P)2 + 0.02P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.11 e Å3
1584 reflectionsΔρmin = 0.11 e Å3
155 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.011 (2)
Primary atom site location: DirectAbsolute structure: Since the molecule contains only light atoms, the intensities of 946 Friedels pairs were merged.
Secondary atom site location: Difmap
Crystal data top
C15H17FOV = 1267.65 (3) Å3
Mr = 232.29Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 12.0310 (2) ŵ = 0.08 mm1
b = 8.6056 (1) ÅT = 273 K
c = 12.2438 (2) Å0.20 × 0.15 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
1584 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1584 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.998Rint = 0.036
10067 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.082H-atom parameters constrained
S = 1.07Δρmax = 0.11 e Å3
1584 reflectionsΔρmin = 0.11 e Å3
155 parametersAbsolute structure: Since the molecule contains only light atoms, the intensities of 946 Friedels pairs were merged.
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1978 (2)1.3725 (3)0.0997 (2)0.0624 (7)
H10.15491.44280.13920.075*
C20.1992 (2)1.3747 (3)0.0114 (3)0.0623 (7)
C30.2606 (2)1.2750 (3)0.0732 (2)0.0592 (6)
H30.26051.28160.14900.071*
C40.32327 (19)1.1634 (2)0.01984 (19)0.0518 (6)
H40.36551.09400.06070.062*
C50.32435 (18)1.1529 (2)0.09343 (18)0.0471 (6)
C60.26236 (18)1.2618 (2)0.1518 (2)0.0564 (6)
H60.26451.26010.22770.068*
C70.39214 (17)1.0387 (2)0.15185 (19)0.0495 (5)
H70.43071.07640.21210.059*
C80.40628 (16)0.8869 (2)0.13044 (17)0.0466 (5)
C90.4813 (2)0.8002 (3)0.20544 (19)0.0529 (6)
C100.4617 (2)0.6306 (3)0.2298 (2)0.0654 (7)
H10A0.38490.60520.21330.078*
H10B0.47350.61240.30710.078*
C110.5378 (2)0.5233 (3)0.1644 (2)0.0694 (8)
H11A0.61380.55810.17450.083*
H11B0.53230.41970.19510.083*
C120.5154 (2)0.5126 (3)0.0430 (2)0.0627 (6)
H12A0.43960.47680.03270.075*
H12B0.56430.43450.01220.075*
C130.53068 (18)0.6639 (3)0.0216 (2)0.0565 (6)
H13A0.57630.73390.02140.068*
H13B0.57150.64030.08790.068*
C140.42430 (19)0.7491 (3)0.05315 (19)0.0586 (6)
H14A0.38200.68290.10200.070*
H14B0.44460.84170.09370.070*
C150.34864 (16)0.7973 (2)0.0413 (2)0.0534 (5)
H15A0.28860.86040.01250.064*
H15B0.31590.70460.07280.064*
F10.13754 (15)1.48509 (16)0.06379 (17)0.0991 (5)
O10.56001 (15)0.86558 (19)0.24861 (14)0.0704 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0563 (14)0.0496 (14)0.081 (2)0.0065 (11)0.0107 (15)0.0091 (14)
C20.0545 (14)0.0467 (14)0.086 (2)0.0093 (12)0.0095 (14)0.0034 (13)
C30.0650 (16)0.0544 (13)0.0583 (15)0.0011 (12)0.0012 (12)0.0033 (13)
C40.0543 (14)0.0440 (12)0.0572 (15)0.0045 (10)0.0064 (12)0.0006 (11)
C50.0503 (14)0.0413 (12)0.0499 (14)0.0000 (9)0.0058 (12)0.0013 (10)
C60.0613 (15)0.0497 (12)0.0583 (14)0.0031 (11)0.0086 (13)0.0042 (13)
C70.0552 (13)0.0497 (11)0.0437 (12)0.0012 (10)0.0040 (11)0.0004 (11)
C80.0446 (12)0.0456 (11)0.0494 (14)0.0003 (9)0.0051 (11)0.0017 (10)
C90.0619 (15)0.0542 (13)0.0426 (13)0.0023 (12)0.0037 (12)0.0032 (11)
C100.0829 (17)0.0545 (14)0.0587 (16)0.0075 (13)0.0069 (14)0.0140 (12)
C110.0798 (19)0.0520 (13)0.077 (2)0.0113 (12)0.0010 (16)0.0103 (13)
C120.0629 (14)0.0498 (13)0.0754 (17)0.0080 (10)0.0007 (14)0.0058 (14)
C130.0572 (13)0.0571 (13)0.0551 (14)0.0038 (10)0.0045 (11)0.0084 (11)
C140.0651 (15)0.0564 (13)0.0543 (14)0.0007 (11)0.0112 (13)0.0075 (11)
C150.0454 (11)0.0466 (11)0.0682 (14)0.0005 (9)0.0094 (13)0.0010 (12)
F10.1013 (12)0.0788 (9)0.1173 (13)0.0376 (9)0.0210 (11)0.0041 (9)
O10.0841 (12)0.0686 (10)0.0583 (11)0.0009 (9)0.0200 (10)0.0053 (8)
Geometric parameters (Å, º) top
C1—C21.361 (4)C10—C111.527 (3)
C1—C61.385 (3)C10—H10A0.9700
C1—H10.9300C10—H10B0.9700
C2—C31.361 (3)C11—C121.514 (4)
C2—F11.365 (3)C11—H11A0.9700
C3—C41.384 (3)C11—H11B0.9700
C3—H30.9300C12—C131.535 (3)
C4—C51.390 (3)C12—H12A0.9700
C4—H40.9300C12—H12B0.9700
C5—C61.395 (3)C13—C141.524 (3)
C5—C71.464 (3)C13—H13A0.9700
C6—H60.9300C13—H13B0.9700
C7—C81.343 (3)C14—C151.529 (3)
C7—H70.9300C14—H14A0.9700
C8—C91.488 (3)C14—H14B0.9700
C8—C151.506 (3)C15—H15A0.9700
C9—O11.222 (3)C15—H15B0.9700
C9—C101.508 (3)
C2—C1—C6117.6 (2)H10A—C10—H10B107.8
C2—C1—H1121.2C12—C11—C10116.4 (2)
C6—C1—H1121.2C12—C11—H11A108.2
C1—C2—C3123.6 (2)C10—C11—H11A108.2
C1—C2—F1118.1 (3)C12—C11—H11B108.2
C3—C2—F1118.2 (3)C10—C11—H11B108.2
C2—C3—C4118.1 (2)H11A—C11—H11B107.3
C2—C3—H3121.0C11—C12—C13115.7 (2)
C4—C3—H3121.0C11—C12—H12A108.4
C3—C4—C5121.4 (2)C13—C12—H12A108.4
C3—C4—H4119.3C11—C12—H12B108.4
C5—C4—H4119.3C13—C12—H12B108.4
C4—C5—C6117.6 (2)H12A—C12—H12B107.4
C4—C5—C7122.4 (2)C14—C13—C12115.95 (19)
C6—C5—C7119.9 (2)C14—C13—H13A108.3
C1—C6—C5121.7 (3)C12—C13—H13A108.3
C1—C6—H6119.1C14—C13—H13B108.3
C5—C6—H6119.1C12—C13—H13B108.3
C8—C7—C5128.9 (2)H13A—C13—H13B107.4
C8—C7—H7115.5C13—C14—C15116.02 (19)
C5—C7—H7115.5C13—C14—H14A108.3
C7—C8—C9116.4 (2)C15—C14—H14A108.3
C7—C8—C15125.55 (19)C13—C14—H14B108.3
C9—C8—C15118.01 (17)C15—C14—H14B108.3
O1—C9—C8120.40 (19)H14A—C14—H14B107.4
O1—C9—C10118.8 (2)C8—C15—C14114.40 (16)
C8—C9—C10120.8 (2)C8—C15—H15A108.7
C9—C10—C11112.8 (2)C14—C15—H15A108.7
C9—C10—H10A109.0C8—C15—H15B108.7
C11—C10—H10A109.0C14—C15—H15B108.7
C9—C10—H10B109.0H15A—C15—H15B107.6
C11—C10—H10B109.0
C6—C1—C2—C30.2 (4)C7—C8—C9—O131.5 (3)
C6—C1—C2—F1178.79 (18)C15—C8—C9—O1151.4 (2)
C1—C2—C3—C41.3 (4)C7—C8—C9—C10148.4 (2)
F1—C2—C3—C4179.8 (2)C15—C8—C9—C1028.7 (3)
C2—C3—C4—C50.2 (4)O1—C9—C10—C1179.6 (3)
C3—C4—C5—C61.8 (4)C8—C9—C10—C11100.6 (3)
C3—C4—C5—C7178.35 (18)C9—C10—C11—C1270.2 (3)
C2—C1—C6—C51.9 (4)C10—C11—C12—C1363.3 (3)
C4—C5—C6—C12.9 (3)C11—C12—C13—C14102.8 (3)
C7—C5—C6—C1179.6 (2)C12—C13—C14—C1558.4 (3)
C4—C5—C7—C844.6 (4)C7—C8—C15—C14109.4 (2)
C6—C5—C7—C8138.9 (2)C9—C8—C15—C1473.8 (2)
C5—C7—C8—C9180.0 (2)C13—C14—C15—C851.9 (3)
C5—C7—C8—C153.2 (4)

Experimental details

Crystal data
Chemical formulaC15H17FO
Mr232.29
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)273
a, b, c (Å)12.0310 (2), 8.6056 (1), 12.2438 (2)
V3)1267.65 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.983, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
10067, 1584, 1584
Rint0.036
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.082, 1.07
No. of reflections1584
No. of parameters155
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.11
Absolute structureSince the molecule contains only light atoms, the intensities of 946 Friedels pairs were merged.

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank SCNU for financial support.

References

First citationAmal Raj, A. & Raghathan, R. (2002). Synth. Commun. 32, 3295-3300.  Web of Science CrossRef Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeli, J., Lorand, T., Szabo, D. & Foldesi, A. (1984). Pharmazie, 39, 539–540.  CAS PubMed Web of Science Google Scholar
First citationHuang, S.-L., Zhu, Y.-L. & Pan, Y.-J. (2004). Acta Cryst. E60, o1000–o1002.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, S.-L., Zhu, Y.-L., Pan, Y.-J. & Wan, H.-T. (2004). Acta Cryst. E60, o1504–o1506.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, Y. & Pan, Y. (2004). Chem. Lett. 33, 668–669.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds