organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-(4-chloro­phenyl)-3-(2,4-di­fluoro­phen­oxy)acrylate

aXuzhou Central Hospital, Xuzhou Cardiovascular Disease Institute, Xuzhou 221009, People's Republic of China
*Correspondence e-mail: adler_20008@yahoo.com.cn

(Received 31 October 2008; accepted 11 November 2008; online 20 November 2008)

In the mol­ecule of the title compound, C17H13ClF2O3, the dihedral angles formed by the aromatic rings of the chloro­benzene and difluoro­benzene groups with the plane of the acrylate unit are 48.85 (12) and 9.07 (14)°, respectively. In the crystal structure, mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen-bond inter­actions, forming chains along the c axis.

Related literature

For the synthesis and crystal structures of related compounds, see: Li, Xue et al. (2008[Li, H.-Q., Xue, J.-Y., Shi, L., Gui, S.-Y. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 662-667.]); Li, Wang & Jian (2008[Li, Y.-F., Wang, L.-T. & Jian, F.-F. (2008). Acta Cryst. E64, o2140.]); Lin & Jian (2008[Lin, J. & Jian, F.-F. (2008). Acta Cryst. E64, o2130.]); Liu et al. (2008[Liu, X.-H., Cui, P., Song, B.-A., Bhadury, P. S., Zhu, H.-L. & Wang, S.-F. (2008). Bioorg. Med. Chem. 16, 4075-4082.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13ClF2O3

  • Mr = 338.72

  • Monoclinic, P 21 /c

  • a = 16.275 (3) Å

  • b = 7.503 (2) Å

  • c = 13.812 (3) Å

  • β = 111.11 (3)°

  • V = 1573.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 298 (2) K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. ruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.922, Tmax = 0.973

  • 2956 measured reflections

  • 2823 independent reflections

  • 1566 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.189

  • S = 1.02

  • 2823 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.93 2.51 3.321 (4) 146
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, the synthesis and structure of a number of etheric compounds have been widely investigated (Li, Xue et al., 2008; Li, Wang & Jian, 2008; Lin & Jian, 2008; Liu et al., 2008). We report herein the crystal structure of the new title compound.

In the molecule of the title compound (Fig. 1), the dihedral angles between the aromatic rings of the chlorobenzene and difluorobenzene groups with the plane of the acrylate unit are 48.85 (12) and 9.07 (14)° respectively. All the bond lengths (Allen et al., 1987) and angles are not unusual. In the crystal structure, molecules are linked by weak intermolecular C—H···O hydrogen interactions forming chains along the c axis (Table 1).

Related literature top

For the synthesis and crystal structures of related compounds, see: Li, Xue et al. (2008); Li, Wang & Jian (2008); Lin & Jian (2008); Liu et al. (2008). For bond-length data, see: Allen et al. (1987).

Experimental top

An equimolar solution of ethyl 3-bromo-2-(4-chlorophenyl)acrylate and 2,4-difluorophenol in chloroform was left to react overnight at room temperature. Block-shaped crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent in air for five days.

Refinement top

H atoms were included in the riding model approximation with C–H = 0.93–0.97 Å and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Ethyl 2-(4-chlorophenyl)-3-(2,4-difluorophenoxy)acrylate top
Crystal data top
C17H13ClF2O3F(000) = 696
Mr = 338.72Dx = 1.430 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1002 reflections
a = 16.275 (3) Åθ = 2.4–24.5°
b = 7.503 (2) ŵ = 0.28 mm1
c = 13.812 (3) ÅT = 298 K
β = 111.11 (3)°Block, colorless
V = 1573.4 (7) Å30.30 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2823 independent reflections
Radiation source: fine-focus sealed tube1566 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 25.2°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1918
Tmin = 0.922, Tmax = 0.973k = 910
2956 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.189 w = 1/[σ2(Fo2) + (0.0904P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
2823 reflectionsΔρmax = 0.38 e Å3
210 parametersΔρmin = 0.34 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.018 (3)
Crystal data top
C17H13ClF2O3V = 1573.4 (7) Å3
Mr = 338.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.275 (3) ŵ = 0.28 mm1
b = 7.503 (2) ÅT = 298 K
c = 13.812 (3) Å0.30 × 0.10 × 0.10 mm
β = 111.11 (3)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2823 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1566 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.973Rint = 0.027
2956 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.189H-atom parameters constrained
S = 1.02Δρmax = 0.38 e Å3
2823 reflectionsΔρmin = 0.34 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0187 (2)0.7796 (5)0.9699 (3)0.0450 (9)
C21.1022 (2)0.7724 (5)1.0453 (3)0.0473 (9)
C31.1764 (2)0.8337 (6)1.0319 (3)0.0581 (11)
H31.23150.82661.08440.070*
C41.1654 (3)0.9066 (6)0.9368 (3)0.0597 (11)
C51.0851 (3)0.9178 (6)0.8598 (3)0.0621 (12)
H51.07970.96910.79640.074*
C61.0121 (3)0.8535 (6)0.8755 (3)0.0561 (11)
H60.95740.85960.82220.067*
C70.7054 (2)0.6469 (5)0.8670 (3)0.0423 (9)
C80.6325 (2)0.7234 (5)0.8808 (3)0.0540 (10)
H80.63760.76630.94590.065*
C90.5527 (2)0.7366 (6)0.7996 (3)0.0571 (11)
H90.50450.78760.81000.069*
C100.5451 (2)0.6742 (5)0.7036 (3)0.0543 (11)
C110.6147 (3)0.5952 (6)0.6881 (3)0.0572 (11)
H110.60860.55130.62290.069*
C120.6947 (2)0.5804 (5)0.7696 (3)0.0482 (10)
H120.74180.52520.75880.058*
C130.8635 (2)0.7022 (5)0.9293 (3)0.0465 (9)
H130.85260.73730.86120.056*
C140.7936 (2)0.6482 (5)0.9511 (3)0.0426 (9)
C150.8065 (2)0.5946 (5)1.0579 (3)0.0483 (10)
C160.7414 (3)0.4744 (6)1.1715 (3)0.0627 (12)
H16A0.75800.57541.21850.075*
H16B0.78580.38241.19750.075*
C170.6537 (3)0.4055 (7)1.1643 (3)0.0716 (13)
H17A0.60930.49221.13030.107*
H17B0.65380.38311.23270.107*
H17C0.64150.29681.12500.107*
Cl10.44478 (7)0.69754 (19)0.60039 (9)0.0891 (5)
F11.10978 (13)0.7012 (3)1.13855 (15)0.0663 (7)
F21.23761 (16)0.9699 (4)0.9209 (2)0.0858 (9)
O30.94846 (18)0.7113 (4)0.9954 (2)0.0723 (9)
O10.87704 (17)0.6033 (4)1.13049 (18)0.0666 (9)
O20.73412 (16)0.5282 (4)1.06775 (17)0.0525 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.043 (2)0.048 (2)0.043 (2)0.0032 (18)0.0138 (16)0.0068 (18)
C20.047 (2)0.057 (2)0.0348 (19)0.0045 (19)0.0106 (16)0.0028 (18)
C30.042 (2)0.078 (3)0.049 (2)0.007 (2)0.0090 (17)0.010 (2)
C40.053 (2)0.070 (3)0.062 (3)0.008 (2)0.028 (2)0.011 (2)
C50.071 (3)0.074 (3)0.044 (2)0.001 (2)0.024 (2)0.001 (2)
C60.049 (2)0.073 (3)0.040 (2)0.005 (2)0.0084 (17)0.002 (2)
C70.042 (2)0.043 (2)0.039 (2)0.0041 (17)0.0112 (15)0.0051 (16)
C80.048 (2)0.062 (3)0.046 (2)0.002 (2)0.0106 (17)0.004 (2)
C90.044 (2)0.063 (3)0.060 (3)0.007 (2)0.0137 (19)0.004 (2)
C100.044 (2)0.056 (3)0.048 (2)0.003 (2)0.0007 (17)0.0099 (19)
C110.059 (2)0.067 (3)0.038 (2)0.006 (2)0.0081 (18)0.001 (2)
C120.048 (2)0.054 (2)0.041 (2)0.0005 (19)0.0140 (16)0.0013 (18)
C130.045 (2)0.055 (2)0.0329 (18)0.0044 (19)0.0056 (16)0.0002 (17)
C140.042 (2)0.047 (2)0.0327 (18)0.0010 (17)0.0072 (15)0.0008 (16)
C150.049 (2)0.052 (2)0.039 (2)0.0023 (19)0.0113 (18)0.0016 (18)
C160.069 (3)0.076 (3)0.038 (2)0.006 (2)0.0140 (19)0.002 (2)
C170.075 (3)0.084 (3)0.057 (3)0.013 (3)0.025 (2)0.001 (2)
Cl10.0572 (7)0.1132 (11)0.0671 (8)0.0017 (7)0.0137 (5)0.0169 (7)
F10.0541 (13)0.0976 (19)0.0380 (12)0.0022 (13)0.0054 (10)0.0107 (12)
F20.0689 (16)0.119 (2)0.0845 (18)0.0260 (16)0.0462 (14)0.0119 (17)
O30.0592 (18)0.086 (2)0.0644 (19)0.0014 (17)0.0134 (15)0.0021 (17)
O10.0509 (16)0.099 (2)0.0377 (15)0.0153 (16)0.0018 (12)0.0063 (15)
O20.0487 (15)0.0678 (18)0.0382 (13)0.0050 (14)0.0123 (11)0.0020 (13)
Geometric parameters (Å, º) top
C1—C61.384 (5)C10—C111.363 (5)
C1—C21.385 (5)C10—Cl11.747 (4)
C1—O31.409 (4)C11—C121.385 (5)
C2—F11.358 (4)C11—H110.9300
C2—C31.365 (5)C12—H120.9300
C3—C41.373 (6)C13—C141.340 (5)
C3—H30.9300C13—O31.356 (4)
C4—F21.357 (4)C13—H130.9300
C4—C51.359 (5)C14—C151.469 (5)
C5—C61.370 (5)C15—O11.224 (4)
C5—H50.9300C15—O21.331 (4)
C6—H60.9300C16—O21.452 (4)
C7—C121.386 (5)C16—C171.486 (5)
C7—C81.392 (5)C16—H16A0.9700
C7—C141.486 (4)C16—H16B0.9700
C8—C91.380 (5)C17—H17A0.9600
C8—H80.9300C17—H17B0.9600
C9—C101.368 (5)C17—H17C0.9600
C9—H90.9300
C6—C1—C2116.5 (3)C10—C11—C12119.9 (4)
C6—C1—O3125.9 (3)C10—C11—H11120.1
C2—C1—O3117.6 (3)C12—C11—H11120.1
F1—C2—C3118.6 (3)C11—C12—C7120.8 (4)
F1—C2—C1117.2 (3)C11—C12—H12119.6
C3—C2—C1124.1 (4)C7—C12—H12119.6
C2—C3—C4116.6 (4)C14—C13—O3127.3 (3)
C2—C3—H3121.7C14—C13—H13116.3
C4—C3—H3121.7O3—C13—H13116.3
F2—C4—C5119.7 (4)C13—C14—C15118.8 (3)
F2—C4—C3118.2 (4)C13—C14—C7119.1 (3)
C5—C4—C3122.1 (4)C15—C14—C7122.1 (3)
C4—C5—C6119.8 (4)O1—C15—O2122.7 (3)
C4—C5—H5120.1O1—C15—C14124.1 (4)
C6—C5—H5120.1O2—C15—C14113.2 (3)
C5—C6—C1120.9 (4)O2—C16—C17107.1 (3)
C5—C6—H6119.6O2—C16—H16A110.3
C1—C6—H6119.6C17—C16—H16A110.3
C12—C7—C8117.8 (3)O2—C16—H16B110.3
C12—C7—C14120.6 (3)C17—C16—H16B110.3
C8—C7—C14121.4 (3)H16A—C16—H16B108.5
C9—C8—C7121.1 (4)C16—C17—H17A109.5
C9—C8—H8119.4C16—C17—H17B109.5
C7—C8—H8119.4H17A—C17—H17B109.5
C10—C9—C8119.6 (4)C16—C17—H17C109.5
C10—C9—H9120.2H17A—C17—H17C109.5
C8—C9—H9120.2H17B—C17—H17C109.5
C11—C10—C9120.7 (3)C13—O3—C1124.9 (3)
C11—C10—Cl1120.0 (3)C15—O2—C16116.4 (3)
C9—C10—Cl1119.2 (3)
C6—C1—C2—F1179.6 (3)C10—C11—C12—C70.7 (6)
O3—C1—C2—F10.6 (5)C8—C7—C12—C112.1 (6)
C6—C1—C2—C30.4 (6)C14—C7—C12—C11173.4 (4)
O3—C1—C2—C3179.8 (4)O3—C13—C14—C151.2 (6)
F1—C2—C3—C4179.2 (3)O3—C13—C14—C7179.6 (3)
C1—C2—C3—C40.0 (6)C12—C7—C14—C1344.5 (5)
C2—C3—C4—F2179.6 (4)C8—C7—C14—C13130.9 (4)
C2—C3—C4—C50.1 (7)C12—C7—C14—C15136.4 (4)
F2—C4—C5—C6179.8 (4)C8—C7—C14—C1548.3 (5)
C3—C4—C5—C60.7 (7)C13—C14—C15—O13.5 (6)
C4—C5—C6—C11.1 (7)C7—C14—C15—O1175.7 (4)
C2—C1—C6—C51.0 (6)C13—C14—C15—O2174.1 (3)
O3—C1—C6—C5179.3 (4)C7—C14—C15—O26.8 (5)
C12—C7—C8—C91.6 (6)C14—C13—O3—C1175.8 (4)
C14—C7—C8—C9173.9 (4)C6—C1—O3—C132.4 (6)
C7—C8—C9—C100.2 (6)C2—C1—O3—C13177.4 (4)
C8—C9—C10—C111.6 (6)O1—C15—O2—C163.3 (6)
C8—C9—C10—Cl1178.1 (3)C14—C15—O2—C16179.1 (3)
C9—C10—C11—C121.2 (6)C17—C16—O2—C15179.9 (3)
Cl1—C10—C11—C12178.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.513.321 (4)146
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC17H13ClF2O3
Mr338.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)16.275 (3), 7.503 (2), 13.812 (3)
β (°) 111.11 (3)
V3)1573.4 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.922, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
2956, 2823, 1566
Rint0.027
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.189, 1.02
No. of reflections2823
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.34

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.513.321 (4)145.8
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 30572073), the Natural Science Foundation of Jiangsu Province of China (No. DK2005428), the Medical Science and Technology Development Foundation, Jiangsu Province Department of Health (No. K200402), and the Social Development Foundation of Xuzhou (No. X2003025).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SADABS. ruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, Y.-F., Wang, L.-T. & Jian, F.-F. (2008). Acta Cryst. E64, o2140.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLi, H.-Q., Xue, J.-Y., Shi, L., Gui, S.-Y. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 662–667.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLin, J. & Jian, F.-F. (2008). Acta Cryst. E64, o2130.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, X.-H., Cui, P., Song, B.-A., Bhadury, P. S., Zhu, H.-L. & Wang, S.-F. (2008). Bioorg. Med. Chem. 16, 4075-4082.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds