organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-(2-Thien­yl)-9H-carbazole

aSchool of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China, and bSchool of Pharmaceutical and Chemical Engineering, Taizhou University, Linhai, 317000, People's Republic of China
*Correspondence e-mail: jiangxuliang@zj.com

(Received 5 October 2008; accepted 10 November 2008; online 26 November 2008)

In the title compound, C16H11NS, the dihedral angles between the fused ring system and the pendant thienyl ring are 86.37 (5) and 57.14 (5)°.

Related literature

For the fluorescence properties of 9-(2-thien­yl)-9H-carbazole and its application in organic electroluminescent devices, including flat-panel displays, see: Wu et al. (2001[Wu, I.-Y., Lin, J. T., Tao, Y.-T., Balasubramaniam, E., Su, Y. Z. & Ko, C.-W. (2001). Chem. Mater. 13, 2626-2631.]).

[Scheme 1]

Experimental

Crystal data
  • C16H11NS

  • Mr = 249.33

  • Monoclinic, P 21 /n

  • a = 14.412 (3) Å

  • b = 9.5831 (19) Å

  • c = 18.671 (4) Å

  • β = 100.64 (3)°

  • V = 2534.4 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 298 (2) K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). CAD-4 EXPRESS. SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.94, Tmax = 0.97

  • 26852 measured reflections

  • 4980 independent reflections

  • 4138 reflections with I > 2σ(I)

  • Rint = 0.035

  • 3 standard reflections frequency: 60 min intensity decay: 0.3%

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.080

  • S = 1.13

  • 4980 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). CAD-4 EXPRESS. SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). CAD-4 EXPRESS. SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Due to its excellent fluorescence properties, 9-(2-thienyl)-9H-carbazole can be used in organic electroluminescent devices, which have received considerable attention for their potential application in flat-panel displays (Wu et al., 2001). It was readily synthesized via Ullmann reaction with copper(I) iodide as catalyst from carbazole and 2-iodothiophene.

There are two crystallographically independent molecules in the sturcture of (I). The independent molecula is built up from a central core containing three fused rings and one pendant five-membered ring. (Fig. 1). In two independent molecules, the three fused rings are coplanar within 0.0493 (15) and 0.0135 (15) Å, respectively. The five-membered rings are coplanar within 0.0062 (13) and 0.0173 (12) Å, respectively. The dihedral angles between the two components are 86.37 (5) and 57.14 (5)°, respectively.

Related literature top

For the fluorescence properties of 9-(2-thienyl)-9H-carbazole and its application in organic electroluminescent devices, including flat-panel displays, see: Wu et al. (2001).

Experimental top

The title compound was synthesized via Ullmann reaction with copper(I) iodide as catalyst from carbazole and 2-iodothiophene. A solution of the compound in ethanol was concentrated gradually at room temperature to afford colorless prisms.

Refinement top

H atoms were included in calculated positions and refined using a riding model. H atoms were given isotropic displacement parameters equal to 1.2 times the equivalent isotropic displacement parameters of their parent atoms and C—H distances were restrained to 0.93 Å.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-labelling scheme. Ellipsoids are drawn at the 30% probability level.
9-(2-Thienyl)-9H-carbazole top
Crystal data top
C16H11NSF(000) = 1040
Mr = 249.33Dx = 1.307 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7198 reflections
a = 14.412 (3) Åθ = 2.1–23.5°
b = 9.5831 (19) ŵ = 0.23 mm1
c = 18.671 (4) ÅT = 298 K
β = 100.64 (3)°Prismatic, colorless
V = 2534.4 (9) Å30.25 × 0.20 × 0.15 mm
Z = 8
Data collection top
Bruker SMART APEX CCD
diffractometer
4980 independent reflections
Radiation source: fine-focus sealed tube4138 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω/2θ scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1717
Tmin = 0.94, Tmax = 0.97k = 1111
26852 measured reflectionsl = 2322
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0269P)2 + 0.456P]
where P = (Fo2 + 2Fc2)/3
4980 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C16H11NSV = 2534.4 (9) Å3
Mr = 249.33Z = 8
Monoclinic, P21/nMo Kα radiation
a = 14.412 (3) ŵ = 0.23 mm1
b = 9.5831 (19) ÅT = 298 K
c = 18.671 (4) Å0.25 × 0.20 × 0.15 mm
β = 100.64 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4980 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4138 reflections with I > 2σ(I)
Tmin = 0.94, Tmax = 0.97Rint = 0.035
26852 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.13Δρmax = 0.11 e Å3
4980 reflectionsΔρmin = 0.13 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.63934 (12)0.55497 (19)0.16359 (10)0.0479 (4)
C20.66476 (13)0.5659 (2)0.09552 (10)0.0528 (4)
H20.65050.49400.06180.063*
C30.71148 (12)0.68426 (19)0.07780 (10)0.0516 (4)
H30.72850.69160.03230.062*
C40.73279 (13)0.7917 (2)0.12815 (11)0.0578 (5)
H40.76400.87090.11630.069*
C50.70737 (12)0.78082 (19)0.19622 (10)0.0522 (4)
H50.72160.85270.22990.063*
C60.66065 (12)0.66244 (19)0.21394 (9)0.0497 (4)
C70.62079 (12)0.62015 (18)0.27751 (9)0.0472 (4)
C80.61740 (14)0.6816 (2)0.34441 (10)0.0566 (5)
H80.64640.76740.35630.068*
C90.57060 (13)0.6150 (2)0.39353 (11)0.0547 (5)
H90.56830.65620.43830.066*
C100.52720 (13)0.4869 (2)0.37576 (10)0.0545 (5)
H100.49590.44230.40860.065*
C110.53059 (13)0.4254 (2)0.30887 (10)0.0543 (5)
H110.50150.33970.29700.065*
C120.57739 (12)0.49203 (18)0.25974 (9)0.0449 (4)
C130.55629 (13)0.3243 (2)0.15350 (10)0.0550 (5)
C140.61217 (12)0.19052 (17)0.15100 (9)0.0451 (4)
H140.67380.16870.17280.054*
C150.53843 (13)0.1030 (2)0.10260 (11)0.0568 (5)
H150.55070.01140.09080.068*
C160.45484 (13)0.1629 (2)0.07748 (10)0.0541 (5)
H160.40630.11680.04690.065*
C170.35787 (12)0.10050 (16)0.29912 (9)0.0425 (4)
C180.43576 (12)0.06295 (18)0.26924 (10)0.0497 (4)
H180.42950.05120.21910.060*
C190.52295 (13)0.0429 (2)0.31425 (9)0.0519 (4)
H190.57510.01780.29430.062*
C200.53225 (13)0.0605 (2)0.38914 (10)0.0549 (5)
H200.59060.04710.41930.066*
C210.45436 (12)0.09801 (18)0.41902 (10)0.0490 (4)
H210.46060.10970.46910.059*
C220.36717 (12)0.11803 (17)0.37402 (9)0.0458 (4)
C230.27331 (13)0.15467 (16)0.38691 (9)0.0448 (4)
C240.23654 (13)0.18710 (19)0.44865 (9)0.0487 (4)
H240.27540.18570.49430.058*
C250.14168 (13)0.22164 (19)0.44213 (11)0.0527 (4)
H250.11710.24330.48340.063*
C260.08358 (13)0.22374 (19)0.37386 (10)0.0523 (4)
H260.02010.24680.36950.063*
C270.12036 (12)0.19131 (19)0.31212 (10)0.0506 (4)
H270.08150.19270.26640.061*
C280.21522 (12)0.15678 (16)0.31864 (9)0.0448 (4)
C290.23207 (12)0.12673 (18)0.18875 (10)0.0472 (4)
C300.23683 (11)0.00776 (19)0.13801 (9)0.0462 (4)
H300.26010.08190.14860.055*
C310.19480 (12)0.06941 (19)0.06602 (10)0.0520 (4)
H310.19090.01900.02300.062*
C320.16284 (13)0.2012 (2)0.06608 (10)0.0522 (4)
H320.13260.24720.02440.063*
N10.58992 (10)0.45050 (15)0.19114 (8)0.0485 (3)
N20.26435 (10)0.12467 (15)0.26517 (8)0.0474 (3)
S10.44448 (4)0.32622 (5)0.10522 (3)0.05735 (14)
S20.18295 (3)0.27280 (5)0.14807 (3)0.04925 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0430 (9)0.0521 (10)0.0493 (10)0.0014 (8)0.0103 (8)0.0063 (8)
C20.0550 (11)0.0525 (11)0.0504 (10)0.0083 (8)0.0080 (8)0.0116 (8)
C30.0468 (10)0.0556 (11)0.0541 (11)0.0092 (8)0.0139 (8)0.0104 (9)
C40.0483 (10)0.0566 (11)0.0669 (12)0.0148 (9)0.0068 (9)0.0136 (9)
C50.0470 (10)0.0510 (10)0.0509 (10)0.0087 (8)0.0109 (8)0.0109 (8)
C60.0436 (10)0.0505 (10)0.0493 (10)0.0047 (8)0.0063 (8)0.0082 (8)
C70.0417 (9)0.0472 (10)0.0497 (10)0.0078 (7)0.0009 (8)0.0004 (8)
C80.0611 (12)0.0503 (11)0.0543 (11)0.0072 (9)0.0002 (9)0.0043 (9)
C90.0551 (11)0.0513 (10)0.0591 (11)0.0177 (9)0.0145 (9)0.0086 (9)
C100.0494 (10)0.0579 (11)0.0565 (11)0.0104 (9)0.0106 (8)0.0058 (9)
C110.0545 (11)0.0531 (11)0.0552 (11)0.0009 (9)0.0097 (9)0.0028 (9)
C120.0432 (9)0.0464 (9)0.0437 (9)0.0021 (7)0.0042 (7)0.0016 (7)
C130.0532 (11)0.0535 (11)0.0506 (10)0.0036 (9)0.0102 (8)0.0099 (8)
C140.0453 (9)0.0463 (10)0.0418 (9)0.0069 (7)0.0028 (7)0.0079 (7)
C150.0508 (11)0.0561 (11)0.0653 (12)0.0188 (9)0.0152 (9)0.0135 (9)
C160.0502 (11)0.0537 (11)0.0577 (11)0.0153 (9)0.0081 (9)0.0165 (9)
C170.0510 (10)0.0284 (8)0.0482 (9)0.0020 (7)0.0090 (8)0.0080 (7)
C180.0463 (10)0.0475 (10)0.0557 (11)0.0032 (8)0.0106 (8)0.0046 (8)
C190.0548 (11)0.0571 (11)0.0465 (10)0.0114 (9)0.0166 (8)0.0084 (8)
C200.0501 (11)0.0657 (12)0.0470 (10)0.0090 (9)0.0042 (8)0.0149 (9)
C210.0503 (10)0.0445 (9)0.0490 (10)0.0020 (8)0.0005 (8)0.0069 (8)
C220.0542 (10)0.0345 (8)0.0469 (9)0.0040 (7)0.0048 (8)0.0101 (7)
C230.0635 (11)0.0276 (8)0.0439 (9)0.0045 (7)0.0119 (8)0.0024 (7)
C240.0535 (11)0.0554 (11)0.0399 (9)0.0126 (8)0.0158 (8)0.0018 (8)
C250.0532 (11)0.0464 (10)0.0600 (11)0.0042 (8)0.0139 (9)0.0044 (8)
C260.0523 (11)0.0565 (10)0.0499 (10)0.0134 (9)0.0138 (8)0.0097 (8)
C270.0465 (10)0.0527 (10)0.0539 (11)0.0106 (8)0.0126 (8)0.0072 (8)
C280.0532 (10)0.0303 (8)0.0515 (10)0.0011 (7)0.0116 (8)0.0006 (7)
C290.0502 (10)0.0431 (9)0.0494 (10)0.0099 (8)0.0118 (8)0.0140 (7)
C300.0322 (8)0.0503 (10)0.0541 (10)0.0011 (7)0.0030 (7)0.0012 (8)
C310.0471 (10)0.0538 (11)0.0555 (11)0.0005 (8)0.0106 (8)0.0027 (9)
C320.0498 (10)0.0581 (11)0.0494 (10)0.0133 (8)0.0107 (8)0.0146 (8)
N10.0513 (8)0.0442 (8)0.0500 (8)0.0015 (7)0.0098 (7)0.0030 (6)
N20.0490 (8)0.0439 (8)0.0501 (8)0.0089 (6)0.0112 (7)0.0135 (6)
S10.0547 (3)0.0552 (3)0.0540 (3)0.0029 (2)0.0115 (2)0.0119 (2)
S20.0514 (3)0.0445 (2)0.0527 (3)0.0103 (2)0.0120 (2)0.0151 (2)
Geometric parameters (Å, º) top
C1—N11.382 (2)C17—C181.390 (2)
C1—C21.390 (2)C17—C221.390 (2)
C1—C61.390 (3)C17—N21.399 (2)
C2—C31.390 (2)C18—C191.390 (3)
C2—H20.9300C18—H180.9300
C3—C41.390 (3)C19—C201.390 (2)
C3—H30.9300C19—H190.9300
C4—C51.390 (3)C20—C211.390 (2)
C4—H40.9300C20—H200.9300
C5—C61.390 (2)C21—C221.390 (2)
C5—H50.9300C21—H210.9300
C6—C71.468 (2)C22—C231.460 (2)
C7—C81.390 (2)C23—C241.390 (2)
C7—C121.390 (2)C23—C281.390 (2)
C8—C91.390 (3)C24—C251.390 (3)
C8—H80.9300C24—H240.9300
C9—C101.390 (3)C25—C261.390 (3)
C9—H90.9300C25—H250.9300
C10—C111.390 (3)C26—C271.390 (2)
C10—H100.9300C26—H260.9300
C11—C121.390 (2)C27—C281.390 (2)
C11—H110.9300C27—H270.9300
C12—N11.385 (2)C28—N21.361 (2)
C13—N11.437 (2)C29—N21.417 (2)
C13—C141.519 (3)C29—C301.492 (2)
C13—S11.6950 (19)C29—S21.6849 (17)
C14—C151.515 (2)C30—C311.491 (2)
C14—H140.9300C30—H300.9300
C15—C161.339 (3)C31—C321.344 (2)
C15—H150.9300C31—H310.9300
C16—S11.6638 (19)C32—S21.654 (2)
C16—H160.9300C32—H320.9300
N1—C1—C2129.48 (17)C19—C18—H18120.0
N1—C1—C6110.47 (15)C17—C18—H18120.0
C2—C1—C6120.00 (17)C18—C19—C20120.00 (17)
C1—C2—C3120.00 (18)C18—C19—H19120.0
C1—C2—H2120.0C20—C19—H19120.0
C3—C2—H2120.0C21—C20—C19120.00 (17)
C2—C3—C4120.00 (17)C21—C20—H20120.0
C2—C3—H3120.0C19—C20—H20120.0
C4—C3—H3120.0C20—C21—C22120.00 (17)
C5—C4—C3120.00 (17)C20—C21—H21120.0
C5—C4—H4120.0C22—C21—H21120.0
C3—C4—H4120.0C21—C22—C17120.00 (17)
C6—C5—C4120.00 (18)C21—C22—C23134.05 (17)
C6—C5—H5120.0C17—C22—C23105.94 (15)
C4—C5—H5120.0C24—C23—C28120.00 (17)
C5—C6—C1120.00 (17)C24—C23—C22134.21 (17)
C5—C6—C7134.17 (18)C28—C23—C22105.78 (15)
C1—C6—C7105.77 (15)C25—C24—C23120.00 (17)
C8—C7—C12120.00 (17)C25—C24—H24120.0
C8—C7—C6133.90 (18)C23—C24—H24120.0
C12—C7—C6106.07 (15)C24—C25—C26120.00 (18)
C7—C8—C9120.00 (18)C24—C25—H25120.0
C7—C8—H8120.0C26—C25—H25120.0
C9—C8—H8120.0C27—C26—C25120.00 (18)
C8—C9—C10120.00 (18)C27—C26—H26120.0
C8—C9—H9120.0C25—C26—H26120.0
C10—C9—H9120.0C28—C27—C26120.00 (17)
C11—C10—C9120.00 (18)C28—C27—H27120.0
C11—C10—H10120.0C26—C27—H27120.0
C9—C10—H10120.0N2—C28—C27128.75 (16)
C12—C11—C10120.00 (18)N2—C28—C23111.24 (15)
C12—C11—H11120.0C27—C28—C23120.00 (16)
C10—C11—H11120.0N2—C29—C30125.71 (14)
N1—C12—C11129.82 (17)N2—C29—S2119.87 (13)
N1—C12—C7110.18 (15)C30—C29—S2114.42 (13)
C11—C12—C7120.00 (16)C31—C30—C29102.18 (15)
N1—C13—C14126.32 (15)C31—C30—H30128.9
N1—C13—S1116.91 (14)C29—C30—H30128.9
C14—C13—S1116.74 (12)C32—C31—C30116.99 (17)
C15—C14—C1399.68 (14)C32—C31—H31121.5
C15—C14—H14130.2C30—C31—H31121.5
C13—C14—H14130.2C31—C32—S2112.91 (14)
C16—C15—C14117.26 (17)C31—C32—H32123.5
C16—C15—H15121.4S2—C32—H32123.5
C14—C15—H15121.4C1—N1—C12107.48 (14)
C15—C16—S1114.91 (14)C1—N1—C13125.31 (15)
C15—C16—H16122.5C12—N1—C13127.19 (15)
S1—C16—H16122.5C28—N2—C17107.05 (14)
C18—C17—C22120.00 (16)C28—N2—C29128.08 (15)
C18—C17—N2130.01 (16)C17—N2—C29124.64 (15)
C22—C17—N2109.98 (15)C16—S1—C1391.39 (9)
C19—C18—C17120.00 (17)C32—S2—C2993.42 (9)
N1—C1—C2—C3177.18 (17)C28—C23—C24—C250.0 (2)
C6—C1—C2—C30.0 (3)C22—C23—C24—C25178.35 (17)
C1—C2—C3—C40.0 (3)C23—C24—C25—C260.0 (3)
C2—C3—C4—C50.0 (3)C24—C25—C26—C270.0 (3)
C3—C4—C5—C60.0 (3)C25—C26—C27—C280.0 (3)
C4—C5—C6—C10.0 (3)C26—C27—C28—N2178.69 (17)
C4—C5—C6—C7176.78 (18)C26—C27—C28—C230.0 (2)
N1—C1—C6—C5177.68 (15)C24—C23—C28—N2178.91 (15)
C2—C1—C6—C50.0 (3)C22—C23—C28—N20.13 (18)
N1—C1—C6—C70.1 (2)C24—C23—C28—C270.0 (2)
C2—C1—C6—C7177.60 (16)C22—C23—C28—C27178.77 (15)
C5—C6—C7—C82.1 (3)N2—C29—C30—C31179.27 (16)
C1—C6—C7—C8179.20 (19)S2—C29—C30—C310.93 (17)
C5—C6—C7—C12176.08 (19)C29—C30—C31—C322.7 (2)
C1—C6—C7—C121.02 (19)C30—C31—C32—S23.4 (2)
C12—C7—C8—C90.0 (3)C2—C1—N1—C12176.23 (18)
C6—C7—C8—C9177.97 (18)C6—C1—N1—C121.2 (2)
C7—C8—C9—C100.0 (3)C2—C1—N1—C132.3 (3)
C8—C9—C10—C110.0 (3)C6—C1—N1—C13179.69 (16)
C9—C10—C11—C120.0 (3)C11—C12—N1—C1178.44 (18)
C10—C11—C12—N1179.68 (17)C7—C12—N1—C11.85 (19)
C10—C11—C12—C70.0 (3)C11—C12—N1—C130.0 (3)
C8—C7—C12—N1179.74 (16)C7—C12—N1—C13179.66 (16)
C6—C7—C12—N11.78 (19)C14—C13—N1—C185.2 (2)
C8—C7—C12—C110.0 (3)S1—C13—N1—C192.9 (2)
C6—C7—C12—C11178.48 (16)C14—C13—N1—C1296.6 (2)
N1—C13—C14—C15178.93 (18)S1—C13—N1—C1285.3 (2)
S1—C13—C14—C150.78 (19)C27—C28—N2—C17178.81 (17)
C13—C14—C15—C161.1 (2)C23—C28—N2—C170.03 (18)
C14—C15—C16—S11.1 (2)C27—C28—N2—C294.2 (3)
C22—C17—C18—C190.0 (2)C23—C28—N2—C29174.56 (15)
N2—C17—C18—C19179.34 (17)C18—C17—N2—C28179.21 (17)
C17—C18—C19—C200.0 (3)C22—C17—N2—C280.19 (17)
C18—C19—C20—C210.0 (3)C18—C17—N2—C296.0 (3)
C19—C20—C21—C220.0 (3)C22—C17—N2—C29174.63 (15)
C20—C21—C22—C170.0 (2)C30—C29—N2—C28125.31 (19)
C20—C21—C22—C23178.93 (18)S2—C29—N2—C2854.5 (2)
C18—C17—C22—C210.0 (2)C30—C29—N2—C1761.0 (2)
N2—C17—C22—C21179.46 (15)S2—C29—N2—C17119.22 (16)
C18—C17—C22—C23179.20 (14)C15—C16—S1—C130.45 (17)
N2—C17—C22—C230.27 (17)N1—C13—S1—C16178.60 (16)
C21—C22—C23—C242.2 (3)C14—C13—S1—C160.28 (16)
C17—C22—C23—C24178.76 (17)C31—C32—S2—C292.25 (16)
C21—C22—C23—C28179.28 (18)N2—C29—S2—C32179.18 (15)
C17—C22—C23—C280.24 (17)C30—C29—S2—C320.64 (14)

Experimental details

Crystal data
Chemical formulaC16H11NS
Mr249.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)14.412 (3), 9.5831 (19), 18.671 (4)
β (°) 100.64 (3)
V3)2534.4 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.94, 0.97
No. of measured, independent and
observed [I > 2σ(I)] reflections
26852, 4980, 4138
Rint0.035
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.080, 1.13
No. of reflections4980
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.13

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

References

First citationBruker (2000). CAD-4 EXPRESS. SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, I.-Y., Lin, J. T., Tao, Y.-T., Balasubramaniam, E., Su, Y. Z. & Ko, C.-W. (2001). Chem. Mater. 13, 2626–2631.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds