organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(2-Nitro­benzene­sulfonamido)pyridinium nitrate

aSchool of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, People's Republic of China, and bDepartment of Food and Biological Engineering, Zhangzhou Institute of Technology, Henan University of Technology, Zhangzhou 363000, People's Republic of China
*Correspondence e-mail: l_zhaohn@yahoo.cn

(Received 23 October 2008; accepted 30 October 2008; online 8 November 2008)

There are two mol­ecules in the asymmetric unit of the title compound, C11H10N3O4S+·NO3. All bond distances have normal values. The C—N bond distances in the sulfonamide group [1.389 (3) and 1.382 (3) Å] may indicate slight conjugation of the sulfonamide N-atom π-electrons with those of the pyridinium ring. The crystal structure is stabilized by N—H⋯O hydrogen bonds.

Related literature

For zwitterionic forms of N–aryl­benzene­sulfonamides, see: Li et al. (2007[Li, J. S., Chen, L. G., Zhang, Y. Y., Xu, Y. J., Deng, Y. & Huang, P. M. (2007). J. Chem. Res. 6, 350-352.]); Yu & Li (2007[Yu, H.-J. & Li, J.-S. (2007). Acta Cryst. E63, o3399.]). Damiano et al. (2007[Damiano, T., Morton, D. & Nelson, A. (2007). Org. Biomol. Chem. 5, 2735—2752. ]) describe the use of pyridinium derivatives for the construction of supra­molecular architectures. For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10N3O4S+·NO3

  • Mr = 342.30

  • Orthorhombic, P n a 21

  • a = 14.716 (3) Å

  • b = 8.6671 (17) Å

  • c = 21.941 (4) Å

  • V = 2798.5 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 113 (2) K

  • 0.20 × 0.16 × 0.02 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.943, Tmax = 0.998

  • 20607 measured reflections

  • 5734 independent reflections

  • 5237 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.098

  • S = 1.04

  • 5734 reflections

  • 432 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.33 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2570 Friedel pairs

  • Flack parameter: 0.14 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O11i 1.06 (4) 1.68 (4) 2.745 (3) 179 (3)
N1—H1A⋯O9i 1.06 (4) 2.65 (3) 3.361 (3) 124 (2)
N4—H4A⋯O13ii 0.90 (3) 1.85 (3) 2.737 (3) 171 (2)
N4—H4A⋯O12ii 0.90 (3) 2.68 (3) 3.273 (3) 124 (2)
N5—H5A⋯O13iii 0.94 (3) 1.87 (3) 2.751 (3) 155 (2)
N2—H2A⋯O11iv 0.97 (4) 1.78 (4) 2.725 (3) 166 (4)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) [-x+2, -y, z-{\script{1\over 2}}]; (iii) [-x+2, -y+1, z-{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organic pyridinium salts have been widely used in the construction of supramolecular architectures (Damiano et al., 2007). As part of our ongoing studies of supramolecular chemistry involving the pyridinium rings (Li et al., 2007), the structure of the title compound was determined by X–ray diffraction. In the cations of the title compound the short C–N distance [N2–C1 = 1.389 (3)Å and N5–C12 = 1.382 (3)Å] has a value between those of a typical CN double and C—N single bond (1.47–1.50Å and 1.34–1.38Å, respectively; Allen et al., 1987). This might be indicative of a slight conjugation of the N sulfonamide π–electrons with those of the pyridinium ring. In the two symmetry–independent molecules (Fig. 1), the dihedral angles between the benzene ring and the pyridinium ring are 85.1 (1)° and 86.2 (1)° respectively. The dihedral angles between the nitro–group and the benzene ring are 41.2 (1)° and 40.5 (2)° respectively.

Related literature top

For zwitterionic forms of N–arylbenzenesulfonamides, see: Li et al. (2007); Yu & Li (2007). Damiano et al. (2007) describe the use of pyridinium derivatives for the construction of supramolecular architectures. For bond-length data, see: Allen et al. (1987).

Experimental top

A solution of 2–nitrobenzenesulfonyl chloride (2.2 g, 10 mmol) in CH2Cl2 (10 ml) was added dropwise to a suspension of 4–aminopyridine (0.9 g, 10 mmol) in CH2Cl2 (10 ml) at room temperature with stirring. The reaction mixture was stirred overnight. The yellow solid obtained was washed with warm water to obtain the title compound in a yield of 52.9%. A colourless single crystals, suitable for X–ray analysis were obtained by slow evaporation of an nitric acid (10%) solution at room temperature over a period of a week.

Refinement top

The N–bound H atoms were located in a difference map and refined isotropically. The C–bound H atoms were positioned geometrically (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalStructure (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the two symmetry-independent molecules with the atom numbering scheme. Displacement ellipsoids are drawn at the 35% probability level. H atoms are presented as a small spheres of arbitrary radius.
4-(2-Nitrobenzenesulfonamido)pyridinium nitrate top
Crystal data top
C11H10N3O4S+·NO3F(000) = 1408
Mr = 342.30Dx = 1.625 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 8078 reflections
a = 14.716 (3) Åθ = 3.1–27.1°
b = 8.6671 (17) ŵ = 0.28 mm1
c = 21.941 (4) ÅT = 113 K
V = 2798.5 (9) Å3Block, colourless
Z = 80.20 × 0.16 × 0.02 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
5734 independent reflections
Radiation source: Rotating anode5237 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.046
Detector resolution: 7.31 pixels mm-1θmax = 27.1°, θmin = 3.3°
ω scansh = 1818
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 119
Tmin = 0.943, Tmax = 0.998l = 2028
20607 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: FullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0538P)2 + 0.0901P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.42 e Å3
5734 reflectionsΔρmin = 0.33 e Å3
432 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0054 (7)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2570 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.14 (6)
Crystal data top
C11H10N3O4S+·NO3V = 2798.5 (9) Å3
Mr = 342.30Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 14.716 (3) ŵ = 0.28 mm1
b = 8.6671 (17) ÅT = 113 K
c = 21.941 (4) Å0.20 × 0.16 × 0.02 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
5734 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
5237 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.998Rint = 0.046
20607 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098Δρmax = 0.42 e Å3
S = 1.04Δρmin = 0.33 e Å3
5734 reflectionsAbsolute structure: Flack (1983), 2570 Friedel pairs
432 parametersAbsolute structure parameter: 0.14 (6)
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.55489 (4)0.54735 (7)0.70897 (3)0.01874 (14)
S20.74559 (4)0.43842 (7)0.42871 (3)0.02018 (14)
O10.63055 (12)0.5867 (2)0.74667 (8)0.0233 (4)
O20.53170 (13)0.3890 (2)0.69999 (8)0.0248 (4)
O30.38958 (15)0.5302 (3)0.62281 (9)0.0384 (5)
O40.4342 (2)0.4321 (4)0.53747 (12)0.0689 (10)
O50.66949 (13)0.3918 (2)0.39273 (8)0.0256 (4)
O60.76670 (13)0.5983 (2)0.43544 (9)0.0270 (4)
O70.91479 (15)0.4690 (3)0.51112 (10)0.0437 (6)
O80.8745 (2)0.5660 (4)0.59706 (13)0.0769 (11)
N10.40728 (15)1.0904 (3)0.75443 (9)0.0202 (4)
N20.46295 (15)0.6264 (2)0.73697 (9)0.0185 (4)
N30.44496 (18)0.5160 (3)0.58163 (11)0.0330 (6)
N40.89765 (15)0.1009 (3)0.37907 (9)0.0186 (4)
N50.83710 (16)0.3598 (3)0.40056 (9)0.0200 (5)
N60.86294 (19)0.4797 (3)0.55345 (11)0.0361 (6)
C10.44743 (16)0.7834 (3)0.74440 (10)0.0160 (5)
C20.35733 (17)0.8310 (3)0.75337 (10)0.0173 (5)
H20.30960.75760.75600.021*
C30.33974 (17)0.9853 (3)0.75823 (11)0.0191 (5)
H30.27901.01920.76440.023*
C40.49413 (18)1.0467 (3)0.74780 (11)0.0199 (5)
H40.54061.12270.74650.024*
C50.51674 (19)0.8933 (3)0.74283 (11)0.0205 (5)
H50.57840.86260.73840.025*
C60.57669 (18)0.6366 (3)0.63708 (11)0.0206 (5)
C70.65379 (17)0.7288 (3)0.63400 (11)0.0220 (5)
H70.68860.74620.66980.026*
C80.6808 (2)0.7962 (3)0.57937 (12)0.0255 (6)
H80.73310.86020.57810.031*
C90.6311 (2)0.7697 (3)0.52707 (12)0.0279 (6)
H90.64910.81590.48970.033*
C100.5556 (2)0.6764 (4)0.52898 (12)0.0307 (7)
H100.52210.65720.49280.037*
C110.52818 (19)0.6104 (3)0.58340 (12)0.0226 (5)
C120.85468 (17)0.2042 (3)0.39336 (10)0.0180 (5)
C130.94527 (17)0.1584 (3)0.38431 (10)0.0181 (5)
H130.99250.23310.38320.022*
C140.96478 (19)0.0056 (3)0.37715 (11)0.0206 (5)
H141.02580.02620.37080.025*
C150.80967 (19)0.0599 (3)0.38700 (11)0.0214 (5)
H150.76380.13700.38750.026*
C160.78660 (18)0.0911 (3)0.39421 (11)0.0190 (5)
H160.72480.11960.39980.023*
C170.72784 (18)0.3544 (3)0.50237 (11)0.0207 (5)
C180.65166 (18)0.2619 (3)0.50870 (11)0.0247 (6)
H180.61410.24270.47430.030*
C190.6294 (2)0.1970 (3)0.56452 (12)0.0283 (6)
H190.57770.13200.56780.034*
C200.6817 (2)0.2263 (4)0.61506 (13)0.0336 (7)
H200.66640.18140.65320.040*
C210.7570 (2)0.3217 (4)0.61016 (13)0.0337 (7)
H210.79260.34430.64520.040*
C220.7801 (2)0.3839 (3)0.55443 (12)0.0275 (6)
O90.71160 (13)0.2133 (2)0.76947 (9)0.0310 (5)
O100.72427 (15)0.0296 (2)0.74762 (11)0.0348 (5)
O110.84491 (13)0.1111 (2)0.75566 (10)0.0280 (4)
N70.75865 (15)0.0975 (2)0.75795 (10)0.0198 (5)
O120.91094 (12)0.2926 (2)0.88498 (8)0.0256 (4)
O131.04400 (13)0.4007 (2)0.88032 (9)0.0257 (4)
O140.92515 (15)0.5367 (2)0.90341 (10)0.0318 (5)
N80.95891 (15)0.4105 (2)0.89013 (9)0.0193 (4)
H1A0.384 (2)1.207 (4)0.7547 (15)0.044 (9)*
H4A0.9161 (19)0.199 (4)0.3751 (12)0.017 (7)*
H5A0.890 (2)0.420 (3)0.3983 (12)0.016 (7)*
H2A0.413 (3)0.554 (5)0.7422 (17)0.053 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0182 (3)0.0171 (3)0.0209 (3)0.0031 (2)0.0009 (2)0.0013 (2)
S20.0189 (3)0.0176 (3)0.0240 (3)0.0032 (2)0.0005 (2)0.0011 (2)
O10.0181 (10)0.0296 (11)0.0220 (9)0.0047 (8)0.0031 (7)0.0024 (7)
O20.0272 (11)0.0151 (9)0.0320 (10)0.0040 (8)0.0058 (8)0.0004 (7)
O30.0316 (12)0.0502 (15)0.0333 (11)0.0108 (11)0.0023 (9)0.0030 (9)
O40.070 (2)0.090 (2)0.0469 (15)0.0440 (18)0.0051 (13)0.0351 (14)
O50.0189 (10)0.0325 (12)0.0254 (9)0.0035 (8)0.0028 (7)0.0023 (7)
O60.0298 (11)0.0140 (9)0.0371 (11)0.0046 (7)0.0045 (9)0.0017 (7)
O70.0301 (13)0.0669 (18)0.0341 (12)0.0137 (11)0.0006 (9)0.0057 (10)
O80.070 (2)0.101 (3)0.0595 (18)0.0401 (19)0.0026 (15)0.0462 (16)
N10.0251 (12)0.0147 (11)0.0208 (10)0.0011 (9)0.0024 (9)0.0011 (8)
N20.0158 (11)0.0135 (11)0.0262 (10)0.0016 (8)0.0016 (8)0.0003 (8)
N30.0296 (14)0.0409 (16)0.0284 (12)0.0082 (12)0.0055 (10)0.0036 (11)
N40.0179 (11)0.0147 (12)0.0231 (10)0.0026 (9)0.0016 (8)0.0009 (7)
N50.0192 (12)0.0144 (11)0.0263 (11)0.0003 (9)0.0039 (8)0.0004 (8)
N60.0300 (15)0.0478 (17)0.0305 (13)0.0070 (13)0.0056 (11)0.0082 (11)
C10.0168 (12)0.0138 (12)0.0175 (11)0.0007 (9)0.0015 (9)0.0000 (8)
C20.0146 (12)0.0166 (12)0.0207 (11)0.0010 (10)0.0031 (9)0.0004 (9)
C30.0134 (12)0.0205 (13)0.0233 (12)0.0026 (10)0.0010 (9)0.0004 (9)
C40.0188 (13)0.0196 (13)0.0215 (11)0.0007 (10)0.0011 (10)0.0000 (9)
C50.0193 (14)0.0206 (14)0.0216 (12)0.0004 (10)0.0001 (10)0.0018 (9)
C60.0236 (13)0.0184 (13)0.0197 (11)0.0041 (10)0.0008 (9)0.0007 (9)
C70.0207 (14)0.0209 (14)0.0243 (12)0.0011 (11)0.0001 (10)0.0006 (10)
C80.0233 (14)0.0241 (14)0.0290 (13)0.0010 (11)0.0055 (11)0.0020 (10)
C90.0329 (16)0.0268 (15)0.0239 (12)0.0025 (12)0.0048 (11)0.0027 (10)
C100.0366 (18)0.0333 (17)0.0223 (14)0.0011 (13)0.0035 (11)0.0054 (11)
C110.0202 (15)0.0224 (14)0.0252 (12)0.0001 (11)0.0015 (10)0.0053 (9)
C120.0236 (13)0.0152 (12)0.0150 (10)0.0008 (10)0.0038 (9)0.0017 (8)
C130.0179 (12)0.0184 (13)0.0180 (11)0.0005 (10)0.0003 (9)0.0004 (9)
C140.0236 (14)0.0196 (13)0.0187 (11)0.0019 (11)0.0011 (9)0.0027 (9)
C150.0218 (14)0.0196 (13)0.0229 (12)0.0038 (10)0.0004 (10)0.0000 (9)
C160.0159 (12)0.0194 (13)0.0217 (11)0.0005 (10)0.0002 (10)0.0001 (9)
C170.0227 (13)0.0173 (13)0.0220 (12)0.0044 (11)0.0008 (9)0.0030 (9)
C180.0249 (14)0.0207 (14)0.0284 (13)0.0010 (11)0.0029 (11)0.0039 (10)
C190.0270 (15)0.0246 (15)0.0334 (14)0.0008 (12)0.0072 (11)0.0002 (11)
C200.0361 (18)0.0377 (19)0.0270 (13)0.0117 (14)0.0054 (12)0.0057 (11)
C210.0359 (18)0.0425 (19)0.0228 (13)0.0043 (14)0.0046 (11)0.0037 (11)
C220.0276 (17)0.0276 (15)0.0273 (13)0.0009 (12)0.0002 (11)0.0040 (10)
O90.0206 (10)0.0199 (11)0.0526 (12)0.0062 (8)0.0013 (9)0.0032 (8)
O100.0240 (11)0.0164 (10)0.0641 (14)0.0049 (8)0.0049 (10)0.0047 (9)
O110.0155 (10)0.0191 (10)0.0495 (12)0.0017 (8)0.0039 (8)0.0025 (8)
N70.0179 (12)0.0159 (11)0.0255 (11)0.0003 (9)0.0007 (8)0.0014 (8)
O120.0231 (10)0.0196 (10)0.0341 (10)0.0052 (8)0.0010 (8)0.0019 (7)
O130.0191 (10)0.0188 (10)0.0392 (11)0.0021 (7)0.0008 (8)0.0024 (8)
O140.0245 (10)0.0203 (11)0.0505 (13)0.0047 (8)0.0014 (9)0.0046 (8)
N80.0191 (11)0.0188 (11)0.0200 (10)0.0003 (9)0.0028 (8)0.0021 (8)
Geometric parameters (Å, º) top
S1—O21.4281 (19)C6—C111.396 (4)
S1—O11.4284 (19)C7—C81.391 (4)
S1—N21.636 (2)C7—H70.9500
S1—C61.786 (2)C8—C91.379 (4)
S2—O61.4275 (19)C8—H80.9500
S2—O51.429 (2)C9—C101.375 (4)
S2—N51.631 (2)C9—H90.9500
S2—C171.792 (3)C10—C111.385 (4)
O3—N31.223 (3)C10—H100.9500
O4—N31.222 (3)C12—C161.402 (4)
O7—N61.206 (3)C12—C131.405 (4)
O8—N61.226 (4)C13—C141.365 (4)
N1—C41.341 (3)C13—H130.9500
N1—C31.351 (3)C14—H140.9500
N1—H1A1.06 (4)C15—C161.361 (4)
N2—C11.389 (3)C15—H150.9500
N2—H2A0.97 (4)C16—H160.9500
N3—C111.473 (4)C17—C181.385 (4)
N4—C141.352 (4)C17—C221.400 (4)
N4—C151.354 (3)C18—C191.387 (4)
N4—H4A0.90 (3)C18—H180.9500
N5—C121.382 (3)C19—C201.374 (4)
N5—H5A0.94 (3)C19—H190.9500
N6—C221.476 (4)C20—C211.387 (4)
C1—C51.396 (3)C20—H200.9500
C1—C21.403 (3)C21—C221.379 (4)
C2—C31.366 (4)C21—H210.9500
C2—H20.9500O9—N71.245 (3)
C3—H30.9500O10—N71.233 (3)
C4—C51.375 (3)O11—N71.276 (3)
C4—H40.9500O12—N81.248 (3)
C5—H50.9500O13—N81.273 (3)
C6—C71.390 (4)O14—N81.236 (3)
O2—S1—O1119.72 (12)C9—C8—C7119.7 (3)
O2—S1—N2104.89 (12)C9—C8—H8120.1
O1—S1—N2109.10 (11)C7—C8—H8120.1
O2—S1—C6109.71 (12)C10—C9—C8120.0 (2)
O1—S1—C6105.54 (12)C10—C9—H9120.0
N2—S1—C6107.38 (12)C8—C9—H9120.0
O6—S2—O5120.17 (12)C9—C10—C11120.4 (3)
O6—S2—N5105.37 (12)C9—C10—H10119.8
O5—S2—N5108.65 (12)C11—C10—H10119.8
O6—S2—C17109.44 (12)C10—C11—C6120.7 (3)
O5—S2—C17105.61 (12)C10—C11—N3116.7 (2)
N5—S2—C17106.99 (12)C6—C11—N3122.5 (2)
C4—N1—C3121.1 (2)N5—C12—C16123.2 (2)
C4—N1—H1A125.2 (19)N5—C12—C13118.0 (2)
C3—N1—H1A113.6 (19)C16—C12—C13118.8 (2)
C1—N2—S1126.18 (18)C14—C13—C12119.4 (2)
C1—N2—H2A120 (2)C14—C13—H13120.3
S1—N2—H2A113 (2)C12—C13—H13120.3
O4—N3—O3124.0 (3)N4—C14—C13120.3 (2)
O4—N3—C11117.3 (3)N4—C14—H14119.8
O3—N3—C11118.6 (2)C13—C14—H14119.8
C14—N4—C15121.6 (2)N4—C15—C16120.4 (2)
C14—N4—H4A115.1 (18)N4—C15—H15119.8
C15—N4—H4A123.4 (18)C16—C15—H15119.8
C12—N5—S2127.28 (19)C15—C16—C12119.5 (2)
C12—N5—H5A112.8 (17)C15—C16—H16120.2
S2—N5—H5A117.9 (17)C12—C16—H16120.2
O7—N6—O8124.1 (3)C18—C17—C22117.9 (2)
O7—N6—C22119.4 (2)C18—C17—S2116.33 (18)
O8—N6—C22116.5 (3)C22—C17—S2125.6 (2)
N2—C1—C5123.0 (2)C17—C18—C19121.0 (2)
N2—C1—C2117.4 (2)C17—C18—H18119.5
C5—C1—C2119.6 (2)C19—C18—H18119.5
C3—C2—C1118.6 (2)C20—C19—C18120.4 (3)
C3—C2—H2120.7C20—C19—H19119.8
C1—C2—H2120.7C18—C19—H19119.8
N1—C3—C2121.1 (2)C19—C20—C21119.7 (3)
N1—C3—H3119.5C19—C20—H20120.2
C2—C3—H3119.5C21—C20—H20120.2
N1—C4—C5120.8 (2)C22—C21—C20119.9 (3)
N1—C4—H4119.6C22—C21—H21120.0
C5—C4—H4119.6C20—C21—H21120.0
C4—C5—C1118.7 (2)C21—C22—C17121.1 (3)
C4—C5—H5120.6C21—C22—N6115.9 (3)
C1—C5—H5120.6C17—C22—N6123.0 (2)
C7—C6—C11118.0 (2)O10—N7—O9121.9 (2)
C7—C6—S1116.03 (18)O10—N7—O11118.9 (2)
C11—C6—S1125.7 (2)O9—N7—O11119.1 (2)
C6—C7—C8121.1 (2)O14—N8—O12121.3 (2)
C6—C7—H7119.5O14—N8—O13119.6 (2)
C8—C7—H7119.5O12—N8—O13119.1 (2)
O2—S1—N2—C1169.3 (2)O3—N3—C11—C10137.1 (3)
O1—S1—N2—C161.3 (2)O4—N3—C11—C6141.4 (3)
C6—S1—N2—C152.7 (2)O3—N3—C11—C641.3 (4)
O6—S2—N5—C12170.8 (2)S2—N5—C12—C1617.8 (3)
O5—S2—N5—C1259.2 (2)S2—N5—C12—C13162.69 (19)
C17—S2—N5—C1254.4 (2)N5—C12—C13—C14179.9 (2)
S1—N2—C1—C516.3 (3)C16—C12—C13—C140.6 (3)
S1—N2—C1—C2163.17 (18)C15—N4—C14—C131.2 (3)
N2—C1—C2—C3177.3 (2)C12—C13—C14—N40.4 (3)
C5—C1—C2—C32.2 (3)C14—N4—C15—C161.0 (4)
C4—N1—C3—C22.3 (4)N4—C15—C16—C120.0 (3)
C1—C2—C3—N10.1 (3)N5—C12—C16—C15179.8 (2)
C3—N1—C4—C52.0 (4)C13—C12—C16—C150.8 (3)
N1—C4—C5—C10.4 (3)O6—S2—C17—C18133.3 (2)
N2—C1—C5—C4177.0 (2)O5—S2—C17—C182.6 (2)
C2—C1—C5—C42.5 (3)N5—S2—C17—C18113.0 (2)
O2—S1—C6—C7134.5 (2)O6—S2—C17—C2241.5 (3)
O1—S1—C6—C74.3 (2)O5—S2—C17—C22172.2 (2)
N2—S1—C6—C7112.0 (2)N5—S2—C17—C2272.2 (3)
O2—S1—C6—C1139.3 (3)C22—C17—C18—C191.8 (4)
O1—S1—C6—C11169.6 (2)S2—C17—C18—C19177.1 (2)
N2—S1—C6—C1174.1 (3)C17—C18—C19—C201.5 (4)
C11—C6—C7—C81.5 (4)C18—C19—C20—C210.2 (4)
S1—C6—C7—C8175.8 (2)C19—C20—C21—C221.5 (5)
C6—C7—C8—C90.9 (4)C20—C21—C22—C171.0 (5)
C7—C8—C9—C100.3 (4)C20—C21—C22—N6178.1 (3)
C8—C9—C10—C110.9 (4)C18—C17—C22—C210.6 (4)
C9—C10—C11—C60.3 (4)S2—C17—C22—C21175.3 (2)
C9—C10—C11—N3178.1 (3)C18—C17—C22—N6179.6 (3)
C7—C6—C11—C100.9 (4)S2—C17—C22—N65.6 (4)
S1—C6—C11—C10174.7 (2)O7—N6—C22—C21139.4 (3)
C7—C6—C11—N3179.2 (3)O8—N6—C22—C2140.2 (4)
S1—C6—C11—N37.0 (4)O7—N6—C22—C1739.7 (4)
O4—N3—C11—C1040.2 (4)O8—N6—C22—C17140.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O11i1.06 (4)1.68 (4)2.745 (3)179 (3)
N1—H1A···O9i1.06 (4)2.65 (3)3.361 (3)124 (2)
N4—H4A···O13ii0.90 (3)1.85 (3)2.737 (3)171 (2)
N4—H4A···O12ii0.90 (3)2.68 (3)3.273 (3)124 (2)
N5—H5A···O13iii0.94 (3)1.87 (3)2.751 (3)155 (2)
N2—H2A···O11iv0.97 (4)1.78 (4)2.725 (3)166 (4)
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+2, y, z1/2; (iii) x+2, y+1, z1/2; (iv) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC11H10N3O4S+·NO3
Mr342.30
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)113
a, b, c (Å)14.716 (3), 8.6671 (17), 21.941 (4)
V3)2798.5 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.20 × 0.16 × 0.02
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.943, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
20607, 5734, 5237
Rint0.046
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.098, 1.04
No. of reflections5734
No. of parameters432
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.33
Absolute structureFlack (1983), 2570 Friedel pairs
Absolute structure parameter0.14 (6)

Computer programs: CrystalClear (Rigaku/MSC, 2005), CrystalStructure (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O11i1.06 (4)1.68 (4)2.745 (3)179 (3)
N1—H1A···O9i1.06 (4)2.65 (3)3.361 (3)124 (2)
N4—H4A···O13ii0.90 (3)1.85 (3)2.737 (3)171 (2)
N4—H4A···O12ii0.90 (3)2.68 (3)3.273 (3)124 (2)
N5—H5A···O13iii0.94 (3)1.87 (3)2.751 (3)155 (2)
N2—H2A···O11iv0.97 (4)1.78 (4)2.725 (3)166 (4)
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+2, y, z1/2; (iii) x+2, y+1, z1/2; (iv) x1/2, y+1/2, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationDamiano, T., Morton, D. & Nelson, A. (2007). Org. Biomol. Chem. 5, 2735—2752.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, J. S., Chen, L. G., Zhang, Y. Y., Xu, Y. J., Deng, Y. & Huang, P. M. (2007). J. Chem. Res. 6, 350–352.  CrossRef Google Scholar
First citationRigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, H.-J. & Li, J.-S. (2007). Acta Cryst. E63, o3399.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds