organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-4-pyridyl sulfide–isophthalic acid (1/1)

aCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China
*Correspondence e-mail: jh_q128105@126.com

(Received 21 October 2008; accepted 30 October 2008; online 8 November 2008)

In the heteromolecular title structure, C10H8N2S·C8H6O4, the two components are linked by O—H⋯N hydrogen bonds to form a one-dimensional chain. These chains are further inter­connected by weak inter­molecular C—H⋯O hydrogen bonds and weak C—H⋯π inter­actions to generate a three-dimensional supra­molecular structure.

Related literature

For C—H⋯O hydrogen bonds, see: Bhogala et al. (2005[Bhogala, B. R., Basavoju, S. & Nangia, A. (2005). Cryst. Growth Des. 5, 1683-1686.]); Wang et al. (2008[Wang, Y.-T., Tang, G.-M., Zhang, Y.-C. & Wan, W.-Z. (2008). Acta Cryst. E64, o1753.]). For C—H⋯π inter­actions, see: Fun & Kia (2008[Fun, H.-K. & Kia, R. (2008). Acta Cryst. E64, m1116-m1117.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N2S·C8H6O4

  • Mr = 354.37

  • Triclinic, [P \overline 1]

  • a = 6.618 (6) Å

  • b = 8.200 (7) Å

  • c = 16.013 (13) Å

  • α = 88.808 (11)°

  • β = 79.340 (11)°

  • γ = 79.275 (11)°

  • V = 839.0 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 291 (2) K

  • 0.47 × 0.30 × 0.11 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.905, Tmax = 0.977

  • 6280 measured reflections

  • 3084 independent reflections

  • 1885 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.080

  • wR(F2) = 0.269

  • S = 1.08

  • 3084 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 1.05 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O2i 0.93 2.45 3.334 (6) 159
C16—H16⋯O2ii 0.93 2.58 3.180 (6) 123
C13—H13⋯O4iii 0.93 2.31 3.141 (6) 148
C12—H12⋯Cg1iv 0.93 2.98 3.570 (6) 123
O3—H3D⋯N1v 0.82 1.83 2.634 (5) 164
O1—H1D⋯N2vi 0.82 1.84 2.662 (5) 179
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y, z+1; (iii) x-1, y+1, z; (iv) -x+1, -y+2, -z+1; (v) x, y-1, z; (vi) x, y, z-1. Cg1 is the centroid of the C2–C7 isophthalic acid ring.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The asymmetric unit consists of one 4,4'-dipyridyl sulfide molecule and one isophthalic acid molecule (Fig. 1). The hetero-molecularar components of (I) are linked by O—H···N hydrogen bonds to form a one-dimensional chain (Table 1 & Fig. 2). These chains interact with each other via weak intermolecular C—H···O hydrogen bonds and C—H···π interactions. Within the asymmetric unit, the atoms C13, C16 and C17 act as hydrogen-bond donors (Table 1). The bond lengths and angles of these three hydrogen bonds are comparable with literature data (Bhogala et al., 2005; Wang et al., 2008). These hydrogen bonds, albeit rather weak, link the chains into two-dimensional double layers structure, which are further connected by weak intermolecular C—H···π interactions (Table 1) to generate a three-dimensional supramolecular structure (Fig. 3).

Related literature top

For C—H···O hydrogen bonds, see: Bhogala et al. (2005); Wang et al. (2008). For C—H···π interactions, see: Fun & Kia (2008).

Experimental top

4,4'-dipyridyl sulfide (18.84 mg, 0.1 mmol), isophthalic acid (16.51 mg, 0.1 mmol), and NaOH (8.13 mg, 0.2 mmol) were added to a H2O solution (15 ml) in a Teflonlined stainless steel reactor. The mixture was heated at 473 K for 3 d, and then slowly cooled down to room temperature. Colorless crystals of the title compound were obtained.

Refinement top

All hydrogen atoms were positioned geometrically and treated as riding, with C—H bonding lengths constrained to 0.93 (aromatic CH) and O—H bonding lengths constrained to 0.82 (OH), and with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the hetero-molecular components of the title compound with the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the one-dimensional hydrogen-bond chain motif.
[Figure 3] Fig. 3. A view of the C—H···O hydrogen bond and the C—H···π interactions in the crystal structure of the title compound.
Di-4-pyridyl sulfide–isophthalic acid (1/1) top
Crystal data top
C10H8N2S·C8H6O4Z = 2
Mr = 354.37F(000) = 368
Triclinic, P1Dx = 1.403 Mg m3
a = 6.618 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.200 (7) ÅCell parameters from 1298 reflections
c = 16.013 (13) Åθ = 2.9–21.2°
α = 88.808 (11)°µ = 0.22 mm1
β = 79.340 (11)°T = 291 K
γ = 79.275 (11)°Block, colorless
V = 839.0 (12) Å30.47 × 0.30 × 0.11 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3084 independent reflections
Radiation source: fine-focus sealed tube1885 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 87
Tmin = 0.905, Tmax = 0.977k = 99
6280 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.269H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.1354P)2 + 0.4871P]
where P = (Fo2 + 2Fc2)/3
3084 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 1.05 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C10H8N2S·C8H6O4γ = 79.275 (11)°
Mr = 354.37V = 839.0 (12) Å3
Triclinic, P1Z = 2
a = 6.618 (6) ÅMo Kα radiation
b = 8.200 (7) ŵ = 0.22 mm1
c = 16.013 (13) ÅT = 291 K
α = 88.808 (11)°0.47 × 0.30 × 0.11 mm
β = 79.340 (11)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3084 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1885 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.977Rint = 0.020
6280 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0800 restraints
wR(F2) = 0.269H-atom parameters constrained
S = 1.08Δρmax = 1.05 e Å3
3084 reflectionsΔρmin = 0.28 e Å3
228 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.2928 (2)0.9132 (2)0.77591 (8)0.1000 (6)
O10.9948 (5)0.7101 (5)0.0723 (2)0.0868 (10)
H1D0.92030.73960.03710.130*
O20.7255 (6)0.5957 (5)0.1306 (2)0.0993 (12)
O30.7222 (6)0.3409 (5)0.4098 (2)0.0958 (12)
H3D0.67030.30730.45600.144*
O41.0069 (6)0.2941 (6)0.4653 (2)0.1133 (14)
N10.5677 (7)1.1790 (5)0.5430 (2)0.0733 (10)
N20.7476 (6)0.8077 (5)0.9602 (2)0.0777 (11)
C10.8967 (7)0.6270 (6)0.1321 (3)0.0716 (12)
C21.0110 (6)0.5765 (5)0.2024 (3)0.0636 (10)
C31.2038 (7)0.6166 (6)0.2056 (3)0.0724 (12)
H31.26940.67270.16050.087*
C41.2987 (7)0.5754 (6)0.2735 (3)0.0833 (14)
H41.42640.60580.27510.100*
C51.2062 (7)0.4887 (6)0.3400 (3)0.0772 (12)
H51.27210.45970.38610.093*
C61.0141 (6)0.4447 (5)0.3378 (3)0.0639 (10)
C70.9189 (6)0.4878 (5)0.2695 (2)0.0637 (10)
H70.79120.45740.26770.076*
C80.9164 (7)0.3505 (6)0.4099 (3)0.0734 (12)
C90.6939 (8)1.0749 (6)0.5857 (3)0.0761 (13)
H90.83761.05830.56610.091*
C100.6199 (8)0.9931 (6)0.6562 (3)0.0750 (12)
H100.71200.92080.68340.090*
C110.4099 (7)1.0177 (6)0.6868 (3)0.0691 (11)
C120.2817 (8)1.1212 (6)0.6439 (3)0.0782 (13)
H120.13771.13990.66310.094*
C130.3637 (8)1.1986 (6)0.5722 (3)0.0795 (13)
H130.27281.26730.54290.095*
C140.6067 (8)0.9811 (6)0.8561 (3)0.0833 (14)
H140.60561.07870.82540.100*
C150.7391 (8)0.9425 (6)0.9127 (3)0.0842 (15)
H150.82861.01500.91820.101*
C160.6162 (10)0.7091 (7)0.9505 (3)0.0917 (16)
H160.61690.61430.98340.110*
C170.4795 (8)0.7377 (6)0.8952 (3)0.0855 (15)
H170.38960.66440.89160.103*
C180.4760 (7)0.8763 (6)0.8449 (3)0.0716 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0992 (10)0.1442 (14)0.0722 (9)0.0626 (10)0.0181 (7)0.0271 (8)
O10.091 (2)0.117 (3)0.0667 (19)0.058 (2)0.0187 (16)0.0361 (18)
O20.097 (2)0.150 (3)0.076 (2)0.074 (2)0.0345 (18)0.054 (2)
O30.093 (2)0.138 (3)0.074 (2)0.057 (2)0.0301 (18)0.053 (2)
O40.085 (2)0.152 (4)0.103 (3)0.016 (2)0.032 (2)0.068 (3)
N10.095 (3)0.077 (2)0.0527 (19)0.028 (2)0.0184 (19)0.0174 (17)
N20.099 (3)0.088 (3)0.056 (2)0.045 (2)0.0143 (19)0.0178 (19)
C10.074 (3)0.094 (3)0.056 (2)0.043 (2)0.010 (2)0.018 (2)
C20.062 (2)0.071 (3)0.059 (2)0.021 (2)0.0061 (19)0.0076 (19)
C30.069 (3)0.084 (3)0.070 (3)0.035 (2)0.007 (2)0.011 (2)
C40.063 (3)0.100 (4)0.092 (3)0.031 (3)0.013 (2)0.011 (3)
C50.069 (3)0.089 (3)0.074 (3)0.010 (2)0.020 (2)0.010 (2)
C60.061 (2)0.067 (3)0.063 (2)0.0106 (19)0.0114 (19)0.010 (2)
C70.061 (2)0.073 (3)0.060 (2)0.023 (2)0.0099 (19)0.012 (2)
C80.072 (3)0.082 (3)0.063 (3)0.008 (2)0.012 (2)0.017 (2)
C90.076 (3)0.091 (3)0.058 (2)0.016 (2)0.005 (2)0.016 (2)
C100.082 (3)0.080 (3)0.057 (2)0.007 (2)0.008 (2)0.019 (2)
C110.079 (3)0.076 (3)0.058 (2)0.025 (2)0.014 (2)0.003 (2)
C120.071 (3)0.092 (3)0.072 (3)0.019 (2)0.010 (2)0.001 (2)
C130.084 (3)0.084 (3)0.077 (3)0.017 (3)0.033 (3)0.012 (3)
C140.107 (4)0.085 (3)0.072 (3)0.043 (3)0.027 (3)0.024 (2)
C150.108 (4)0.096 (3)0.063 (3)0.056 (3)0.017 (3)0.021 (2)
C160.136 (5)0.087 (3)0.068 (3)0.058 (3)0.024 (3)0.022 (2)
C170.111 (4)0.093 (3)0.068 (3)0.059 (3)0.019 (3)0.008 (3)
C180.083 (3)0.086 (3)0.049 (2)0.033 (2)0.002 (2)0.005 (2)
Geometric parameters (Å, º) top
S1—C181.767 (5)C5—H50.9300
S1—C111.776 (5)C6—C71.369 (6)
O1—C11.308 (5)C6—C81.490 (6)
O1—H1D0.8200C7—H70.9300
O2—C11.212 (5)C9—C101.361 (6)
O3—C81.302 (6)C9—H90.9300
O3—H3D0.8200C10—C111.364 (6)
O4—C81.198 (5)C10—H100.9300
N1—C131.325 (6)C11—C121.356 (6)
N1—C91.347 (6)C12—C131.373 (7)
N2—C161.323 (6)C12—H120.9300
N2—C151.327 (6)C13—H130.9300
C1—C21.480 (6)C14—C181.364 (6)
C2—C31.385 (6)C14—C151.367 (7)
C2—C71.394 (5)C14—H140.9300
C3—C41.360 (6)C15—H150.9300
C3—H30.9300C16—C171.366 (7)
C4—C51.380 (6)C16—H160.9300
C4—H40.9300C17—C181.379 (6)
C5—C61.391 (6)C17—H170.9300
C18—S1—C11106.3 (2)N1—C9—H9118.6
C1—O1—H1D109.5C10—C9—H9118.6
C8—O3—H3D109.5C9—C10—C11119.6 (4)
C13—N1—C9117.0 (4)C9—C10—H10120.2
C16—N2—C15115.8 (4)C11—C10—H10120.2
O2—C1—O1122.8 (4)C12—C11—C10118.0 (4)
O2—C1—C2122.8 (4)C12—C11—S1117.9 (4)
O1—C1—C2114.3 (4)C10—C11—S1124.0 (4)
C3—C2—C7118.4 (4)C11—C12—C13120.2 (4)
C3—C2—C1122.9 (4)C11—C12—H12119.9
C7—C2—C1118.7 (4)C13—C12—H12119.9
C4—C3—C2121.1 (4)N1—C13—C12122.4 (4)
C4—C3—H3119.5N1—C13—H13118.8
C2—C3—H3119.5C12—C13—H13118.8
C3—C4—C5120.3 (4)C18—C14—C15119.8 (4)
C3—C4—H4119.9C18—C14—H14120.1
C5—C4—H4119.9C15—C14—H14120.1
C4—C5—C6119.8 (4)N2—C15—C14123.9 (4)
C4—C5—H5120.1N2—C15—H15118.1
C6—C5—H5120.1C14—C15—H15118.1
C7—C6—C5119.6 (4)N2—C16—C17124.2 (4)
C7—C6—C8121.2 (4)N2—C16—H16117.9
C5—C6—C8119.2 (4)C17—C16—H16117.9
C6—C7—C2120.9 (4)C16—C17—C18119.3 (4)
C6—C7—H7119.6C16—C17—H17120.3
C2—C7—H7119.6C18—C17—H17120.3
O4—C8—O3122.8 (4)C14—C18—C17116.9 (4)
O4—C8—C6122.5 (4)C14—C18—S1124.6 (4)
O3—C8—C6114.7 (4)C17—C18—S1118.4 (4)
N1—C9—C10122.8 (4)
O2—C1—C2—C3178.0 (5)N1—C9—C10—C111.0 (8)
O1—C1—C2—C31.2 (7)C9—C10—C11—C121.5 (7)
O2—C1—C2—C70.6 (7)C9—C10—C11—S1177.7 (4)
O1—C1—C2—C7179.8 (4)C18—S1—C11—C12152.0 (4)
C7—C2—C3—C42.1 (7)C18—S1—C11—C1031.8 (5)
C1—C2—C3—C4176.5 (4)C10—C11—C12—C130.4 (7)
C2—C3—C4—C51.6 (8)S1—C11—C12—C13176.8 (4)
C3—C4—C5—C60.6 (8)C9—N1—C13—C121.9 (7)
C4—C5—C6—C70.1 (7)C11—C12—C13—N11.4 (8)
C4—C5—C6—C8179.8 (4)C16—N2—C15—C140.5 (8)
C5—C6—C7—C20.6 (7)C18—C14—C15—N21.3 (8)
C8—C6—C7—C2179.7 (4)C15—N2—C16—C170.9 (8)
C3—C2—C7—C61.6 (6)N2—C16—C17—C180.7 (9)
C1—C2—C7—C6177.0 (4)C15—C14—C18—C172.7 (8)
C7—C6—C8—O4170.8 (5)C15—C14—C18—S1178.4 (4)
C5—C6—C8—O48.8 (7)C16—C17—C18—C142.4 (8)
C7—C6—C8—O312.1 (6)C16—C17—C18—S1178.4 (4)
C5—C6—C8—O3168.3 (4)C11—S1—C18—C1434.9 (5)
C13—N1—C9—C100.7 (7)C11—S1—C18—C17149.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O2i0.932.453.334 (6)159
C16—H16···O2ii0.932.583.180 (6)123
C13—H13···O4iii0.932.313.141 (6)148
C12—H12···Cg1iv0.932.983.570 (6)123
O3—H3D···N1v0.821.832.634 (5)164
O1—H1D···N2vi0.821.842.662 (5)179
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x1, y+1, z; (iv) x+1, y+2, z+1; (v) x, y1, z; (vi) x, y, z1.

Experimental details

Crystal data
Chemical formulaC10H8N2S·C8H6O4
Mr354.37
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)6.618 (6), 8.200 (7), 16.013 (13)
α, β, γ (°)88.808 (11), 79.340 (11), 79.275 (11)
V3)839.0 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.47 × 0.30 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.905, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
6280, 3084, 1885
Rint0.020
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.269, 1.08
No. of reflections3084
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.05, 0.28

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O2i0.932.453.334 (6)159.4
C16—H16···O2ii0.932.583.180 (6)122.6
C13—H13···O4iii0.932.313.141 (6)148.3
C12—H12···Cg1iv0.932.983.570 (6)123
O3—H3D···N1v0.821.832.634 (5)164.4
O1—H1D···N2vi0.821.842.662 (5)178.6
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x1, y+1, z; (iv) x+1, y+2, z+1; (v) x, y1, z; (vi) x, y, z1.
 

Acknowledgements

The authors thank Luo Yang Normal University for supporting this work.

References

First citationBhogala, B. R., Basavoju, S. & Nangia, A. (2005). Cryst. Growth Des. 5, 1683–1686.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K. & Kia, R. (2008). Acta Cryst. E64, m1116–m1117.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y.-T., Tang, G.-M., Zhang, Y.-C. & Wan, W.-Z. (2008). Acta Cryst. E64, o1753.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds