organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(Pyrazin-2-yl)-4-toluidine

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 19 October 2008; accepted 11 November 2008; online 26 November 2008)

The two aromatic systems in the title compound, C11H11N3, are inclined by 19.1 (1)°, whilst the angle at the central amino N atom is 130.3 (2)°. The amino group forms a hydrogen bond to the pyrazine N-4 atom of an adjacent mol­ecule, forming a chain motif.

Related literature

For the structure of amino­pyrazine, see: Chao et al. (1976[Chao, M., Schempp, E. & Rosenstein, R. D. (1976). Acta Cryst. B32, 288-290.]) and for that of N-(pyrazin-2-yl)-2-nitro­aniline; see: Parsons et al. (2006[Parsons, S., Wharton, S., McNab, H., Parkin, A. & Johnstone, R. (2006). Private communcation (refcode SEMSAF 610410). CCDC, Cambridge, England.]). For two monoclinic modifications of N-(pyrazin-2-yl)aniline, see: Abdullah & Ng (2008[Abdullah, Z. & Ng, S. W. (2008). Acta Cryst. E64, o2106.]); Wan Saffiee et al. (2008[Wan Saffiee, W. A. M., Idris, A., Abdullah, Z., Aiyub, Z. & Ng, S. W. (2008). Acta Cryst. E64, o2105.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11N3

  • Mr = 185.23

  • Monoclinic, C 2/c

  • a = 21.7179 (7) Å

  • b = 7.5323 (3) Å

  • c = 12.0073 (5) Å

  • β = 105.790 (3)°

  • V = 1890.1 (1) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 (2) K

  • 0.30 × 0.20 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: none

  • 6057 measured reflections

  • 2165 independent reflections

  • 1437 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.135

  • S = 1.03

  • 2165 reflections

  • 132 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N3i 0.89 (2) 2.10 (2) 2.963 (2) 163 (2)
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Related literature top

For the structure of aminopyrazine, see: Chao et al. (1976) and for that of N-(pyrazin-2-yl)-2-nitroaniline; see: Parsons et al. (2006). For two monoclinic modifications of N-(pyrazin-2-yl)aniline, see: Abdullah & Ng (2008); Wan Saffiee et al. (2008).

Experimental top

Chloropyrazine (1 ml, 1.1 mmol) and 4-toluidine (1.2 g, 1.1 mmol) were heated at 423–433 K for 3 h. The solid was dissolved in water. The compound was extracted with ether. The ether extract was dried over sodium sulfate; evaporation of the solvent gave colorless crystals among some unidentified dark brown materials.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95–0.98 Å) and were included in the refinement in the riding model approximation, with U(H) fixed at 1.2–1.5U(C). The amino H-atom was located in a difference Fourier map, and was refined with a distance restraint of N–H 0.88±0.01 Å.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C11H11N3 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
N-(Pyrazin-2-yl)-4-toluidine top
Crystal data top
C11H11N3F(000) = 784
Mr = 185.23Dx = 1.302 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1368 reflections
a = 21.7179 (7) Åθ = 2.9–27.2°
b = 7.5323 (3) ŵ = 0.08 mm1
c = 12.0073 (5) ÅT = 100 K
β = 105.790 (3)°Prism, colorless
V = 1890.1 (1) Å30.30 × 0.20 × 0.05 mm
Z = 8
Data collection top
Bruker SMART APEX
diffractometer
1437 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 27.5°, θmin = 2.0°
ω scansh = 2828
6057 measured reflectionsk = 99
2165 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0652P)2 + 0.9346P]
where P = (Fo2 + 2Fc2)/3
2165 reflections(Δ/σ)max = 0.001
132 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C11H11N3V = 1890.1 (1) Å3
Mr = 185.23Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.7179 (7) ŵ = 0.08 mm1
b = 7.5323 (3) ÅT = 100 K
c = 12.0073 (5) Å0.30 × 0.20 × 0.05 mm
β = 105.790 (3)°
Data collection top
Bruker SMART APEX
diffractometer
1437 reflections with I > 2σ(I)
6057 measured reflectionsRint = 0.041
2165 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.27 e Å3
2165 reflectionsΔρmin = 0.26 e Å3
132 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.31486 (7)0.7286 (2)0.14663 (14)0.0223 (4)
H10.2746 (10)0.754 (3)0.1433 (17)0.025 (5)*
N20.39338 (7)0.5068 (2)0.20972 (13)0.0215 (4)
N30.30867 (7)0.3328 (2)0.31234 (14)0.0240 (4)
C10.34916 (8)0.8610 (2)0.10751 (15)0.0209 (4)
C20.31332 (8)0.9994 (2)0.04370 (15)0.0225 (4)
H20.26800.99770.02740.027*
C30.34299 (9)1.1385 (2)0.00420 (15)0.0243 (4)
H30.31761.23050.03960.029*
C40.40936 (9)1.1472 (2)0.02707 (15)0.0231 (4)
C50.44431 (8)1.0095 (2)0.09091 (15)0.0226 (4)
H50.48971.01270.10810.027*
C60.41565 (8)0.8672 (2)0.13069 (15)0.0222 (4)
H60.44120.77450.17340.027*
C70.44137 (10)1.3010 (3)0.01539 (18)0.0302 (5)
H7A0.48761.29580.02030.045*
H7B0.42441.41290.00560.045*
H7C0.43281.29410.09970.045*
C80.33543 (8)0.5719 (2)0.20318 (15)0.0201 (4)
C90.29286 (8)0.4818 (2)0.25360 (16)0.0231 (4)
H90.25140.52980.24500.028*
C100.36764 (8)0.2678 (2)0.32060 (16)0.0231 (4)
H100.38130.16160.36280.028*
C110.40806 (9)0.3538 (2)0.26845 (16)0.0235 (4)
H110.44870.30220.27420.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0217 (8)0.0194 (8)0.0284 (9)0.0007 (6)0.0110 (7)0.0031 (7)
N20.0249 (8)0.0191 (8)0.0223 (8)0.0013 (6)0.0095 (6)0.0011 (6)
N30.0254 (8)0.0213 (8)0.0262 (9)0.0016 (6)0.0087 (7)0.0019 (7)
C10.0275 (9)0.0177 (9)0.0191 (9)0.0009 (7)0.0089 (7)0.0013 (7)
C20.0240 (9)0.0224 (10)0.0214 (10)0.0019 (8)0.0067 (7)0.0018 (8)
C30.0344 (10)0.0191 (9)0.0194 (10)0.0024 (8)0.0072 (8)0.0004 (7)
C40.0316 (10)0.0193 (9)0.0200 (9)0.0032 (8)0.0096 (8)0.0008 (7)
C50.0252 (9)0.0222 (10)0.0221 (10)0.0018 (8)0.0093 (8)0.0018 (8)
C60.0261 (9)0.0207 (9)0.0204 (9)0.0004 (7)0.0071 (7)0.0004 (7)
C70.0390 (11)0.0250 (11)0.0287 (11)0.0033 (9)0.0128 (9)0.0045 (8)
C80.0237 (9)0.0196 (9)0.0177 (9)0.0013 (7)0.0065 (7)0.0023 (7)
C90.0222 (9)0.0211 (9)0.0267 (10)0.0003 (7)0.0079 (8)0.0002 (8)
C100.0275 (9)0.0187 (9)0.0237 (10)0.0022 (7)0.0077 (8)0.0003 (8)
C110.0264 (9)0.0211 (10)0.0238 (10)0.0020 (8)0.0080 (8)0.0020 (8)
Geometric parameters (Å, º) top
N1—C81.374 (2)C4—C51.386 (3)
N1—C11.401 (2)C4—C71.509 (3)
N1—H10.89 (2)C5—C61.388 (2)
N2—C81.333 (2)C5—H50.9500
N2—C111.344 (2)C6—H60.9500
N3—C91.320 (2)C7—H7A0.9800
N3—C101.349 (2)C7—H7B0.9800
C1—C61.395 (2)C7—H7C0.9800
C1—C21.398 (2)C8—C91.410 (2)
C2—C31.380 (3)C9—H90.9500
C2—H20.9500C10—C111.372 (3)
C3—C41.393 (3)C10—H100.9500
C3—H30.9500C11—H110.9500
C8—N1—C1130.28 (15)C5—C6—H6120.2
C8—N1—H1113.3 (13)C1—C6—H6120.2
C1—N1—H1115.9 (14)C4—C7—H7A109.5
C8—N2—C11115.60 (15)C4—C7—H7B109.5
C9—N3—C10116.84 (15)H7A—C7—H7B109.5
C6—C1—C2118.44 (16)C4—C7—H7C109.5
C6—C1—N1124.95 (16)H7A—C7—H7C109.5
C2—C1—N1116.58 (15)H7B—C7—H7C109.5
C3—C2—C1120.81 (16)N2—C8—N1121.33 (16)
C3—C2—H2119.6N2—C8—C9121.10 (16)
C1—C2—H2119.6N1—C8—C9117.57 (15)
C2—C3—C4121.50 (17)N3—C9—C8122.23 (16)
C2—C3—H3119.3N3—C9—H9118.9
C4—C3—H3119.3C8—C9—H9118.9
C5—C4—C3117.08 (16)N3—C10—C11120.51 (17)
C5—C4—C7121.84 (16)N3—C10—H10119.7
C3—C4—C7121.08 (17)C11—C10—H10119.7
C4—C5—C6122.59 (16)N2—C11—C10123.68 (17)
C4—C5—H5118.7N2—C11—H11118.2
C6—C5—H5118.7C10—C11—H11118.2
C5—C6—C1119.58 (17)
C8—N1—C1—C67.4 (3)N1—C1—C6—C5177.39 (17)
C8—N1—C1—C2174.81 (17)C11—N2—C8—N1179.29 (16)
C6—C1—C2—C30.2 (3)C11—N2—C8—C91.1 (2)
N1—C1—C2—C3178.22 (16)C1—N1—C8—N213.4 (3)
C1—C2—C3—C40.6 (3)C1—N1—C8—C9166.96 (17)
C2—C3—C4—C50.2 (3)C10—N3—C9—C81.1 (3)
C2—C3—C4—C7179.30 (17)N2—C8—C9—N32.1 (3)
C3—C4—C5—C60.4 (3)N1—C8—C9—N3178.20 (16)
C7—C4—C5—C6179.96 (17)C9—N3—C10—C110.8 (3)
C4—C5—C6—C10.7 (3)C8—N2—C11—C100.8 (3)
C2—C1—C6—C50.4 (3)N3—C10—C11—N21.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.89 (2)2.10 (2)2.963 (2)163 (2)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H11N3
Mr185.23
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)21.7179 (7), 7.5323 (3), 12.0073 (5)
β (°) 105.790 (3)
V3)1890.1 (1)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6057, 2165, 1437
Rint0.041
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.135, 1.03
No. of reflections2165
No. of parameters132
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.26

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.89 (2)2.10 (2)2.963 (2)163 (2)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We thank the University of Malaya for supporting this study (grant No. FS 358/2008 A).

References

First citationAbdullah, Z. & Ng, S. W. (2008). Acta Cryst. E64, o2106.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChao, M., Schempp, E. & Rosenstein, R. D. (1976). Acta Cryst. B32, 288–290.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationParsons, S., Wharton, S., McNab, H., Parkin, A. & Johnstone, R. (2006). Private communcation (refcode SEMSAF 610410). CCDC, Cambridge, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWan Saffiee, W. A. M., Idris, A., Abdullah, Z., Aiyub, Z. & Ng, S. W. (2008). Acta Cryst. E64, o2105.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds