organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-{[4-(4-Pyrid­yl)pyrimidin-2-yl]sulfanylmeth­yl}benzoic acid

aSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing, People's Republic of China
*Correspondence e-mail: zhuhaibin@seu.edu.cn

(Received 28 October 2008; accepted 8 November 2008; online 13 November 2008)

The title compound, C17H13N3O2S, was prepared by reaction of 4-(4-pyrid­yl)pyrimidine-2-thiol with 3-(bromo­meth­yl)benzoic acid under basic conditions. Each pair of mol­ecules is mutually linked via O—H⋯N hydrogen bonds, forming a dimer. The packing of the dimers is stablized by C—H⋯π inter­actions involving the methyl­ene unit of the –CH2S– linkage and benzene rings.

Related literature

For monodentate and chelating ligands, see: Raper (1996[Raper, E. S. (1996). Coord. Chem. Rev. 153, 199-255.]). For the structures of binuclear and polynuclear complexes with bridging heterocyclic thio­nate ligands, see: Raper (1997[Raper, E. S. (1997). Coord. Chem. Rev. 165, 475-567.]). For O—H⋯N inter­actions, see: Han et al. (2008[Han, L., Huang, S.-S., Huang, Q.-B., Zhou, X.-M. & Diao, Y.-P. (2008). Acta Cryst. E64, o781.]). For C—H⋯π inter­actions, see: Choi et al. (2008[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o794.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13N3O2S

  • Mr = 323.36

  • Triclinic, [P \overline 1]

  • a = 4.4130 (9) Å

  • b = 10.458 (2) Å

  • c = 16.432 (3) Å

  • α = 87.79 (3)°

  • β = 89.90 (3)°

  • γ = 80.48 (3)°

  • V = 747.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 298 (2) K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.934, Tmax = 0.977

  • 3108 measured reflections

  • 2724 independent reflections

  • 1685 reflections with I > 2σ(I)

  • Rint = 0.048

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.170

  • S = 1.04

  • 2724 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N1i 0.82 1.84 2.659 (5) 174
C10—H10BCg3ii 0.97 2.56 3.398 (5) 145
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x-1, y, z. Cg3 is the centroid of the phenyl ring.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Heterocyclic thionates (Raper, 1996, 1997) have been extensively studied due to not only their versatile coordination modes but also their close biological relativity. Herein, we report the crystal structure of a new heterocyclic thionate derivative, 3-((4-(4-pyridyl)pyrimidin-2-ylthio)methyl)benzoic acid.

In the molecular structure of the title compound (Fig.1), the pyrimidinyl and pyridinyl rings are not coplanar with the dihedral angle of 11.17 (3)o. Each pair of compound molecules is linked each other via O—H···N hydrogen bonds (Han et.al., 2008) to form a dimer (Fig. 2 and Table 1), and the packing of the dimers is stablized by C—H···π interactions (Choi et al., 2008) between a methylene H atom of the –CH2S– linkage and the phenyl ring, with a C10—H10B···Cg3ii separation of 2.56 Å (Fig. 3 and Table 1; Cg3 is the centroid of the C11/C12/C13/C14/C15/C16 phenyl ring, symmetry code as in Fig. 3).

Related literature top

For monodentate and chelating ligands, see: Raper (1996). For the structures of binuclear and polynuclear complexes with bridging heterocyclic thionate ligands, see: Raper (1997). For O—H···N interactions, see: Han et al. (2008). For C—H···π interactions, see: Choi et al. (2008). Cg3 is the centroid of the phenyl ring.

Experimental top

The mixture of 4-(4-pyridyl)pyrimidine-2-thiol (0.1890 g,1.0 mmol), 3-(bromomethyl)benzoic acid (0.2150 g,1.0 mmol), NaOH (0.0400 g,1.0 mmol) in 30 ml of H2O was refluxed for 10 h. After cooled to room temperature, the product was filtered and dried in vaccum. The single crystals suitable for X-ray diffraction were obtained by slow evaporation of the title compound in DMF solution.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å for aromatic H atoms, 0.97 Å for methylene H atoms and O—H = 0.82 Å, respectively, and with with Uiso(H) = 1.2Ueq (C) for aromatic and methylene, Uiso(H) =1.5Ueq (O).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% displacement ellipsoids.
[Figure 2] Fig. 2. The hydrogen bonded dimer with O—H···N interactions (dotted lines) [symmetry code: -x + 2, -y + 1, -z + 1].
[Figure 3] Fig. 3. A section of the hydrogen bonded dimers viewed down the c axis. C—H···π interactions are shown as dotted lines. Cg3 denotes the phenyl ring centroid [symmetry code: x - 1, y, z].
3-{[4-(4-Pyridyl)pyrimidin-2-yl]sulfanylmethyl}benzoic acid top
Crystal data top
C17H13N3O2SZ = 2
Mr = 323.36F(000) = 336
Triclinic, P1Dx = 1.437 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.4130 (9) ÅCell parameters from 25 reflections
b = 10.458 (2) Åθ = 9–12°
c = 16.432 (3) ŵ = 0.23 mm1
α = 87.79 (3)°T = 298 K
β = 89.90 (3)°Prism, colorless
γ = 80.48 (3)°0.30 × 0.10 × 0.10 mm
V = 747.4 (3) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1685 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 25.3°, θmin = 1.2°
ω/2θ scansh = 05
Absorption correction: ψ scan
(North et al., 1968)
k = 1212
Tmin = 0.934, Tmax = 0.977l = 1919
3108 measured reflections3 standard reflections every 200 reflections
2724 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.05P)2 + P]
where P = (Fo2 + 2Fc2)/3
2724 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C17H13N3O2Sγ = 80.48 (3)°
Mr = 323.36V = 747.4 (3) Å3
Triclinic, P1Z = 2
a = 4.4130 (9) ÅMo Kα radiation
b = 10.458 (2) ŵ = 0.23 mm1
c = 16.432 (3) ÅT = 298 K
α = 87.79 (3)°0.30 × 0.10 × 0.10 mm
β = 89.90 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1685 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.048
Tmin = 0.934, Tmax = 0.9773 standard reflections every 200 reflections
3108 measured reflections intensity decay: 1%
2724 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.04Δρmax = 0.35 e Å3
2724 reflectionsΔρmin = 0.25 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.1838 (3)0.34695 (12)0.92472 (7)0.0633 (4)
O10.6060 (10)0.6024 (3)0.5857 (2)0.0916 (13)
O20.6987 (9)0.7953 (3)0.61531 (19)0.0795 (11)
H2A0.76140.79480.56830.119*
N11.0847 (10)0.1910 (4)0.5353 (2)0.0737 (12)
N20.5470 (7)0.2426 (3)0.80536 (18)0.0457 (8)
N30.5608 (9)0.1325 (4)0.9366 (2)0.0597 (10)
C11.1506 (13)0.0803 (5)0.5789 (3)0.0832 (17)
H1B1.26650.00980.55440.100*
C20.9037 (14)0.2874 (5)0.5702 (3)0.0819 (17)
H2B0.84590.36490.54030.098*
C30.7973 (11)0.2779 (4)0.6488 (3)0.0635 (13)
H3B0.67570.34900.67130.076*
C40.8710 (10)0.1634 (4)0.6942 (2)0.0506 (10)
C51.0591 (12)0.0636 (5)0.6570 (3)0.0693 (14)
H5A1.12300.01480.68540.083*
C60.7669 (10)0.1494 (4)0.7790 (2)0.0470 (10)
C70.4682 (9)0.2307 (4)0.8824 (2)0.0462 (10)
C80.7742 (11)0.0419 (4)0.9077 (2)0.0577 (12)
H8A0.85440.02760.94250.069*
C90.8839 (10)0.0436 (4)0.8303 (3)0.0558 (11)
H9A1.03150.02320.81230.067*
C100.0460 (9)0.4535 (4)0.8386 (3)0.0566 (11)
H10A0.04300.40120.79120.068*
H10B0.16440.49290.84930.068*
C110.2261 (8)0.5595 (4)0.8179 (2)0.0449 (9)
C120.3212 (9)0.5779 (4)0.7389 (2)0.0448 (9)
H12A0.27840.52270.69910.054*
C130.4809 (10)0.6787 (4)0.7186 (2)0.0516 (11)
C140.5392 (10)0.7623 (4)0.7761 (2)0.0516 (10)
H14A0.64280.83050.76190.062*
C150.4440 (10)0.7455 (4)0.8553 (3)0.0544 (11)
H15A0.48590.80150.89480.065*
C160.2852 (10)0.6446 (4)0.8758 (3)0.0575 (12)
H16A0.21820.63430.92900.069*
C170.5941 (11)0.6869 (4)0.6328 (3)0.0579 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0761 (8)0.0604 (8)0.0493 (7)0.0024 (6)0.0165 (5)0.0109 (5)
O10.161 (4)0.067 (2)0.0460 (19)0.016 (2)0.026 (2)0.0079 (18)
O20.125 (3)0.060 (2)0.054 (2)0.019 (2)0.0138 (19)0.0092 (16)
N10.104 (3)0.062 (3)0.051 (2)0.000 (2)0.025 (2)0.003 (2)
N20.056 (2)0.0419 (19)0.0373 (18)0.0057 (16)0.0016 (15)0.0116 (14)
N30.087 (3)0.049 (2)0.040 (2)0.006 (2)0.0012 (18)0.0092 (17)
C10.119 (5)0.054 (3)0.067 (3)0.015 (3)0.027 (3)0.000 (3)
C20.136 (5)0.057 (3)0.042 (3)0.012 (3)0.011 (3)0.013 (2)
C30.091 (4)0.048 (3)0.047 (3)0.002 (2)0.010 (2)0.005 (2)
C40.063 (3)0.041 (2)0.045 (2)0.002 (2)0.0035 (19)0.0036 (18)
C50.094 (4)0.054 (3)0.051 (3)0.013 (3)0.017 (2)0.011 (2)
C60.062 (3)0.039 (2)0.039 (2)0.007 (2)0.0010 (18)0.0058 (17)
C70.056 (2)0.041 (2)0.041 (2)0.0115 (19)0.0064 (18)0.0108 (18)
C80.085 (3)0.046 (3)0.040 (2)0.007 (2)0.010 (2)0.013 (2)
C90.074 (3)0.037 (2)0.052 (3)0.004 (2)0.002 (2)0.0017 (19)
C100.040 (2)0.060 (3)0.065 (3)0.001 (2)0.007 (2)0.009 (2)
C110.033 (2)0.046 (2)0.051 (2)0.0036 (17)0.0046 (17)0.0045 (19)
C120.049 (2)0.041 (2)0.040 (2)0.0058 (18)0.0048 (17)0.0020 (17)
C130.064 (3)0.040 (2)0.044 (2)0.011 (2)0.0021 (19)0.0105 (19)
C140.065 (3)0.039 (2)0.048 (2)0.000 (2)0.001 (2)0.0047 (19)
C150.069 (3)0.043 (2)0.049 (3)0.002 (2)0.006 (2)0.0028 (19)
C160.064 (3)0.060 (3)0.040 (2)0.016 (2)0.008 (2)0.002 (2)
C170.074 (3)0.044 (3)0.050 (3)0.005 (2)0.001 (2)0.010 (2)
Geometric parameters (Å, º) top
S—C71.759 (4)C5—H5A0.9300
S—C101.809 (4)C6—C91.393 (5)
O1—C171.191 (5)C8—C91.360 (6)
O2—C171.314 (5)C8—H8A0.9300
O2—H2A0.8200C9—H9A0.9300
N1—C21.327 (6)C10—C111.496 (6)
N1—C11.327 (6)C10—H10A0.9700
N2—C71.318 (5)C10—H10B0.9700
N2—C61.341 (5)C11—C121.379 (5)
N3—C81.323 (5)C11—C161.382 (6)
N3—C71.344 (5)C12—C131.392 (6)
C1—C51.358 (6)C12—H12A0.9300
C1—H1B0.9300C13—C141.365 (6)
C2—C31.380 (6)C13—C171.499 (6)
C2—H2B0.9300C14—C151.381 (5)
C3—C41.378 (5)C14—H14A0.9300
C3—H3B0.9300C15—C161.390 (6)
C4—C51.383 (6)C15—H15A0.9300
C4—C61.476 (5)C16—H16A0.9300
C7—S—C10103.54 (19)C8—C9—H9A121.3
C17—O2—H2A109.5C6—C9—H9A121.3
C2—N1—C1116.5 (4)C11—C10—S116.1 (3)
C7—N2—C6115.9 (3)C11—C10—H10A108.3
C8—N3—C7113.1 (3)S—C10—H10A108.3
N1—C1—C5124.1 (4)C11—C10—H10B108.3
N1—C1—H1B118.0S—C10—H10B108.3
C5—C1—H1B118.0H10A—C10—H10B107.4
N1—C2—C3123.0 (4)C12—C11—C16118.9 (4)
N1—C2—H2B118.5C12—C11—C10120.0 (4)
C3—C2—H2B118.5C16—C11—C10121.0 (4)
C4—C3—C2120.1 (4)C11—C12—C13120.4 (4)
C4—C3—H3B119.9C11—C12—H12A119.8
C2—C3—H3B119.9C13—C12—H12A119.8
C3—C4—C5116.3 (4)C14—C13—C12120.4 (4)
C3—C4—C6122.1 (4)C14—C13—C17122.4 (4)
C5—C4—C6121.6 (4)C12—C13—C17117.1 (4)
C1—C5—C4119.9 (4)C13—C14—C15119.8 (4)
C1—C5—H5A120.1C13—C14—H14A120.1
C4—C5—H5A120.1C15—C14—H14A120.1
N2—C6—C9120.2 (4)C14—C15—C16119.8 (4)
N2—C6—C4117.1 (3)C14—C15—H15A120.1
C9—C6—C4122.6 (4)C16—C15—H15A120.1
N2—C7—N3128.7 (4)C11—C16—C15120.6 (4)
N2—C7—S120.5 (3)C11—C16—H16A119.7
N3—C7—S110.6 (3)C15—C16—H16A119.7
N3—C8—C9124.3 (4)O1—C17—O2122.4 (4)
N3—C8—H8A117.9O1—C17—C13124.5 (4)
C9—C8—H8A117.9O2—C17—C13113.0 (4)
C8—C9—C6117.5 (4)
C2—N1—C1—C53.9 (9)N3—C8—C9—C61.3 (7)
C1—N1—C2—C32.9 (9)N2—C6—C9—C82.2 (6)
N1—C2—C3—C41.9 (9)C4—C6—C9—C8179.0 (4)
C2—C3—C4—C51.6 (7)C7—S—C10—C1184.7 (3)
C2—C3—C4—C6178.9 (5)S—C10—C11—C12129.7 (3)
N1—C1—C5—C43.9 (9)S—C10—C11—C1653.9 (5)
C3—C4—C5—C12.5 (8)C16—C11—C12—C131.6 (5)
C6—C4—C5—C1179.9 (5)C10—C11—C12—C13178.1 (4)
C7—N2—C6—C94.1 (6)C11—C12—C13—C141.5 (6)
C7—N2—C6—C4177.0 (4)C11—C12—C13—C17176.1 (4)
C3—C4—C6—N213.3 (6)C12—C13—C14—C151.1 (6)
C5—C4—C6—N2169.5 (4)C17—C13—C14—C15176.3 (4)
C3—C4—C6—C9167.9 (4)C13—C14—C15—C161.0 (6)
C5—C4—C6—C99.3 (7)C12—C11—C16—C151.4 (6)
C6—N2—C7—N35.8 (6)C10—C11—C16—C15177.8 (4)
C6—N2—C7—S179.7 (3)C14—C15—C16—C111.1 (6)
C8—N3—C7—N24.8 (7)C14—C13—C17—O1163.6 (5)
C8—N3—C7—S179.7 (3)C12—C13—C17—O114.0 (7)
C10—S—C7—N24.9 (4)C14—C13—C17—O212.5 (6)
C10—S—C7—N3170.5 (3)C12—C13—C17—O2170.0 (4)
C7—N3—C8—C92.2 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N1i0.821.842.659 (5)174
C10—H10B···Cg3ii0.972.563.398 (5)145
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC17H13N3O2S
Mr323.36
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)4.4130 (9), 10.458 (2), 16.432 (3)
α, β, γ (°)87.79 (3), 89.90 (3), 80.48 (3)
V3)747.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.934, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
3108, 2724, 1685
Rint0.048
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.170, 1.04
No. of reflections2724
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.25

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N1i0.821.842.659 (5)174.2
C10—H10B···Cg3ii0.972.563.398 (5)145
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y, z.
 

Acknowledgements

The authors are grateful for support from the China Postdoctoral Research Fund (20070411010) and the National Natural Science of Foundation of China (20801011).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o794.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHan, L., Huang, S.-S., Huang, Q.-B., Zhou, X.-M. & Diao, Y.-P. (2008). Acta Cryst. E64, o781.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRaper, E. S. (1996). Coord. Chem. Rev. 153, 199–255.  CrossRef CAS Web of Science Google Scholar
First citationRaper, E. S. (1997). Coord. Chem. Rev. 165, 475–567.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds