organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Nitro­benzene­sulfonamido)pyridinium bromide

aSchool of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, People's Republic of China, bDepartment of Food and Biological Engineering, Zhangzhou Institute of Technology, Zhangzhou 363000, People's Republic of China, and cJilin Key Laboratory for the Biotechnology of Agricultural Products Processing, Changchun University, Changchun 130022, People's Republic of China
*Correspondence e-mail: l_zhaohn@yahoo.cn

(Received 19 October 2008; accepted 29 October 2008; online 13 November 2008)

In the title compound, C11H10N3O4S+·Br, the benzene ring makes an angle of 88.4 (2)° with the pyridinium ring. The dihedral angle between the nitro group and the benzene ring is 16.5 (2)°. The ions in the crystal structure are linked by a combination of inter­molecular N—H⋯Br and non-conventional C—H⋯Br and C—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For zwitterionic forms of N-aryl­benzene­sulfonamides, see: Li et al. (2007[Li, J. S., Chen, L. G., Zhang, Y. Y., Xu, Y. J., Deng, Y. & Huang, P. M. (2007). J. Chem. Res. 6, 350-352.]); Yu & Li (2007[Yu, H.-J. & Li, J.-S. (2007). Acta Cryst. E63, o3399.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For non-conventional hydrogen bonds, see: Desiraju & Steiner (2001[Desiraju & Steiner (2001). The Weak Hydrogen Bond in Structural Chemisty and Biology. IUCr Monographs on Crystallography, Vol. 9. Oxford Science Publications.]). For the use of pyridinium derivatives in the construction of supra­molecular architectures, see: Damiano et al. (2007[Damiano, T., Morton, D. & Nelson, A. (2007). Org. Biomol. Chem. 5, 2735-2752.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10N3O4S+·Br

  • Mr = 360.19

  • Monoclinic, C 2/c

  • a = 38.242 (8) Å

  • b = 5.2852 (11) Å

  • c = 13.941 (3) Å

  • β = 108.18 (3)°

  • V = 2677.0 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.24 mm−1

  • T = 113 (2) K

  • 0.10 × 0.04 × 0.02 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.710, Tmax = 0.938

  • 10460 measured reflections

  • 3174 independent reflections

  • 2635 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.076

  • S = 1.05

  • 3174 reflections

  • 189 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Br1i 0.89 (3) 2.30 (3) 3.195 (2) 173 (3)
N2—H2A⋯Br1 0.84 (3) 2.38 (3) 3.225 (3) 174 (2)
C10—H10⋯O3ii 0.95 2.44 3.301 (3) 151
C5—H5⋯Br1iii 0.95 2.75 3.676 (3) 165
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [-x, y+1, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organic pyridinium salts have been widely used in the construction of supramolecular architectures (Damiano et al., 2007). As part of our ongoing studies of supramolecular chemistry involving the pyridinium rings (Li et al., 2007), an X-ray structure analysis of the title compound has been performed. In the cations of the title compound the short C—N distance [N2—C3 = 1.387 (3) Å] has a value between those of a typical C=N double and C—N single bond (1.34–1.38 Å and 1.47–1.50 Å, respectively; Allen et al., 1987). This might be indicative of a slight conjugation of the sulphonamide π electrons N with those of the pyridinium ring. The benzene ring makes an angle of 88.4 (2) ° with the pyridinium ring. The dihedral angle between the nitro group and the benzene ring is 163.5 (2) °. The S atom has a tetrahedral geometry and the Br anion link the cationic molecule into chains along the c axis. The ions in the crystal structure are linked by a combination of intermolecular N—H···Br and non-conventional C—H···Br and C—H···O hydrogen bonds (Table 1) to form a three-dimensional network (Desiraju & Steiner, 2001).

Related literature top

For zwitterionic forms of N-arylbenzenesulfonamides, see: Li et al. (2007); Yu & Li (2007). For bond-length data, see: Allen et al. (1987). For non-conventional hydrogen bonds, see: Desiraju & Steiner (2001). For the use of pyridinium derivatives in the construction of supramolecular architectures, see: Damiano et al. (2007).

Experimental top

A solution of 4-nitrobenzenesulfonyl chloride (2.2 g, 10 mmol) in CH2Cl2 (10 ml) was added dropwise to a suspension of 4-aminopyridine (0.9 g, 10 mmol) in CH2Cl2 (10 ml) at room temperature with stirring. The reaction mixture was stirred overnight. The yellow solid obtained was washed with warm water to obtain the title compound in a yield of 60.6%. A colorless single-crystal suitable for X-ray analysis was obtained by slow evaporation of an hydrobromic acid (5%) solution at room temperature over a period of a week. Analysis calculated for C11H10N3O4SBr: C 36.68, H 2.80, N 11.67%; found: C 36.70, H 2.52, N 11.98%.

Refinement top

The N-bound H atoms were located in a difference map and their coordinates were refined with Uiso(H) = 1.2Ueq(N). The C-bound H atoms were positioned geometrically (C—H =0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of one molecule of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level (arbitrary spheres for the H atoms).
4-(4-Nitrobenzenesulfonamido)pyridinium bromide top
Crystal data top
C11H10N3O4S+·BrF(000) = 1440
Mr = 360.19Dx = 1.787 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3479 reflections
a = 38.242 (8) Åθ = 2.2–27.9°
b = 5.2852 (11) ŵ = 3.24 mm1
c = 13.941 (3) ÅT = 113 K
β = 108.18 (3)°Needle, colorless
V = 2677.0 (11) Å30.10 × 0.04 × 0.02 mm
Z = 8
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3174 independent reflections
Radiation source: rotating anode2635 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.050
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 2.2°
ω and ϕ scansh = 4550
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 64
Tmin = 0.710, Tmax = 0.938l = 1818
10460 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0332P)2]
where P = (Fo2 + 2Fc2)/3
3174 reflections(Δ/σ)max = 0.001
189 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C11H10N3O4S+·BrV = 2677.0 (11) Å3
Mr = 360.19Z = 8
Monoclinic, C2/cMo Kα radiation
a = 38.242 (8) ŵ = 3.24 mm1
b = 5.2852 (11) ÅT = 113 K
c = 13.941 (3) Å0.10 × 0.04 × 0.02 mm
β = 108.18 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3174 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2635 reflections with I > 2σ(I)
Tmin = 0.710, Tmax = 0.938Rint = 0.050
10460 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.68 e Å3
3174 reflectionsΔρmin = 0.47 e Å3
189 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.038458 (6)0.03831 (5)0.156635 (19)0.02228 (9)
S10.134013 (15)0.12886 (11)0.40908 (5)0.01823 (14)
O10.14776 (4)0.1752 (3)0.51529 (13)0.0248 (4)
O20.12760 (4)0.3323 (3)0.33820 (13)0.0240 (4)
O30.25567 (5)0.7285 (4)0.36991 (13)0.0304 (4)
O40.21939 (5)0.7239 (3)0.21551 (13)0.0277 (4)
N10.05972 (6)0.5912 (4)0.53090 (18)0.0279 (5)
N20.09433 (5)0.0162 (4)0.38299 (17)0.0191 (4)
N30.22900 (5)0.6463 (4)0.30319 (16)0.0207 (4)
C10.09132 (7)0.4746 (5)0.5789 (2)0.0271 (6)
H10.10460.52300.64600.033*
C20.10479 (6)0.2877 (5)0.53330 (18)0.0227 (5)
H20.12770.21010.56720.027*
C30.08437 (6)0.2113 (5)0.43571 (18)0.0196 (5)
C40.05109 (6)0.3348 (5)0.38843 (19)0.0261 (6)
H40.03650.28630.32240.031*
C50.03964 (7)0.5254 (5)0.4376 (2)0.0304 (6)
H50.01730.61150.40530.036*
C60.16392 (6)0.0923 (4)0.37923 (18)0.0165 (5)
C70.16066 (6)0.1306 (5)0.27787 (18)0.0192 (5)
H70.14360.03420.22680.023*
C80.18247 (6)0.3099 (5)0.25237 (17)0.0186 (5)
H80.18080.33890.18380.022*
C90.20687 (6)0.4465 (4)0.32927 (18)0.0164 (5)
C100.21101 (6)0.4056 (5)0.43050 (18)0.0188 (5)
H100.22850.49950.48150.023*
C110.18912 (6)0.2252 (5)0.45572 (17)0.0193 (5)
H110.19140.19310.52440.023*
H1A0.0529 (8)0.723 (6)0.561 (2)0.040 (8)*
H2A0.0799 (8)0.010 (5)0.324 (2)0.018 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02226 (14)0.02479 (15)0.01857 (15)0.00186 (10)0.00461 (11)0.00007 (10)
S10.0162 (3)0.0167 (3)0.0210 (3)0.0022 (2)0.0046 (2)0.0039 (2)
O10.0228 (8)0.0270 (10)0.0216 (10)0.0012 (8)0.0025 (7)0.0111 (8)
O20.0219 (8)0.0179 (9)0.0323 (10)0.0006 (7)0.0085 (8)0.0030 (8)
O30.0290 (9)0.0333 (11)0.0296 (11)0.0136 (8)0.0099 (8)0.0083 (9)
O40.0351 (10)0.0260 (10)0.0230 (10)0.0022 (8)0.0105 (8)0.0055 (8)
N10.0323 (12)0.0243 (12)0.0317 (14)0.0043 (10)0.0170 (11)0.0065 (10)
N20.0139 (10)0.0224 (11)0.0182 (12)0.0011 (8)0.0010 (9)0.0021 (9)
N30.0230 (10)0.0178 (10)0.0248 (12)0.0004 (9)0.0124 (9)0.0026 (9)
C10.0280 (14)0.0316 (15)0.0234 (15)0.0087 (11)0.0104 (12)0.0043 (12)
C20.0209 (12)0.0261 (13)0.0209 (13)0.0024 (10)0.0063 (11)0.0011 (11)
C30.0186 (11)0.0182 (12)0.0250 (13)0.0050 (10)0.0109 (10)0.0001 (10)
C40.0203 (12)0.0310 (15)0.0256 (15)0.0033 (11)0.0052 (11)0.0009 (12)
C50.0246 (13)0.0292 (15)0.0398 (17)0.0059 (11)0.0136 (13)0.0012 (13)
C60.0137 (10)0.0182 (12)0.0163 (12)0.0017 (9)0.0029 (9)0.0013 (9)
C70.0204 (11)0.0185 (12)0.0162 (13)0.0008 (10)0.0022 (10)0.0038 (10)
C80.0226 (11)0.0208 (12)0.0129 (11)0.0003 (10)0.0063 (10)0.0005 (10)
C90.0172 (11)0.0146 (11)0.0194 (13)0.0029 (9)0.0087 (10)0.0011 (10)
C100.0160 (11)0.0232 (12)0.0149 (12)0.0011 (9)0.0015 (10)0.0018 (10)
C110.0175 (11)0.0246 (13)0.0146 (12)0.0042 (10)0.0032 (9)0.0037 (10)
Geometric parameters (Å, º) top
S1—O21.4288 (18)C2—H20.9500
S1—O11.4292 (18)C3—C41.399 (3)
S1—N21.637 (2)C4—C51.366 (4)
S1—C61.773 (2)C4—H40.9500
O3—N31.226 (3)C5—H50.9500
O4—N31.232 (3)C6—C111.385 (3)
N1—C51.333 (4)C6—C71.394 (3)
N1—C11.335 (4)C7—C81.380 (3)
N1—H1A0.89 (3)C7—H70.9500
N2—C31.387 (3)C8—C91.385 (3)
N2—H2A0.84 (3)C8—H80.9500
N3—C91.468 (3)C9—C101.387 (3)
C1—C21.359 (3)C10—C111.385 (3)
C1—H10.9500C10—H100.9500
C2—C31.400 (3)C11—H110.9500
O2—S1—O1121.05 (11)C5—C4—C3119.6 (3)
O2—S1—N2104.58 (11)C5—C4—H4120.2
O1—S1—N2109.04 (11)C3—C4—H4120.2
O2—S1—C6108.52 (10)N1—C5—C4120.3 (2)
O1—S1—C6107.48 (11)N1—C5—H5119.8
N2—S1—C6105.09 (11)C4—C5—H5119.8
C5—N1—C1121.6 (2)C11—C6—C7121.8 (2)
C5—N1—H1A120.0 (19)C11—C6—S1119.90 (17)
C1—N1—H1A118.3 (19)C7—C6—S1118.27 (18)
C3—N2—S1128.28 (19)C8—C7—C6119.4 (2)
C3—N2—H2A115.5 (17)C8—C7—H7120.3
S1—N2—H2A114.9 (18)C6—C7—H7120.3
O3—N3—O4123.7 (2)C7—C8—C9118.3 (2)
O3—N3—C9118.3 (2)C7—C8—H8120.9
O4—N3—C9117.9 (2)C9—C8—H8120.9
N1—C1—C2121.1 (3)C8—C9—C10122.8 (2)
N1—C1—H1119.4C8—C9—N3119.0 (2)
C2—C1—H1119.4C10—C9—N3118.2 (2)
C1—C2—C3119.1 (2)C11—C10—C9118.7 (2)
C1—C2—H2120.5C11—C10—H10120.7
C3—C2—H2120.5C9—C10—H10120.7
N2—C3—C4117.2 (2)C10—C11—C6119.0 (2)
N2—C3—C2124.6 (2)C10—C11—H11120.5
C4—C3—C2118.2 (2)C6—C11—H11120.5
O2—S1—N2—C3172.9 (2)O1—S1—C6—C7167.55 (17)
O1—S1—N2—C342.1 (2)N2—S1—C6—C776.4 (2)
C6—S1—N2—C372.9 (2)C11—C6—C7—C81.6 (3)
C5—N1—C1—C21.7 (4)S1—C6—C7—C8177.10 (17)
N1—C1—C2—C32.3 (4)C6—C7—C8—C90.2 (3)
S1—N2—C3—C4168.56 (19)C7—C8—C9—C101.9 (3)
S1—N2—C3—C213.2 (3)C7—C8—C9—N3177.11 (19)
C1—C2—C3—N2177.1 (2)O3—N3—C9—C8164.7 (2)
C1—C2—C3—C41.1 (3)O4—N3—C9—C816.1 (3)
N2—C3—C4—C5178.9 (2)O3—N3—C9—C1016.2 (3)
C2—C3—C4—C50.5 (4)O4—N3—C9—C10162.90 (19)
C1—N1—C5—C40.0 (4)C8—C9—C10—C111.8 (3)
C3—C4—C5—N11.1 (4)N3—C9—C10—C11177.23 (19)
O2—S1—C6—C11146.30 (18)C9—C10—C11—C60.0 (3)
O1—S1—C6—C1113.8 (2)C7—C6—C11—C101.7 (3)
N2—S1—C6—C11102.3 (2)S1—C6—C11—C10176.96 (17)
O2—S1—C6—C735.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br1i0.89 (3)2.30 (3)3.195 (2)173 (3)
N2—H2A···Br10.84 (3)2.38 (3)3.225 (3)174 (2)
C10—H10···O3ii0.952.443.301 (3)151
C5—H5···Br1iii0.952.753.676 (3)165
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1/2, y+3/2, z+1; (iii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H10N3O4S+·Br
Mr360.19
Crystal system, space groupMonoclinic, C2/c
Temperature (K)113
a, b, c (Å)38.242 (8), 5.2852 (11), 13.941 (3)
β (°) 108.18 (3)
V3)2677.0 (11)
Z8
Radiation typeMo Kα
µ (mm1)3.24
Crystal size (mm)0.10 × 0.04 × 0.02
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.710, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
10460, 3174, 2635
Rint0.050
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.076, 1.05
No. of reflections3174
No. of parameters189
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.68, 0.47

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br1i0.89 (3)2.30 (3)3.195 (2)173 (3)
N2—H2A···Br10.84 (3)2.38 (3)3.225 (3)174 (2)
C10—H10···O3ii0.952.443.301 (3)151
C5—H5···Br1iii0.952.753.676 (3)165
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1/2, y+3/2, z+1; (iii) x, y+1, z+1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationDamiano, T., Morton, D. & Nelson, A. (2007). Org. Biomol. Chem. 5, 2735–2752.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDesiraju & Steiner (2001). The Weak Hydrogen Bond in Structural Chemisty and Biology. IUCr Monographs on Crystallography, Vol. 9. Oxford Science Publications.  Google Scholar
First citationLi, J. S., Chen, L. G., Zhang, Y. Y., Xu, Y. J., Deng, Y. & Huang, P. M. (2007). J. Chem. Res. 6, 350–352.  CrossRef Google Scholar
First citationRigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, H.-J. & Li, J.-S. (2007). Acta Cryst. E63, o3399.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds