organic compounds
N-Butyl-4-chlorobenzamide
aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: aamersaeed@yahoo.com
In the title benzamide derivative, C11H14ClNO, the chlorobenzene and butylamine groups are each planar, with mean deviations from the planes of 0.013 and 0.030 Å, respectively, and a dihedral angle of 2.54 (9)° between the two planes. In the N—H⋯O hydrogen bonds link molecules in rows along a. Short intermolecular Cl⋯Cl interactions [3.4225 (5) Å] link these rows into sheets in the ac plane. Additional weak C—H⋯O and C—H⋯π interactions generate a three-dimensional network.
Related literature
For details of the biological activity of benzanilides, see: Olsson et al., (2002); Lindgren et al. (2001); Calderone et al. (2006). For the use of benzamides in organic synthesis, see: Reinaud et al. (1991); Zhichkin et al. (2007); Beccalli et al. (2005); For the fluorescence properties of benzanilides, see: Lewis & Long (1998). For related structures see: Saeed et al. (2008); Hempel et al. (2005). For reference structural data, see: Allen et al. (1987). For related literature, see: Vega-Noverola et al. (1989); Yoo et al. (2005).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2006); cell APEX2 and SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004), PLATON (Spek, 2003) and publCIF (Westrip, 2008).
Supporting information
10.1107/S1600536808036313/sg2272sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808036313/sg2272Isup2.hkl
2-Fluorobenzoyl chloride (1 mmol) in CHCl3 was treated with cyclohexyl amine (3.5 mmol) under a nitrogen atmosphere at reflux for 5 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with 1 M aq HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue in ethanol afforded the title compound (79 %) as white needles: Anal. calcd. for C11H14ClNO: C 62.41, H 6.67, N 6.62%; found: C 62.34, H 7.16, N 6.57%.
The H atom bound to N1 was located in a difference
and refined freely with an isotropic displacement parameter. All other H-atoms were refined using a riding model with d(C—H) = 0.95 Å, Uiso= 1.2Ueq (C) for aromatic, 0.99Å, Uiso = 1.2Ueq (C) for CH2, and 0.98 Å, Uiso = 1.5Ueq (C) for CH3 H atoms.Data collection: APEX2 (Bruker, 2006); cell
APEX2 (Bruker, 2006) and SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2003) and publCIF (Westrip, 2008).C11H14ClNO | Z = 2 |
Mr = 211.68 | F(000) = 224 |
Triclinic, P1 | Dx = 1.333 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.1702 (4) Å | Cell parameters from 3494 reflections |
b = 7.8979 (5) Å | θ = 5.3–66.2° |
c = 13.2978 (9) Å | µ = 0.33 mm−1 |
α = 89.275 (3)° | T = 81 K |
β = 84.863 (4)° | Irregular fragment, colourless |
γ = 77.165 (4)° | 0.42 × 0.30 × 0.08 mm |
V = 527.29 (6) Å3 |
Bruker APEXII CCD area-detector diffractometer | 3445 independent reflections |
Radiation source: fine-focus sealed tube | 3050 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
ω scans | θmax = 33.1°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | h = −7→6 |
Tmin = 0.820, Tmax = 0.974 | k = −11→11 |
6632 measured reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.090 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0471P)2 + 0.125P] where P = (Fo2 + 2Fc2)/3 |
3445 reflections | (Δ/σ)max = 0.002 |
132 parameters | Δρmax = 0.43 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
C11H14ClNO | γ = 77.165 (4)° |
Mr = 211.68 | V = 527.29 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.1702 (4) Å | Mo Kα radiation |
b = 7.8979 (5) Å | µ = 0.33 mm−1 |
c = 13.2978 (9) Å | T = 81 K |
α = 89.275 (3)° | 0.42 × 0.30 × 0.08 mm |
β = 84.863 (4)° |
Bruker APEXII CCD area-detector diffractometer | 3445 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | 3050 reflections with I > 2σ(I) |
Tmin = 0.820, Tmax = 0.974 | Rint = 0.017 |
6632 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.090 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.43 e Å−3 |
3445 reflections | Δρmin = −0.22 e Å−3 |
132 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.51637 (16) | 0.82511 (10) | −0.10915 (6) | 0.01587 (15) | |
HN1 | 0.662 (3) | 0.8260 (18) | −0.0876 (11) | 0.026 (3)* | |
C1 | 0.31476 (17) | 0.79695 (10) | −0.04475 (6) | 0.01281 (15) | |
O1 | 0.08420 (13) | 0.81551 (8) | −0.06861 (5) | 0.01616 (14) | |
C2 | 0.38267 (17) | 0.73835 (10) | 0.05917 (6) | 0.01257 (15) | |
C3 | 0.18549 (19) | 0.78474 (11) | 0.13885 (7) | 0.01611 (17) | |
H3 | 0.0169 | 0.8545 | 0.1262 | 0.019* | |
C4 | 0.2331 (2) | 0.73001 (12) | 0.23650 (7) | 0.01847 (18) | |
H4 | 0.0995 | 0.7631 | 0.2908 | 0.022* | |
C5 | 0.4800 (2) | 0.62579 (11) | 0.25329 (7) | 0.01667 (17) | |
Cl1 | 0.54360 (5) | 0.55693 (3) | 0.375283 (17) | 0.02530 (8) | |
C6 | 0.67765 (19) | 0.57568 (12) | 0.17528 (7) | 0.01740 (17) | |
H6 | 0.8439 | 0.5027 | 0.1879 | 0.021* | |
C7 | 0.62886 (18) | 0.63406 (11) | 0.07801 (7) | 0.01532 (16) | |
H7 | 0.7642 | 0.6026 | 0.0241 | 0.018* | |
C8 | 0.47533 (19) | 0.87979 (13) | −0.21289 (7) | 0.01730 (17) | |
H8A | 0.4281 | 1.0082 | −0.2152 | 0.021* | |
H8B | 0.3242 | 0.8363 | −0.2352 | 0.021* | |
C9 | 0.72100 (18) | 0.81319 (12) | −0.28494 (7) | 0.01526 (16) | |
H9A | 0.7664 | 0.6847 | −0.2840 | 0.018* | |
H9B | 0.8733 | 0.8549 | −0.2623 | 0.018* | |
C10 | 0.67469 (19) | 0.87506 (12) | −0.39261 (7) | 0.01705 (17) | |
H10A | 0.5112 | 0.8435 | −0.4123 | 0.020* | |
H10B | 0.6458 | 1.0032 | −0.3943 | 0.020* | |
C11 | 0.9070 (2) | 0.79692 (14) | −0.46899 (8) | 0.02213 (19) | |
H11A | 1.0696 | 0.8277 | −0.4500 | 0.033* | |
H11B | 0.8691 | 0.8425 | −0.5363 | 0.033* | |
H11C | 0.9317 | 0.6703 | −0.4698 | 0.033* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0106 (3) | 0.0251 (4) | 0.0134 (3) | −0.0064 (3) | −0.0033 (3) | 0.0048 (3) |
C1 | 0.0120 (4) | 0.0133 (3) | 0.0131 (4) | −0.0024 (3) | −0.0018 (3) | 0.0006 (3) |
O1 | 0.0097 (3) | 0.0217 (3) | 0.0170 (3) | −0.0028 (2) | −0.0029 (2) | 0.0024 (2) |
C2 | 0.0115 (4) | 0.0138 (3) | 0.0131 (4) | −0.0038 (3) | −0.0025 (3) | 0.0013 (3) |
C3 | 0.0132 (4) | 0.0188 (4) | 0.0154 (4) | −0.0017 (3) | −0.0005 (3) | 0.0009 (3) |
C4 | 0.0185 (4) | 0.0224 (4) | 0.0140 (4) | −0.0043 (3) | 0.0006 (3) | 0.0006 (3) |
C5 | 0.0213 (4) | 0.0170 (4) | 0.0138 (4) | −0.0074 (3) | −0.0055 (3) | 0.0036 (3) |
Cl1 | 0.03326 (15) | 0.02986 (13) | 0.01517 (12) | −0.00986 (10) | −0.00874 (9) | 0.00705 (8) |
C6 | 0.0160 (4) | 0.0180 (4) | 0.0184 (4) | −0.0030 (3) | −0.0058 (3) | 0.0038 (3) |
C7 | 0.0117 (4) | 0.0177 (4) | 0.0159 (4) | −0.0019 (3) | −0.0015 (3) | 0.0016 (3) |
C8 | 0.0121 (4) | 0.0261 (4) | 0.0137 (4) | −0.0040 (3) | −0.0022 (3) | 0.0059 (3) |
C9 | 0.0115 (4) | 0.0202 (4) | 0.0143 (4) | −0.0034 (3) | −0.0028 (3) | 0.0018 (3) |
C10 | 0.0138 (4) | 0.0230 (4) | 0.0139 (4) | −0.0032 (3) | −0.0020 (3) | 0.0029 (3) |
C11 | 0.0185 (5) | 0.0300 (5) | 0.0170 (4) | −0.0043 (4) | 0.0006 (3) | −0.0014 (3) |
N1—C1 | 1.3446 (12) | C6—H6 | 0.9500 |
N1—C8 | 1.4598 (11) | C7—H7 | 0.9500 |
N1—HN1 | 0.831 (15) | C8—C9 | 1.5185 (13) |
C1—O1 | 1.2378 (11) | C8—H8A | 0.9900 |
C1—C2 | 1.4984 (12) | C8—H8B | 0.9900 |
C2—C3 | 1.3952 (12) | C9—C10 | 1.5290 (12) |
C2—C7 | 1.3955 (12) | C9—H9A | 0.9900 |
C3—C4 | 1.3891 (13) | C9—H9B | 0.9900 |
C3—H3 | 0.9500 | C10—C11 | 1.5242 (13) |
C4—C5 | 1.3918 (13) | C10—H10A | 0.9900 |
C4—H4 | 0.9500 | C10—H10B | 0.9900 |
C5—C6 | 1.3848 (14) | C11—H11A | 0.9800 |
C5—Cl1 | 1.7405 (9) | C11—H11B | 0.9800 |
C6—C7 | 1.3931 (12) | C11—H11C | 0.9800 |
C1—N1—C8 | 121.48 (8) | N1—C8—C9 | 112.18 (7) |
C1—N1—HN1 | 119.5 (10) | N1—C8—H8A | 109.2 |
C8—N1—HN1 | 118.4 (10) | C9—C8—H8A | 109.2 |
O1—C1—N1 | 122.89 (8) | N1—C8—H8B | 109.2 |
O1—C1—C2 | 120.60 (8) | C9—C8—H8B | 109.2 |
N1—C1—C2 | 116.51 (8) | H8A—C8—H8B | 107.9 |
C3—C2—C7 | 119.40 (8) | C8—C9—C10 | 111.15 (7) |
C3—C2—C1 | 117.87 (8) | C8—C9—H9A | 109.4 |
C7—C2—C1 | 122.67 (8) | C10—C9—H9A | 109.4 |
C4—C3—C2 | 120.71 (8) | C8—C9—H9B | 109.4 |
C4—C3—H3 | 119.6 | C10—C9—H9B | 109.4 |
C2—C3—H3 | 119.6 | H9A—C9—H9B | 108.0 |
C3—C4—C5 | 118.78 (9) | C11—C10—C9 | 112.75 (8) |
C3—C4—H4 | 120.6 | C11—C10—H10A | 109.0 |
C5—C4—H4 | 120.6 | C9—C10—H10A | 109.0 |
C6—C5—C4 | 121.65 (8) | C11—C10—H10B | 109.0 |
C6—C5—Cl1 | 118.96 (7) | C9—C10—H10B | 109.0 |
C4—C5—Cl1 | 119.39 (7) | H10A—C10—H10B | 107.8 |
C5—C6—C7 | 118.95 (8) | C10—C11—H11A | 109.5 |
C5—C6—H6 | 120.5 | C10—C11—H11B | 109.5 |
C7—C6—H6 | 120.5 | H11A—C11—H11B | 109.5 |
C6—C7—C2 | 120.49 (9) | C10—C11—H11C | 109.5 |
C6—C7—H7 | 119.8 | H11A—C11—H11C | 109.5 |
C2—C7—H7 | 119.8 | H11B—C11—H11C | 109.5 |
C8—N1—C1—O1 | −0.14 (13) | C3—C4—C5—Cl1 | 179.68 (7) |
C8—N1—C1—C2 | 179.00 (8) | C4—C5—C6—C7 | 1.22 (14) |
O1—C1—C2—C3 | −30.72 (12) | Cl1—C5—C6—C7 | −178.56 (7) |
N1—C1—C2—C3 | 150.11 (8) | C5—C6—C7—C2 | −1.35 (13) |
O1—C1—C2—C7 | 146.41 (9) | C3—C2—C7—C6 | 0.37 (13) |
N1—C1—C2—C7 | −32.76 (12) | C1—C2—C7—C6 | −176.72 (8) |
C7—C2—C3—C4 | 0.79 (13) | C1—N1—C8—C9 | −149.00 (8) |
C1—C2—C3—C4 | 178.01 (8) | N1—C8—C9—C10 | −178.91 (7) |
C2—C3—C4—C5 | −0.92 (14) | C8—C9—C10—C11 | −174.52 (8) |
C3—C4—C5—C6 | −0.10 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—HN1···O1i | 0.831 (15) | 2.203 (15) | 3.0164 (10) | 166.3 (13) |
C3—H3···O1ii | 0.95 | 2.66 | 3.3146 (11) | 127 |
C8—H8A···Cg1iii | 0.99 | 2.84 | 3.697 (16) | 145 |
Symmetry codes: (i) x+1, y, z; (ii) −x, −y+2, −z; (iii) −x+1, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | C11H14ClNO |
Mr | 211.68 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 81 |
a, b, c (Å) | 5.1702 (4), 7.8979 (5), 13.2978 (9) |
α, β, γ (°) | 89.275 (3), 84.863 (4), 77.165 (4) |
V (Å3) | 527.29 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.33 |
Crystal size (mm) | 0.42 × 0.30 × 0.08 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2006) |
Tmin, Tmax | 0.820, 0.974 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6632, 3445, 3050 |
Rint | 0.017 |
(sin θ/λ)max (Å−1) | 0.768 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.090, 1.04 |
No. of reflections | 3445 |
No. of parameters | 132 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.43, −0.22 |
Computer programs: , APEX2 (Bruker, 2006) and SAINT (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2003) and publCIF (Westrip, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—HN1···O1i | 0.831 (15) | 2.203 (15) | 3.0164 (10) | 166.3 (13) |
C3—H3···O1ii | 0.95 | 2.66 | 3.3146 (11) | 126.7 |
C8—H8A···Cg1iii | 0.99 | 2.84 | 3.697 (16) | 145 |
Symmetry codes: (i) x+1, y, z; (ii) −x, −y+2, −z; (iii) −x+1, −y, −z. |
Acknowledgements
NA gratefully acknowledges financial support for a PhD programme by the Higher Education Commission of Pakistan. We also thank the University of Otago for purchase of the diffractometer.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Beccalli, E. M., Broggini, G., Paladinoa, G. & Zonia, C. (2005). Tetrahedron, 61, 61–68. Web of Science CrossRef CAS Google Scholar
Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Calderone, V., Fiamingo, F. L., Giorgi, I., Leonardi, M., Livi, O., Martelli, A. & Martinotti, E. (2006). Eur. J. Med. Chem. 41, 761–767. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hempel, A., Camerman, N., Mastropaolo, D. & Camerman, A. (2005). Acta Cryst. E61, o2283–o2285. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand. Google Scholar
Lewis, F. D. & Long, T. M. (1998). J. Phys. Chem. A, 102, 5327–5332. Web of Science CrossRef CAS Google Scholar
Lindgren, H., Pero, R. W., Ivars, F. & Leanderson, T. (2001). Mol. Immunol. 38, 267–277. Web of Science CrossRef PubMed CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Olsson, A. R., Lindgren, H., Pero, R. W. & Leanderson, T. (2002). Br. J. Cancer, 86, 971–978. Web of Science CrossRef PubMed CAS Google Scholar
Reinaud, O., Capdevielle, P. & Maumy, M. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 2129–2134,. CrossRef Web of Science Google Scholar
Saeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o1976. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vega-Noverola, A. P., Soto, J. M., Noguera, F. P., Mauri, J. M. & Spickett, G. W. R. (1989). US Patent No. 4 877 780. Google Scholar
Westrip, S. P. (2008). publCIF. In preparation. Google Scholar
Yoo, C. L., Fettinger, J. C. & Kurth, M. J. (2005). J. Org. Chem. 70, 6941–6943. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhichkin, P., Kesicki, E., Treiberg, J., Bourdon, L., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett. 9, 1415–1418. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The benzanilide core is present in compounds with such a wide range of biological activities that it has been called a privileged structure. N-substituted benzamides are well known anticancer compounds and the mechanism of action for N-substituted benzamide-induced apoptosis has been studied, using declopramide as a lead compound (Olsson et al., 2002). N-substituted benzamides inhibit the activity of nuclear factor- B and nuclear factor of activated T cells activity while inducing activator protein 1 activity in T lymphocytes (Lindgren et al., 2001). Various N-substituted benzamides exhibit potent antiemetic activity (Vega-noverola et al., 1989), while heterocyclic analogs of benzanilide derivatives are potassium channel activators (Calderone et al., 2006). o-Aryloxylation of N-substituted benzamides induced by the copper(II)/trimethylamine N-oxide system has been studied (Reinaud et al., 1991). N-Alkylated 2-nitrobenzamides are intermediates in the synthesis of dibenzo[b,e][1,4]diazepines (Zhichkin et al., 2007) and N-Acyl-2-nitrobenzamides are precursors of 2,3-disubstitued 3H-quinazoline-4-ones (Beccalli et al., 2005). A one-pot conversion of 2-nitro-n-arylbenzamides to 2,3-dihydro-1H-quinazoline-4-ones has also been reported (Yoo et al., 2005). The anomalous dual fluorescence of benzanilides has been assigned to the two lowest benzanilide singlet states (Lewis & Long, 1998)
As part of our work on the structure of benzanildes and related compounds, we report here the structure of the title benzamide derivative, I, Fig. 1. The C1···C7/Cl system is planar with a maximum deviation of 0.0161 (7) Å from the least squares plane. The carbonyl oxygen atom O1 is displaced by 0.6102 (10) Å from this plane. The butylamine N1/C8···C11 fragment is also planar, maximum deviation 0.0365 (7) Å for C9. The dihedral angle between these two planes is 2.54 (9) °. Bond distances within the molecule are normal (Allen et al., 1987) and similar to those found in the structures of related 4-chlorobenzamide derivatives (Saeed et al., 2008, Hempel et al., 2005).
In the crystal structure N1—HN1···O1 hydrogen bonds, Table 1, link molecules into rows along a. Cl1···Cl1 interactions at 3.4225 (5) Å bridge these rows to form sheets in the ac plane, Fig. 2. The sheets are interconnected by weak C3—H3···O1 hydrogen bonds and C8—H8···π interactions involving the C2···C7 benzene ring to generate a three dimensional network, Fig. 3.