organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-tert-butyl-5-(4-chloro­benz­yl)thia­zole

aCollege of Chemistry and Chemical Engineering, Hunan University 410082, Changsha, People's Republic of China
*Correspondence e-mail: axhu0731@yahoo.com.cn

(Received 27 October 2008; accepted 10 November 2008; online 13 November 2008)

In the title compound, C14H17ClN2S, the dihedral angle between the planes of the thia­zole and chloro­phenyl rings is 88.86 (3)°. In the crystal, inversion dimers occur, linked by pairs of N—H⋯N hydrogen bonds.

Related literature

For background on 2-amino-4-aryl­thia­zoles and their wide-ranging anti­fungal activities, see: Hu et al. (2007a[Hu, A.-X., Cao, G., Xu, J.-J., Xia, L. & He, D.-H. (2007a). J. Hunan Univ. (Nat. Sci.), 10, 78-80.]); Marcantonio et al. (2002[Marcantonio, K. M., Frey, L. F., Murry, J. A. & Chen, C. Y. (2002). Tetrahedron Lett. 43, 8845-8848.]). For related structures, see: Cao et al. (2007[Cao, G., Hu, A.-X., Xu, J.-J. & Xia, L. (2007). Acta Cryst. E63, o2534.]); He et al. (2006[He, D.-H., Cao, G. & Hu, A.-X. (2006). Acta Cryst. E62, o5637-o5638.]); Hu et al. (2007b[Hu, A.-X., Zhang, J.-Y., Cao, G., Xu, J.-J. & Xia, L. (2007b). Acta Cryst. E63, o2533.]); Xu et al. (2007[Xu, J.-J., Hu, A.-X. & Cao, G. (2007). Acta Cryst. E63, o533-o534.]).

[Scheme 1]

Experimental

Crystal data
  • C14H17ClN2S

  • Mr = 280.81

  • Monoclinic, C 2/c

  • a = 21.1775 (13) Å

  • b = 5.8544 (4) Å

  • c = 22.8193 (14) Å

  • β = 98.5480 (10)°

  • V = 2797.7 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 173 (2) K

  • 0.48 × 0.29 × 0.17 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.829, Tmax = 0.934

  • 6230 measured reflections

  • 2705 independent reflections

  • 2187 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.120

  • S = 1.06

  • 2705 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N1i 0.88 2.24 3.032 (2) 150
Symmetry code: (i) -x+1, -y+2, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2-Amino-4-arylthiazoles are an important class of heterocyclic compounds in the field of organic pharmaceutial chenistry (Hu et al., 2007a, Marcantonio et al.,2002). Because of their wide-ranging antifungal activities, The structure of 2-amino-4-arylthiazoles were reported before (Cao, et al.,2007, He et al.,2006, Hu et al.,2007b, Xu, et al.,2007). Herein we report the synthesis and crystal structure of 2-amino-4-tert-butyl-5-(4- chlorobenzyl)thiazole(I). The dihedral angle between the planes of thiazole and the chlorophenyl ring is 88.86 °. The molecules are linked by N—H···N hydrogen bonds.

Related literature top

For background on 2-amino-4-arylthiazoles and their wide-ranging antifungal activities, see: Hu et al. (2007a); Marcantonio et al. (2002). For related structures, see: Cao et al. (2007); He et al. (2006); Hu et al. (2007b); Xu et al. (2007).

Experimental top

0.01 mol of 1-(4-Chlorophenyl)-4,4-dimethylpentan-3-one was dissolved in 100 ml e thanol and the mixture was stirred and heated to reflex. 0.012 mol of cupric chloride was added by dropwise. The reaction was monitored by TLC, after it finished, filtered the mixture and concentrated in vacuo. The residue was taken up in dichloromethane, washed with 10% hydrochloric acid, then washed with water until the solution was neutral, dried and concentrated in vacuo to give 4-chloro-1-(4-chlorophenyl)-4,4-dimethylpentan -3-one, yield 87%. Then a solution with 0.005 mol of thiurea and 0.005 mol of 4-chloro-1-(4-chlorophenyl)-4,4-dimethylpentan -3-one in 50 ml of ethanol was refluxed for 10 h. After finishing the reaction, added 10 ml ammonia and continus to stir the sulution 2 h. Then the solution was cooled and the precipitate formed was filtered out, dried, giving white crystals of title compound,yield 73.8%. The crystals for X-ray structure determination were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement top

Methyl H atoms were placed in calculated positions, with C—H = 0.96 Å, and torsion angles were refined, with Uiso(H) = 1.5Ueq(C). Other H atoms were placed in geometrically idealized positions and refined as riding model, with N—H distance of 0.86 Å, C—H distances of 0.98Å (C3—H3), 0.93Å (aromatic H atoms) and 0.97Å (methylene H atoms). The constraint Uiso(H) = 1.2Ueq(carrier) was applied.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure showing 30% probability displacement ellipsoids.H atoms are drawn as spheres of arbitrary radii. Only the major occupied sites of the disordered tert-butyl group are showen.
[Figure 2] Fig. 2. Packing diagram showing the N—H···N hydrogen bonds.
2-Amino-4-tert-butyl-5-(4-chlorobenzyl)thiazole top
Crystal data top
C14H17ClN2SF(000) = 1184
Mr = 280.81Dx = 1.333 Mg m3
Monoclinic, C2/cMelting point: 390 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 21.1775 (13) ÅCell parameters from 3521 reflections
b = 5.8544 (4) Åθ = 2.8–26.9°
c = 22.8193 (14) ŵ = 0.41 mm1
β = 98.548 (1)°T = 173 K
V = 2797.7 (3) Å3Block, colourless
Z = 80.48 × 0.29 × 0.17 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
2705 independent reflections
Radiation source: fine-focus sealed tube2187 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 2623
Tmin = 0.829, Tmax = 0.934k = 57
6230 measured reflectionsl = 1928
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0686P)2 + 2.6543P]
where P = (Fo2 + 2Fc2)/3
2705 reflections(Δ/σ)max = 0.001
166 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C14H17ClN2SV = 2797.7 (3) Å3
Mr = 280.81Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.1775 (13) ŵ = 0.41 mm1
b = 5.8544 (4) ÅT = 173 K
c = 22.8193 (14) Å0.48 × 0.29 × 0.17 mm
β = 98.548 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2705 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2187 reflections with I > 2σ(I)
Tmin = 0.829, Tmax = 0.934Rint = 0.022
6230 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.06Δρmax = 0.32 e Å3
2705 reflectionsΔρmin = 0.32 e Å3
166 parameters
Special details top

Experimental. 1H NMR (CDCl3, 400 MHz) (ppm):1.32(s,9H,3CH3),4.1(s,2H,CH2), 4.8(bs,2H,NH2),7.12(d,J=8.0 Hz,2H,2,6-C6H4Cl), 7.26(d,J=8.0Hz,2H,3,5-C6H4Cl)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.13949 (3)0.57508 (12)0.24064 (3)0.0437 (2)
S10.33404 (2)0.74487 (9)0.00369 (2)0.02787 (18)
C10.40616 (9)0.8911 (4)0.00413 (9)0.0235 (4)
C20.42658 (10)0.6258 (3)0.07470 (8)0.0228 (4)
C30.36579 (10)0.5622 (3)0.05422 (9)0.0244 (4)
C40.32309 (10)0.3710 (4)0.06838 (9)0.0284 (5)
H4A0.35040.24160.08450.034*
H4B0.29750.31880.03090.034*
C50.27747 (9)0.4274 (3)0.11205 (9)0.0229 (4)
C60.27927 (11)0.6335 (4)0.14241 (9)0.0301 (5)
H60.31010.74540.13610.036*
C70.23707 (11)0.6786 (4)0.18159 (10)0.0309 (5)
H70.23890.82020.20210.037*
C80.19240 (10)0.5176 (4)0.19071 (9)0.0287 (5)
C90.18919 (10)0.3095 (4)0.16165 (9)0.0296 (5)
H90.15870.19780.16870.036*
C100.23148 (10)0.2676 (4)0.12204 (9)0.0267 (5)
H100.22910.12660.10120.032*
C110.47436 (10)0.5254 (4)0.12457 (9)0.0260 (5)
C120.50271 (12)0.7208 (4)0.16519 (10)0.0359 (6)
H12A0.46870.79390.18330.054*
H12B0.52240.83360.14180.054*
H12C0.53510.65940.19640.054*
C130.52788 (11)0.4074 (4)0.09748 (10)0.0358 (6)
H13A0.56090.35420.12920.054*
H13B0.54670.51600.07230.054*
H13C0.51030.27680.07360.054*
C140.44542 (13)0.3499 (5)0.16253 (11)0.0425 (6)
H14A0.40770.41550.17630.064*
H14B0.47700.30870.19680.064*
H14C0.43300.21310.13880.064*
N10.44938 (8)0.8119 (3)0.04551 (7)0.0228 (4)
N20.41428 (9)1.0743 (3)0.03037 (8)0.0289 (4)
H2A0.45091.14830.02540.035*
H2B0.38301.11910.05770.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0357 (3)0.0626 (4)0.0359 (3)0.0072 (3)0.0153 (3)0.0044 (3)
S10.0206 (3)0.0356 (3)0.0269 (3)0.0032 (2)0.0018 (2)0.0018 (2)
C10.0205 (10)0.0295 (11)0.0213 (10)0.0018 (8)0.0060 (8)0.0023 (8)
C20.0255 (11)0.0245 (10)0.0196 (9)0.0025 (8)0.0076 (8)0.0010 (8)
C30.0265 (11)0.0249 (11)0.0227 (10)0.0026 (8)0.0062 (8)0.0009 (8)
C40.0279 (11)0.0287 (11)0.0297 (11)0.0075 (9)0.0077 (9)0.0046 (9)
C50.0219 (10)0.0246 (10)0.0217 (10)0.0012 (8)0.0016 (8)0.0023 (8)
C60.0337 (12)0.0275 (11)0.0293 (11)0.0057 (9)0.0059 (9)0.0021 (9)
C70.0348 (12)0.0293 (11)0.0280 (11)0.0008 (10)0.0033 (9)0.0067 (9)
C80.0246 (11)0.0404 (12)0.0215 (10)0.0054 (9)0.0044 (8)0.0026 (9)
C90.0246 (11)0.0363 (12)0.0280 (11)0.0025 (9)0.0045 (9)0.0040 (9)
C100.0268 (11)0.0253 (11)0.0278 (11)0.0018 (9)0.0036 (9)0.0011 (8)
C110.0283 (11)0.0275 (11)0.0223 (10)0.0000 (9)0.0043 (8)0.0049 (8)
C120.0456 (15)0.0374 (13)0.0220 (11)0.0007 (11)0.0043 (10)0.0004 (9)
C130.0376 (13)0.0377 (13)0.0319 (12)0.0090 (10)0.0049 (10)0.0052 (10)
C140.0419 (14)0.0481 (15)0.0377 (13)0.0053 (12)0.0064 (11)0.0190 (12)
N10.0222 (9)0.0263 (9)0.0204 (8)0.0008 (7)0.0044 (7)0.0030 (7)
N20.0248 (9)0.0323 (10)0.0285 (9)0.0004 (8)0.0005 (7)0.0105 (8)
Geometric parameters (Å, º) top
Cl1—C81.746 (2)C8—C91.383 (3)
S1—C11.737 (2)C9—C101.386 (3)
S1—C31.754 (2)C9—H90.9500
C1—N11.299 (3)C10—H100.9500
C1—N21.356 (3)C11—C141.530 (3)
C2—C31.355 (3)C11—C131.534 (3)
C2—N11.400 (3)C11—C121.537 (3)
C2—C111.524 (3)C12—H12A0.9800
C3—C41.504 (3)C12—H12B0.9800
C4—C51.524 (3)C12—H12C0.9800
C4—H4A0.9900C13—H13A0.9800
C4—H4B0.9900C13—H13B0.9800
C5—C61.389 (3)C13—H13C0.9800
C5—C101.393 (3)C14—H14A0.9800
C6—C71.380 (3)C14—H14B0.9800
C6—H60.9500C14—H14C0.9800
C7—C81.373 (3)N2—H2A0.8800
C7—H70.9500N2—H2B0.8800
C1—S1—C389.44 (10)C9—C10—C5121.5 (2)
N1—C1—N2124.57 (19)C9—C10—H10119.2
N1—C1—S1114.38 (15)C5—C10—H10119.2
N2—C1—S1121.04 (15)C2—C11—C14113.86 (19)
C3—C2—N1115.28 (18)C2—C11—C13108.74 (17)
C3—C2—C11130.02 (19)C14—C11—C13107.96 (19)
N1—C2—C11114.70 (17)C2—C11—C12108.64 (17)
C2—C3—C4134.5 (2)C14—C11—C12108.16 (18)
C2—C3—S1109.30 (15)C13—C11—C12109.42 (19)
C4—C3—S1116.10 (15)C11—C12—H12A109.5
C3—C4—C5116.06 (17)C11—C12—H12B109.5
C3—C4—H4A108.3H12A—C12—H12B109.5
C5—C4—H4A108.3C11—C12—H12C109.5
C3—C4—H4B108.3H12A—C12—H12C109.5
C5—C4—H4B108.3H12B—C12—H12C109.5
H4A—C4—H4B107.4C11—C13—H13A109.5
C6—C5—C10118.02 (19)C11—C13—H13B109.5
C6—C5—C4122.77 (18)H13A—C13—H13B109.5
C10—C5—C4119.21 (18)C11—C13—H13C109.5
C7—C6—C5121.1 (2)H13A—C13—H13C109.5
C7—C6—H6119.4H13B—C13—H13C109.5
C5—C6—H6119.4C11—C14—H14A109.5
C8—C7—C6119.6 (2)C11—C14—H14B109.5
C8—C7—H7120.2H14A—C14—H14B109.5
C6—C7—H7120.2C11—C14—H14C109.5
C7—C8—C9121.2 (2)H14A—C14—H14C109.5
C7—C8—Cl1119.34 (17)H14B—C14—H14C109.5
C9—C8—Cl1119.48 (17)C1—N1—C2111.59 (17)
C8—C9—C10118.6 (2)C1—N2—H2A120.0
C8—C9—H9120.7C1—N2—H2B120.0
C10—C9—H9120.7H2A—N2—H2B120.0
C3—S1—C1—N10.05 (16)C6—C7—C8—Cl1179.63 (17)
C3—S1—C1—N2178.88 (18)C7—C8—C9—C101.1 (3)
N1—C2—C3—C4175.9 (2)Cl1—C8—C9—C10179.78 (16)
C11—C2—C3—C43.8 (4)C8—C9—C10—C51.4 (3)
N1—C2—C3—S11.0 (2)C6—C5—C10—C91.0 (3)
C11—C2—C3—S1179.30 (18)C4—C5—C10—C9179.46 (19)
C1—S1—C3—C20.54 (16)C3—C2—C11—C1410.1 (3)
C1—S1—C3—C4177.02 (16)N1—C2—C11—C14170.24 (19)
C2—C3—C4—C596.2 (3)C3—C2—C11—C13110.3 (2)
S1—C3—C4—C587.0 (2)N1—C2—C11—C1369.4 (2)
C3—C4—C5—C66.9 (3)C3—C2—C11—C12130.7 (2)
C3—C4—C5—C10172.63 (18)N1—C2—C11—C1249.7 (2)
C10—C5—C6—C70.4 (3)N2—C1—N1—C2178.26 (18)
C4—C5—C6—C7179.9 (2)S1—C1—N1—C20.6 (2)
C5—C6—C7—C80.2 (3)C3—C2—N1—C11.1 (3)
C6—C7—C8—C90.5 (3)C11—C2—N1—C1179.18 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.882.243.032 (2)150
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC14H17ClN2S
Mr280.81
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)21.1775 (13), 5.8544 (4), 22.8193 (14)
β (°) 98.548 (1)
V3)2797.7 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.48 × 0.29 × 0.17
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.829, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
6230, 2705, 2187
Rint0.022
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.120, 1.06
No. of reflections2705
No. of parameters166
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.32

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.882.243.032 (2)149.8
Symmetry code: (i) x+1, y+2, z.
 

Acknowledgements

The work was funded by the National Key Technology R&D Program, China (NO: 2006 BAE01A01–4).

References

First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, G., Hu, A.-X., Xu, J.-J. & Xia, L. (2007). Acta Cryst. E63, o2534.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, D.-H., Cao, G. & Hu, A.-X. (2006). Acta Cryst. E62, o5637–o5638.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, A.-X., Cao, G., Xu, J.-J., Xia, L. & He, D.-H. (2007a). J. Hunan Univ. (Nat. Sci.), 10, 78–80.  CAS Google Scholar
First citationHu, A.-X., Zhang, J.-Y., Cao, G., Xu, J.-J. & Xia, L. (2007b). Acta Cryst. E63, o2533.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMarcantonio, K. M., Frey, L. F., Murry, J. A. & Chen, C. Y. (2002). Tetrahedron Lett. 43, 8845–8848.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, J.-J., Hu, A.-X. & Cao, G. (2007). Acta Cryst. E63, o533–o534.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds