metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1607-m1608

Di-μ2-chlorido-bis­­[aqua­(2,2′-bi­pyridine-4,4′-di­carboxylic acid-κ2N,N′)(nitrato-κO)copper(II)]

aDepartment of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
*Correspondence e-mail: wangzm@mail.buct.edu.cn

(Received 2 April 2008; accepted 5 September 2008; online 22 November 2008)

In the title compound, [Cu2Cl2(NO3)2(C12H8N2O4)2(H2O)2], which consists of a chloride-bridged CuII dimer, the Cu atom is in a distorted octa­hedral environment defined by two N atoms from the 2,2′-bipyridine-4,4′-dicarboxylic acid ligand (H2bpdca), two bridging chlorido ligands, and two O atoms from an equatorial water mol­ecule and an axial nitrate anion, respectively. The two halves of the dimeric unit are related by an inversion centre at the midpoint between the two Cu atoms. Both carboxylic acid groups in the H2bpdca ligand remain protonated, as confirmed by the two sets of C—O bond lengths. The dinuclear mol­ecules are linked into a three-dimensional network via inter­molecular hydrogen bonds.

Related literature

For related literature, see: Aitipamula et al. (2002[Aitipamula, S., Thallapally, P. K., Thaimattam, R., Jaskólski, M. & Desiraju, G. R. (2002). Org. Lett. 4, 921-924.]); Batten & Robson (1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. Engl. 37, 1460-1494.]); Desiraju (2002[Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565-573.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-127.]); Han et al. (2007[Han, K.-F., Chen, H.-Y. & Wang, Z.-M. (2007). Acta Cryst. E63, m1695-m1696.]); Holliday & Mirkin (2001[Holliday, B. J. & Mirkin, C. A. (2001). Angew. Chem. Int. Ed. Engl. 40, 2022-2043.]); Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. Engl. 43, 2334-2375.]); Kumar et al. (2006[Kumar, D. K., Das, A. & Dastidar, P. (2006). Cryst. Growth Des. 6, 1903-1909.]); Liu et al. (2002[Liu, Y.-H., Lu, Y.-L., Wu, H.-C., Wang, J.-C. & Lu, K.-L. (2002). Inorg. Chem. 41, 2592-2597.]); Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]); Ockwig et al. (2005[Ockwig, N. W., Delgado-Friedrichs, O., O'Keeffe, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176-182.]); Schareina et al. (2001a[Schareina, T., Schick, C., Abrahams, B. F. & Kempe, R. (2001a). Z. Anorg. Allg. Chem. 627, 1711-1713.],b[Schareina, T., Schick, C. & Kempe, R. (2001b). Z. Anorg. Allg. Chem. 627, 131-133.]); Tynan et al. (2004[Tynan, E., Jensen, P., Kruger, P. E. & Lees, A. C. (2004). Chem. Commun. pp. 776-777.], 2005[Tynan, E., Jensen, P., Lees, A. C., Moubaraki, B., Murray, K. S. & Kruger, P. E. (2005). CrystEngComm, 7, 90-95.]); Wu (2006[Wu, C.-D. (2006). Inorg. Chem. Commun. 9, 1223-1226.]); Wu et al. (2006[Wu, J.-Y., Yeh, T.-T., Wen, Y.-S., Twu, J. & Lu, K.-L. (2006). Cryst. Growth Des. 6, 467-473.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2Cl2(NO3)2(C12H8N2O4)2(H2O)2]

  • Mr = 846.46

  • Triclinic, [P \overline 1]

  • a = 6.9500 (7) Å

  • b = 8.1490 (7) Å

  • c = 13.5480 (10) Å

  • α = 92.315 (2)°

  • β = 103.384 (4)°

  • γ = 98.556 (3)°

  • V = 735.91 (11) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.72 mm−1

  • T = 295 (2) K

  • 0.30 × 0.24 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID IP area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.627, Tmax = 0.725

  • 5180 measured reflections

  • 3301 independent reflections

  • 3116 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.106

  • S = 1.11

  • 3301 reflections

  • 238 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O3i 0.93 2.45 3.376 (3) 172
C4—H4⋯O3i 0.93 2.42 3.346 (3) 179
C2—H2⋯Cl1ii 0.93 2.7 3.590 (3) 160
C1—H1⋯Cl1 0.93 2.67 3.258 (3) 122
O5—H5A⋯O7iii 0.790 (18) 1.798 (19) 2.582 (3) 172 (4)
O2—H2A⋯O4i 0.77 (4) 1.92 (4) 2.676 (3) 169 (4)
O1—H1WB⋯O8iv 0.802 (18) 2.10 (2) 2.830 (4) 152 (4)
O1—H1WA⋯Cl1iv 0.819 (18) 2.48 (2) 3.220 (2) 152 (3)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z; (iii) -x+1, -y, -z+1; (iv) -x, -y, -z.

Data collection: RAPID-AUTO (Rigaku 2001[Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the field of crystal engineering, based on the metal–ligand coordination interactions, a large number of coordination polymers have been designed and prepared to develop novel functional materials. (For example, Batten & Robson, 1998; Kitagawa et al., 2004; Ockwig et al., 2005). Hydrogen bonding interactions, because of its unique strength and direction, have been widely explored as one of the principal means to control organic molecular assemblies (Desiraju, 2002; Moulton & Zaworotko 2001). As an important synthetic strategy, the combination of both metal–ligand coordination and hydrogen bonding in designing various supramolecular architectures has been extensively used over the past few years (Aitipamula et al., 2002; Holliday & Mirkin, 2001; Kumar et al., 2006; Han et al., 2007). For example, 2,2'-bipyridine-4,4'-dicarboxylic acid (H2bpdca), which possesses two N atoms and carboxylic acid groups, has been employed as ligand with the N atoms chelating a metal ion and the carboxylic acid forming either self-complementary hydrogen bonds to neighboring ligands, or coordinating directly to adjacent metal ions following deprotonation (Tynan et al., 2005; Tynan et al., 2004; Liu et al., 2002; Schareina et al., 2001a; Schareina et al., 2001b; Wu, 2006; Wu et al., 2006). Here we report a copper(II)–H2bpdca complex, [Cu2(C12H8N2O4)2Cl2(NO3)2(H2O)2], (I), with a three-dimensional H-bonding network structure induced by the carboxylic acid groups and water molecules acting as hydrogen-bond donors.

As shown in Fig. 1, the structure of (I) consists of a chloride-bridged Cu(II) dimer, in which the H2bpdca ligand remains protonated. The two halves of the dimer unit are related by an inversion centre at the midpoint between the two Cu atoms. Each copper atom has a distorted octahedral geometry, with the equatorial positions utilised by two chelating nitrogen atoms from the H2bpdca ligand (average of Cu—N bond length, 2.001 (2) Å), one bridging chlorido ligand (Cu1—Cl1 = 2.2513 (6) Å) and one coordinated water molecule (Cu1—O1 = 1.9828 (21) Å). In the elongated axial direction, one site is occupied by another bridging chloride atom (Cu1—Cl1i = 2.7757 (8) Å, symmetry code: (i), 1 - x, -y, -z), and the other site by an O atom from a nitrate anion (Cu1—O6 = 2.5280 (4) Å). Both bond lengths are longer than those corresponding to usual coordination bonds, indicating a weak coordination. The two pyridyl rings of the H2bpdca ligand are slightly twisted, as indicated by its dihedral angle (4.46 (12)°), while the copper-to-copper separation in the dimeric unit is 3.6698 (5) Å. The copper atoms and the bridging chloride atoms occupy the same plane as required by the symmetry, and results in a chloride–chloride separation of 3.4755 (9) Å. The carboxylic group at C11 is almost coplanar with the attached pyridyl ring (dihedral angle ca 3.19°), whereas the carboxylic group at C12 is slightly twisted by ca 12.31° toward the corresponding pyridyl ring. As expected for protonated carboxylic acids, there are two sets of C—O bond lengths: the carbon to hydroxyl oxygen single bond, which average 1.3095 Å, and the carbon to carbonyl oxygen double bond, which average 1.2013 Å. The coordinated nitrato and chlorido ligands provide the charge balance for the title complex.

The dimeric unit is extended into a three-dimensional network through hydrogen bond interactions (Table 1). Double intermolecular hydrogen bonds (O2—H2A···O4) are formed by means of the double carboxylic acid self-complementary interaction of an adjacent complex, resulting in a centrosymmetric R22(22) motif (Etter 1990), with the two O3 carbonyl oxygen atoms pointing toward the middle of the ring. Due to its position, the O3 atom can act as a hydrogen bond acceptor from two pyridyl C—H groups (C4—H4···O3 and C7—H7···O3) which further supports the R22(22) motif. In addition, the coordinated water molecule, O1, is a hydrogen bond donor to the Cl1 atom on adjacent complexes (O1—H1WA···Cl1). These intermolecular hydrogen bonds result in a two-dimensional structure (Fig. 2). Further hydrogen bonding between the non-coordinated O7 atom of nitrate anion and a carboxylic acid group (O5—H5A···O7), and between the O8 atom of same nitrate anion and water molecule of an adjacent complex (O1—H1WB···O8), links the two-dimensional frame into a three-dimensional network (Fig. 3).

Related literature top

For related literature, see: Aitipamula et al. (2002); Batten & Robson (1998); Desiraju (2002); Etter (1990); Han et al. (2007); Holliday & Mirkin (2001); Kitagawa et al. (2004); Kumar et al. (2006); Liu et al. (2002); Moulton & Zaworotko (2001); Ockwig et al. (2005); Schareina et al. (2001a,b); Tynan et al. (2004, 2005); Wu (2006); Wu et al. (2006).

Experimental top

A mixture of CuCl2.2H2O (0.0170 g, 0.1 mmol), H2bpdca (0.0244 g, 0.1 mmol) in the molar ratio 1:1, was placed in a 25 ml Teflon-lined digestion bomb with 4 ml distilled water and 1 ml concentrated HNO3. The sealed vessel was heated to 473 K for 10 h and then slowly cooled to room temperature (3 K h-1). The resulting blue solution was allowed to stand in air at room temperature for one month, yielding blue crystals in 46% yield based on H2bpdca. IR spectroscopic analysis (solid KBr disc, ν, cm-1): 3410.3(s), 3179.0(m) 1731.2 (vs), 1694.4(m), 1625.5 (m), 1560.5(m), 1403.8 (vs), 1382.1 (vs), 1235.3 (m), 1209.8 (s), 1036.3 (w), 824.0 (w), 660.6 (s).

Refinement top

All H atoms attached to C atoms were placed in geometrically idealized positions, with Csp3—H = 0.97 Å and Csp2—H = 0.93 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The remaining H atoms attached to O atoms were located in difference Fourier maps and their positional parameters were refined with O—H distances restrained to 0.77 (4)–0.82 (2) Å with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku 2001); cell refinement: RAPID-AUTO (Rigaku 2001); data reduction: RAPID-AUTO (Rigaku 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of a fragment of the title compound, showing 50% probability displacement ellipsoids for non-H atoms. H atoms are shown as small spheres of arbitrary size.
[Figure 2] Fig. 2. The two-dimensional network formed by hydrogen-bonding interactions (blue dotted lines). For clarity, H atoms attached to C atoms have been omitted.
[Figure 3] Fig. 3. The three-dimensional packing of (I), viewed down the b axis, showing a network structure connected by hydrogen bonds (blue dotted lines). All H atoms have been omitted for clarity.
Di-µ2-chlorido-bis[aqua(2,2'-bipyridine-4,4'-dicarboxylic acid-κ2N,N')(nitrato-κO)copper(II)] top
Crystal data top
[Cu2Cl2(NO3)2(C12H8N2O4)2(H2O)2]Z = 1
Mr = 846.46F(000) = 426
Triclinic, P1Dx = 1.91 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9500 (7) ÅCell parameters from 6664 reflections
b = 8.1490 (7) Åθ = 1.6–27.5°
c = 13.548 (1) ŵ = 1.72 mm1
α = 92.315 (2)°T = 295 K
β = 103.384 (4)°Block, blue
γ = 98.556 (3)°0.30 × 0.24 × 0.20 mm
V = 735.91 (11) Å3
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
3116 reflections with I > 2σ(I)
ω oscillation scansRint = 0.021
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
θmax = 27.5°, θmin = 1.6°
Tmin = 0.627, Tmax = 0.725h = 99
5180 measured reflectionsk = 1010
3301 independent reflectionsl = 1717
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0591P)2 + 0.6991P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.106(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.67 e Å3
3301 reflectionsΔρmin = 0.72 e Å3
238 parameters
Crystal data top
[Cu2Cl2(NO3)2(C12H8N2O4)2(H2O)2]γ = 98.556 (3)°
Mr = 846.46V = 735.91 (11) Å3
Triclinic, P1Z = 1
a = 6.9500 (7) ÅMo Kα radiation
b = 8.1490 (7) ŵ = 1.72 mm1
c = 13.548 (1) ÅT = 295 K
α = 92.315 (2)°0.30 × 0.24 × 0.20 mm
β = 103.384 (4)°
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
3301 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3116 reflections with I > 2σ(I)
Tmin = 0.627, Tmax = 0.725Rint = 0.021
5180 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0353 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.67 e Å3
3301 reflectionsΔρmin = 0.72 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O60.1325 (5)0.1681 (3)0.1741 (2)0.0691 (8)
Cu10.37742 (4)0.02464 (4)0.10473 (2)0.02764 (12)
Cl10.30801 (9)0.10642 (8)0.05463 (4)0.03186 (15)
N10.4725 (3)0.0507 (2)0.24369 (15)0.0250 (4)
N20.5689 (3)0.2299 (3)0.16874 (16)0.0274 (4)
N30.1423 (4)0.3230 (4)0.1725 (2)0.0465 (6)
O10.1477 (3)0.1609 (3)0.07198 (16)0.0380 (4)
O20.9538 (3)0.7885 (2)0.28428 (16)0.0396 (5)
O31.0190 (4)0.6606 (3)0.42733 (17)0.0536 (6)
O40.8547 (3)0.0671 (3)0.60227 (16)0.0454 (5)
O50.6480 (3)0.3083 (2)0.57019 (15)0.0395 (5)
O70.2266 (4)0.4133 (3)0.25273 (16)0.0443 (5)
O80.0715 (7)0.3831 (6)0.0958 (2)0.1053 (15)
C10.6048 (5)0.3690 (3)0.1234 (2)0.0368 (6)
H10.5460.3710.05450.044*
C20.7267 (5)0.5113 (3)0.1753 (2)0.0369 (6)
H20.75050.6070.14190.044*
C30.8119 (4)0.5075 (3)0.27753 (19)0.0269 (5)
C40.7771 (4)0.3630 (3)0.32546 (18)0.0264 (5)
H40.83470.35850.39430.032*
C50.6542 (3)0.2250 (3)0.26844 (17)0.0238 (4)
C60.6057 (3)0.0642 (3)0.31031 (18)0.0241 (4)
C70.6879 (4)0.0294 (3)0.40842 (18)0.0256 (5)
H70.77930.10960.45320.031*
C80.6319 (4)0.1272 (3)0.43924 (18)0.0247 (4)
C90.4958 (4)0.2451 (3)0.37088 (19)0.0289 (5)
H90.45640.35070.39030.035*
C100.4201 (4)0.2024 (3)0.27330 (19)0.0287 (5)
H100.33030.28140.22690.034*
C110.9409 (4)0.6586 (3)0.3387 (2)0.0298 (5)
C120.7236 (4)0.1641 (3)0.54572 (19)0.0276 (5)
H1WA0.050 (4)0.139 (5)0.090 (3)0.041*
H1WB0.113 (5)0.204 (4)0.0152 (17)0.041*
H2A1.017 (5)0.861 (5)0.322 (3)0.041*
H5A0.694 (5)0.333 (4)0.6256 (17)0.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O60.0764 (18)0.0465 (14)0.083 (2)0.0156 (12)0.0381 (16)0.0248 (14)
Cu10.03280 (18)0.02355 (17)0.02061 (17)0.00261 (12)0.00096 (12)0.00132 (11)
Cl10.0367 (3)0.0334 (3)0.0226 (3)0.0066 (2)0.0004 (2)0.0039 (2)
N10.0277 (9)0.0206 (9)0.0236 (9)0.0004 (7)0.0029 (7)0.0005 (7)
N20.0319 (10)0.0229 (9)0.0229 (10)0.0007 (8)0.0013 (8)0.0011 (8)
N30.0386 (13)0.0620 (18)0.0352 (13)0.0166 (12)0.0014 (10)0.0100 (12)
O10.0364 (10)0.0346 (10)0.0334 (10)0.0049 (8)0.0035 (8)0.0017 (8)
O20.0515 (12)0.0230 (9)0.0329 (10)0.0102 (8)0.0024 (9)0.0017 (8)
O30.0758 (16)0.0345 (11)0.0312 (11)0.0132 (10)0.0119 (10)0.0039 (9)
O40.0549 (13)0.0326 (10)0.0323 (10)0.0135 (9)0.0098 (9)0.0055 (8)
O50.0518 (12)0.0285 (9)0.0276 (10)0.0093 (8)0.0032 (8)0.0098 (8)
O70.0621 (13)0.0303 (10)0.0298 (10)0.0002 (9)0.0052 (9)0.0007 (8)
O80.145 (3)0.132 (3)0.0376 (15)0.086 (3)0.0179 (18)0.0050 (18)
C10.0498 (15)0.0273 (12)0.0242 (12)0.0046 (11)0.0033 (11)0.0058 (10)
C20.0501 (16)0.0250 (12)0.0279 (13)0.0043 (11)0.0001 (11)0.0078 (10)
C30.0278 (11)0.0219 (11)0.0267 (12)0.0015 (9)0.0018 (9)0.0004 (9)
C40.0298 (11)0.0229 (11)0.0219 (11)0.0017 (9)0.0002 (9)0.0032 (9)
C50.0269 (10)0.0211 (10)0.0216 (11)0.0005 (8)0.0042 (8)0.0031 (8)
C60.0254 (10)0.0204 (10)0.0245 (11)0.0006 (8)0.0049 (9)0.0002 (8)
C70.0290 (11)0.0202 (10)0.0238 (11)0.0020 (8)0.0023 (9)0.0008 (8)
C80.0286 (11)0.0207 (10)0.0225 (11)0.0001 (8)0.0038 (9)0.0014 (8)
C90.0327 (12)0.0205 (11)0.0293 (12)0.0031 (9)0.0036 (9)0.0030 (9)
C100.0316 (12)0.0213 (11)0.0278 (12)0.0038 (9)0.0020 (9)0.0000 (9)
C110.0319 (12)0.0235 (11)0.0294 (12)0.0027 (9)0.0027 (10)0.0005 (9)
C120.0327 (12)0.0216 (11)0.0256 (11)0.0002 (9)0.0034 (9)0.0034 (9)
Geometric parameters (Å, º) top
O6—N31.255 (4)O5—C121.302 (3)
O6—Cu12.528 (3)O5—H5A0.790 (18)
Cu1—O11.982 (2)C1—C21.387 (4)
Cu1—N11.999 (2)C1—H10.93
Cu1—N22.002 (2)C2—C31.378 (4)
Cu1—Cl12.2511 (7)C2—H20.93
Cu1—Cl1i2.7757 (8)C3—C41.384 (3)
N1—C101.340 (3)C3—C111.501 (3)
N1—C61.355 (3)C4—C51.389 (3)
N2—C11.330 (3)C4—H40.93
N2—C51.348 (3)C5—C61.473 (3)
N3—O81.199 (4)C6—C71.379 (3)
N3—O71.256 (3)C7—C81.387 (3)
O1—H1WA0.819 (18)C7—H70.93
O1—H1WB0.802 (18)C8—C91.389 (3)
O2—C111.318 (3)C8—C121.498 (3)
O2—H2A0.77 (4)C9—C101.384 (4)
O3—C111.196 (3)C9—H90.93
O4—C121.207 (3)C10—H100.93
N3—O6—Cu1119.8 (2)C2—C3—C4119.9 (2)
O1—Cu1—N191.33 (8)C2—C3—C11121.1 (2)
O1—Cu1—N2163.29 (9)C4—C3—C11119.0 (2)
N1—Cu1—N281.03 (8)C3—C4—C5118.5 (2)
O1—Cu1—Cl192.53 (6)C3—C4—H4120.8
N1—Cu1—Cl1172.93 (6)C5—C4—H4120.8
N2—Cu1—Cl196.72 (6)N2—C5—C4121.5 (2)
O1—Cu1—O682.22 (9)N2—C5—C6114.76 (19)
N1—Cu1—O687.84 (10)C4—C5—C6123.8 (2)
N2—Cu1—O682.67 (9)N1—C6—C7121.6 (2)
Cl1—Cu1—O698.54 (8)N1—C6—C5114.4 (2)
C10—N1—C6119.4 (2)C7—C6—C5124.0 (2)
C10—N1—Cu1125.70 (16)C6—C7—C8118.9 (2)
C6—N1—Cu1114.87 (16)C6—C7—H7120.5
C1—N2—C5119.5 (2)C8—C7—H7120.5
C1—N2—Cu1125.61 (17)C7—C8—C9119.5 (2)
C5—N2—Cu1114.73 (16)C7—C8—C12118.5 (2)
O8—N3—O6120.4 (3)C9—C8—C12122.0 (2)
O8—N3—O7120.8 (3)C10—C9—C8118.6 (2)
O6—N3—O7118.8 (3)C10—C9—H9120.7
Cu1—O1—H1WA113 (3)C8—C9—H9120.7
Cu1—O1—H1WB118 (3)N1—C10—C9121.9 (2)
H1WA—O1—H1WB110 (4)N1—C10—H10119
C11—O2—H2A106 (3)C9—C10—H10119
C12—O5—H5A116 (3)O3—C11—O2124.3 (2)
N2—C1—C2122.3 (2)O3—C11—C3123.3 (2)
N2—C1—H1118.9O2—C11—C3112.3 (2)
C2—C1—H1118.9O4—C12—O5124.2 (2)
C3—C2—C1118.4 (2)O4—C12—C8122.1 (2)
C3—C2—H2120.8O5—C12—C8113.7 (2)
C1—C2—H2120.8
N3—O6—Cu1—O1149.3 (3)Cu1—N2—C5—C4174.51 (18)
N3—O6—Cu1—N1119.1 (3)C1—N2—C5—C6179.3 (2)
N3—O6—Cu1—N237.8 (3)Cu1—N2—C5—C65.3 (3)
N3—O6—Cu1—Cl157.9 (3)C3—C4—C5—N20.3 (4)
O1—Cu1—N1—C1018.5 (2)C3—C4—C5—C6179.9 (2)
N2—Cu1—N1—C10176.4 (2)C10—N1—C6—C70.6 (3)
Cl1—Cu1—N1—C10104.5 (5)Cu1—N1—C6—C7178.66 (18)
O6—Cu1—N1—C10100.7 (2)C10—N1—C6—C5178.9 (2)
O1—Cu1—N1—C6163.57 (17)Cu1—N1—C6—C50.9 (3)
N2—Cu1—N1—C61.50 (16)N2—C5—C6—N14.1 (3)
Cl1—Cu1—N1—C673.4 (5)C4—C5—C6—N1175.7 (2)
O6—Cu1—N1—C681.41 (17)N2—C5—C6—C7175.4 (2)
O1—Cu1—N2—C1115.2 (3)C4—C5—C6—C74.7 (4)
N1—Cu1—N2—C1178.8 (2)N1—C6—C7—C80.1 (4)
Cl1—Cu1—N2—C17.9 (2)C5—C6—C7—C8179.5 (2)
O6—Cu1—N2—C189.9 (2)C6—C7—C8—C90.3 (4)
O1—Cu1—N2—C559.8 (4)C6—C7—C8—C12179.4 (2)
N1—Cu1—N2—C53.82 (17)C7—C8—C9—C100.2 (4)
Cl1—Cu1—N2—C5177.06 (16)C12—C8—C9—C10179.0 (2)
O6—Cu1—N2—C585.14 (19)C6—N1—C10—C91.1 (4)
Cu1—O6—N3—O880.0 (4)Cu1—N1—C10—C9178.90 (19)
Cu1—O6—N3—O7100.2 (3)C8—C9—C10—N10.8 (4)
C5—N2—C1—C20.5 (4)C2—C3—C11—O3179.4 (3)
Cu1—N2—C1—C2174.3 (2)C4—C3—C11—O31.3 (4)
N2—C1—C2—C30.4 (5)C2—C3—C11—O22.1 (4)
C1—C2—C3—C41.0 (4)C4—C3—C11—O2177.3 (2)
C1—C2—C3—C11178.3 (3)C7—C8—C12—O45.8 (4)
C2—C3—C4—C50.6 (4)C9—C8—C12—O4173.4 (3)
C11—C3—C4—C5178.7 (2)C7—C8—C12—O5174.0 (2)
C1—N2—C5—C40.8 (4)C9—C8—C12—O56.9 (4)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O3ii0.932.453.376 (3)172
C4—H4···O3ii0.932.423.346 (3)179
C2—H2···Cl1iii0.932.73.590 (3)160
C1—H1···Cl10.932.673.258 (3)122
O5—H5A···O7iv0.79 (2)1.80 (2)2.582 (3)172 (4)
O2—H2A···O4ii0.77 (4)1.92 (4)2.676 (3)169 (4)
O1—H1WB···O8v0.80 (2)2.10 (2)2.830 (4)152 (4)
O1—H1WA···Cl1v0.82 (2)2.48 (2)3.220 (2)152 (3)
Symmetry codes: (ii) x+2, y+1, z+1; (iii) x+1, y+1, z; (iv) x+1, y, z+1; (v) x, y, z.

Experimental details

Crystal data
Chemical formula[Cu2Cl2(NO3)2(C12H8N2O4)2(H2O)2]
Mr846.46
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)6.9500 (7), 8.1490 (7), 13.548 (1)
α, β, γ (°)92.315 (2), 103.384 (4), 98.556 (3)
V3)735.91 (11)
Z1
Radiation typeMo Kα
µ (mm1)1.72
Crystal size (mm)0.30 × 0.24 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID IP area-detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.627, 0.725
No. of measured, independent and
observed [I > 2σ(I)] reflections
5180, 3301, 3116
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.106, 1.11
No. of reflections3301
No. of parameters238
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.67, 0.72

Computer programs: RAPID-AUTO (Rigaku 2001), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O3i0.932.453.376 (3)172.2
C4—H4···O3i0.932.423.346 (3)178.6
C2—H2···Cl1ii0.932.73.590 (3)160
C1—H1···Cl10.932.673.258 (3)122
O5—H5A···O7iii0.790 (18)1.798 (19)2.582 (3)172 (4)
O2—H2A···O4i0.77 (4)1.92 (4)2.676 (3)169 (4)
O1—H1WB···O8iv0.802 (18)2.10 (2)2.830 (4)152 (4)
O1—H1WA···Cl1iv0.819 (18)2.48 (2)3.220 (2)152 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z; (iii) x+1, y, z+1; (iv) x, y, z.
 

Acknowledgements

This work was supported financially by Beijing University of Chemical Technology.

References

First citationAitipamula, S., Thallapally, P. K., Thaimattam, R., Jaskólski, M. & Desiraju, G. R. (2002). Org. Lett. 4, 921–924.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. Engl. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationDesiraju, G. R. (2002). Acc. Chem. Res. 35, 565–573.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–127.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHan, K.-F., Chen, H.-Y. & Wang, Z.-M. (2007). Acta Cryst. E63, m1695–m1696.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHolliday, B. J. & Mirkin, C. A. (2001). Angew. Chem. Int. Ed. Engl. 40, 2022–2043.  CrossRef PubMed CAS Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. Engl. 43, 2334–2375.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKumar, D. K., Das, A. & Dastidar, P. (2006). Cryst. Growth Des. 6, 1903–1909.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Y.-H., Lu, Y.-L., Wu, H.-C., Wang, J.-C. & Lu, K.-L. (2002). Inorg. Chem. 41, 2592–2597.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOckwig, N. W., Delgado-Friedrichs, O., O'Keeffe, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176–182.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSchareina, T., Schick, C., Abrahams, B. F. & Kempe, R. (2001a). Z. Anorg. Allg. Chem. 627, 1711–1713.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchareina, T., Schick, C. & Kempe, R. (2001b). Z. Anorg. Allg. Chem. 627, 131–133.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTynan, E., Jensen, P., Kruger, P. E. & Lees, A. C. (2004). Chem. Commun. pp. 776–777.  Web of Science CSD CrossRef Google Scholar
First citationTynan, E., Jensen, P., Lees, A. C., Moubaraki, B., Murray, K. S. & Kruger, P. E. (2005). CrystEngComm, 7, 90–95.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, C.-D. (2006). Inorg. Chem. Commun. 9, 1223–1226.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, J.-Y., Yeh, T.-T., Wen, Y.-S., Twu, J. & Lu, K.-L. (2006). Cryst. Growth Des. 6, 467–473.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1607-m1608
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds