organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-2-[(2R,3S)-2-Ammonio-3-hydr­­oxy-3-(4-nitro­phen­yl)propanamido]-4-methyl­penta­noate monohydrate

aInstitute of Medicinal Chemistry, School of Pharmacy, Shandong University, Ji'nan 250012, People's Republic of China
*Correspondence e-mail: xuwenfsdu@yahoo.cn

(Received 30 October 2008; accepted 21 November 2008; online 26 November 2008)

The structure of the title compound, C15H21N3O6·H2O, is of inter­est with respect to assumed anti­cancer activity. The title mol­ecules are linked through inter­molecular O—H⋯O hydrogen-bonded chains along the a axis. These chains are connected by inter­molecular N—H⋯O hydrogen bonds through the crystallographic screw axis along [010], forming layers, which are stabilized by other N—H⋯O bonds with water O atoms as acceptors and O—H⋯O bonds with water H atoms as donors. The H atoms of the protonated amino cation are also involved in inter­molecular N—H⋯O bonding inter­actions.

Related literature

For various medicinal agents similar to the title compound, see: Shinagawa et al. (1987[Shinagawa, S., Kanamaru, T., Harada, S., Asai, M. & Ookazaki, H. (1987). J. Med. Chem. 30, 1458-1463.]); Shin & Pyo (1984[Shin, W. & Pyo, M. (1984). Bull. Korean Chem. Soc. 5, 158-162.]). For anti-cancer and anti-inflammatory biological properties, see: Aozuka et al. (2004[Aozuka, Y., Koizumi, K., Saitoh, Y., Ueda, Y., Sakurai, H. & Saiki, I. (2004). Cancer Lett. 216, 35-42.]). For amino­peptidase N (APN/CD13) inhibitors, see: Xu & Li (2005[Xu, W. F. & Li, Q. B. (2005). Curr. Med. Chem. Anti-Cancer Agents, 5, 281-301.]). For the synthesis of the starting material, see: Testa et al. (2004[Testa, M. L., Ciriminna, R., Hajji, C., Garcia, E. Z., Ciclosi, M., Arques, J. S. & Pagliaroa, M. (2004). Adv. Synth. Catal. 346, 655-660.]).

[Scheme 1]

Experimental

Crystal data
  • C15H21N3O6·H2O

  • Mr = 357.36

  • Monoclinic, P 21

  • a = 8.9787 (7) Å

  • b = 6.7850 (5) Å

  • c = 14.7148 (11) Å

  • β = 95.362 (5)°

  • V = 892.51 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 (2) K

  • 0.50 × 0.20 × 0.15 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.949, Tmax = 0.984

  • 8245 measured reflections

  • 2254 independent reflections

  • 1853 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.104

  • S = 1.04

  • 2254 reflections

  • 243 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7W⋯O5 0.92 1.87 2.679 (2) 146
O7—H8W⋯O4i 0.88 1.96 2.734 (3) 146
N2—H2B⋯O3ii 0.87 (3) 1.99 (3) 2.854 (3) 172 (3)
O3—H4⋯O5iii 0.82 1.79 2.612 (2) 175
N3—H3A⋯O7i 0.86 2.08 2.914 (3) 163
N2—H2C⋯O6i 0.99 (3) 1.96 (3) 2.811 (3) 143 (3)
N2—H2A⋯O7 0.95 (3) 1.89 (3) 2.801 (2) 158 (3)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) [-x, y-{\script{1\over 2}}, -z+1]; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The 2-amino-1-hydroxy carboxylic acids and 1-amino-2-hydroxy carboxylic acids are important precursor and scaffold of various medicinal agents (Shinagawa et al., 1987). It was reported that many of their derivatives exhibit anti-cancer and anti-inflammatory properties (Aozuka et al., 2004). Our lab has been engaged in developing 1-amino-2-hydroxy carboxylic acids derivatives as Aminopeptidase N (APN/CD13) inhibitors (Xu & Li, 2005). One of the aims of the projects is to use different amino acid coupled with 1-amino-2-hydroxy carboxylic acids scaffold, the resulting target derivatives are hope to have antitumor activities. Both the title compound (Fig. 1) and the reported chloramphenicol base have the amino-hydroxy-nitrophenyl scaffold in their structures (Shin & Pyo, 1984). In the molecule, the bond length of C8–N2 is 1.489 (3) Å, which is slightly longer than that of the C8–N2 (1.473 (7) Å) in the chloramphenicol base. This is probably due to the electrostatic attractions between the carboxyl anion and the protonated amino cation. The title molecules are linked through intermolecular O—H···O hydrogen bonded chains along the a axis (Table 1, Fig. 2). These chains are connected by intermolecular N—H···O hydrogen bonds through the crystallographic screw axis along the [0 1 0] direction to form layers which are stabilized by other N—H···O bonds with water oxygen atoms as acceptors and O—H···O bonds with water hydrogen atoms as donors.The H atoms of the protonated amino cation were also involved in intermolecular N—H···O bonding interactions.

Related literature top

For various medicinal agents similar to the title compound, see: Shinagawa et al. (1987); Shin & Pyo (1984). For anti-cancer and anti-inflammatory biological properties, see: Aozuka et al. (2004). For aminopeptidase N (APN/CD13) inhibitors, see: Xu & Li (2005). For the synthesis of the starting material, see: Testa et al. (2004).

Experimental top

The starting material, (2R,3S)-2-(tert-butoxycarbonylamino) -3-hydroxy-3-(4-nitrophenyl) propanoic acid, prepared according to the literature (Testa et al., 2004), was coupled with L-leucine methyl ester by using dicyclohexylcarbodiimide (DCC) and 1-hydroxybenzotriazole (HOBt). Finally, the title compound was yielded by hydrolyzing in NaOH and then deprotecting Boc group with hydrochloride. Crystals appropriate for data collection were obtained by slow evaporation of the solid in methanol at room temperature. Yield 40%, m.p. 481 K.

Refinement top

All H atoms were positioned geometrically using a riding model with C—H = 0.92–1.02 Å, N—H = 0.86 and O—H = 0.82 Å. Their isotropic displacement parameters were set to 1.2 times (1.5 times for CH3 groups) the equivalent displacement parameter of their parent atoms. In addition, the three H atoms at N2 were located from a difference Fourier map and refined isotropically, with N–H distances in the range 0.88 (3)–0.92 (3) Å with Uiso(H) = 1.3–1.75 times Ueq(N2).

In the absence of significant anomalous dispersion effects, 1625 Friedel pairs were averaged.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005) and SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the title molecules, showing 30% probability displacement ellipsoids and the numbering scheme of non-hydrogen atoms.
[Figure 2] Fig. 2. A view of the unit cell of the title compound, showing intermolecular hydrogen bonds as dashed lines.
(S)-2-[(2R,3S)-2-Ammonio-3-hydroxy-3-(4-nitrophenyl)propanamido]-4-methylpentanoate monohydrate top
Crystal data top
C15H21N3O6·H2OF(000) = 380
Mr = 357.36Dx = 1.330 Mg m3
Monoclinic, P21Melting point = 556.2–558.6 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 8.9787 (7) ÅCell parameters from 2639 reflections
b = 6.7850 (5) Åθ = 2.8–24.2°
c = 14.7148 (11) ŵ = 0.11 mm1
β = 95.362 (5)°T = 296 K
V = 892.51 (12) Å3Prism, colourless
Z = 20.50 × 0.20 × 0.15 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2254 independent reflections
Radiation source: fine-focus sealed tube1853 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 27.6°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1111
Tmin = 0.949, Tmax = 0.984k = 88
8245 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.059P)2 + 0.0778P]
where P = (Fo2 + 2Fc2)/3
2254 reflections(Δ/σ)max < 0.001
243 parametersΔρmax = 0.19 e Å3
1 restraintΔρmin = 0.16 e Å3
Crystal data top
C15H21N3O6·H2OV = 892.51 (12) Å3
Mr = 357.36Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.9787 (7) ŵ = 0.11 mm1
b = 6.7850 (5) ÅT = 296 K
c = 14.7148 (11) Å0.50 × 0.20 × 0.15 mm
β = 95.362 (5)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2254 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1853 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.984Rint = 0.028
8245 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.19 e Å3
2254 reflectionsΔρmin = 0.16 e Å3
243 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1171 (3)1.0193 (5)0.8450 (2)0.0593 (8)
C20.1386 (3)1.1114 (5)0.7646 (2)0.0576 (8)
H20.16201.24490.76370.069*
C30.1250 (3)1.0037 (4)0.68503 (19)0.0466 (6)
H100.13881.06470.62980.056*
C40.0906 (2)0.8025 (4)0.68693 (16)0.0350 (5)
C50.0699 (3)0.7141 (5)0.76921 (18)0.0487 (7)
H50.04660.58060.77080.058*
C60.0834 (3)0.8219 (6)0.8498 (2)0.0627 (9)
H60.07000.76240.90530.075*
C70.0792 (2)0.6835 (4)0.59945 (16)0.0320 (5)
H70.05860.54570.61370.038*
C80.2268 (2)0.6944 (3)0.55531 (14)0.0303 (5)
H80.25700.83260.55090.036*
C90.3482 (2)0.5812 (4)0.61333 (15)0.0313 (5)
C100.7060 (2)0.5166 (4)0.64655 (17)0.0386 (6)
C110.5895 (2)0.6028 (4)0.70569 (15)0.0368 (5)
H110.55330.49840.74410.044*
C120.6643 (3)0.7644 (5)0.76667 (18)0.0469 (6)
H12A0.74400.70470.80640.056*
H12B0.71000.85830.72800.056*
C130.5625 (4)0.8776 (7)0.8260 (2)0.0707 (10)
H130.47900.93170.78600.085*
C140.6501 (6)1.0509 (8)0.8721 (3)0.1067 (16)
H14A0.72691.00110.91590.160*
H14B0.58321.13310.90250.160*
H14C0.69501.12660.82680.160*
C150.4992 (5)0.7477 (10)0.8948 (3)0.1045 (17)
H15A0.57920.69440.93530.157*
H15B0.44420.64200.86400.157*
H15C0.43370.82320.92920.157*
N10.1333 (4)1.1348 (8)0.9301 (3)0.0933 (13)
N20.2080 (2)0.6066 (3)0.46217 (14)0.0345 (4)
N30.46309 (18)0.6869 (3)0.64893 (13)0.0346 (4)
H3A0.46340.81150.63810.042*
O10.1562 (6)1.3125 (7)0.9239 (3)0.1463 (17)
O20.1267 (4)1.0520 (8)1.0013 (2)0.1297 (16)
O30.03561 (16)0.7538 (3)0.53411 (11)0.0371 (4)
H40.11470.69880.54200.056*
O40.33299 (19)0.4031 (3)0.62517 (14)0.0482 (5)
O50.71194 (18)0.5906 (3)0.56790 (12)0.0471 (5)
O60.7901 (2)0.3852 (3)0.67915 (14)0.0548 (5)
O70.50705 (17)0.5833 (3)0.42343 (12)0.0410 (4)
H7W0.54210.58860.48400.086 (12)*
H8W0.53270.67920.38730.071 (10)*
H2B0.154 (3)0.500 (5)0.4578 (19)0.045 (8)*
H2C0.162 (4)0.702 (5)0.416 (2)0.055 (8)*
H2A0.305 (4)0.564 (5)0.448 (2)0.060 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0459 (16)0.076 (2)0.0564 (18)0.0056 (15)0.0037 (13)0.0238 (17)
C20.0583 (18)0.0473 (16)0.0666 (19)0.0060 (14)0.0025 (14)0.0134 (16)
C30.0478 (15)0.0390 (14)0.0530 (16)0.0044 (12)0.0046 (12)0.0038 (13)
C40.0207 (10)0.0405 (13)0.0438 (13)0.0056 (9)0.0035 (9)0.0001 (11)
C50.0405 (14)0.0568 (18)0.0502 (15)0.0030 (12)0.0117 (11)0.0034 (14)
C60.0536 (17)0.092 (3)0.0436 (16)0.0035 (18)0.0122 (13)0.0009 (17)
C70.0198 (9)0.0319 (10)0.0443 (12)0.0009 (9)0.0030 (8)0.0040 (10)
C80.0212 (10)0.0278 (10)0.0420 (12)0.0012 (8)0.0041 (8)0.0011 (10)
C90.0234 (10)0.0322 (12)0.0389 (11)0.0043 (9)0.0063 (8)0.0008 (10)
C100.0236 (10)0.0444 (14)0.0469 (14)0.0012 (10)0.0007 (9)0.0097 (11)
C110.0246 (10)0.0462 (14)0.0394 (12)0.0048 (10)0.0019 (8)0.0056 (11)
C120.0376 (13)0.0602 (16)0.0419 (13)0.0076 (12)0.0014 (10)0.0077 (13)
C130.0663 (19)0.099 (3)0.0454 (16)0.034 (2)0.0050 (14)0.0190 (18)
C140.143 (4)0.097 (3)0.079 (3)0.024 (3)0.001 (3)0.040 (3)
C150.084 (3)0.170 (5)0.064 (2)0.017 (3)0.0297 (19)0.009 (3)
N10.085 (2)0.126 (4)0.069 (2)0.004 (2)0.0054 (17)0.041 (2)
N20.0247 (10)0.0361 (11)0.0433 (11)0.0023 (9)0.0057 (8)0.0012 (10)
N30.0223 (9)0.0356 (10)0.0458 (11)0.0005 (8)0.0027 (7)0.0025 (9)
O10.222 (5)0.107 (3)0.105 (3)0.002 (3)0.009 (3)0.062 (3)
O20.155 (3)0.180 (4)0.0575 (16)0.041 (3)0.0267 (18)0.043 (2)
O30.0214 (7)0.0398 (9)0.0495 (9)0.0015 (7)0.0012 (6)0.0023 (8)
O40.0373 (9)0.0318 (9)0.0742 (12)0.0033 (8)0.0014 (8)0.0039 (9)
O50.0272 (8)0.0707 (13)0.0439 (10)0.0003 (9)0.0073 (7)0.0007 (10)
O60.0444 (10)0.0550 (12)0.0641 (12)0.0190 (10)0.0003 (9)0.0045 (10)
O70.0323 (8)0.0407 (9)0.0507 (10)0.0021 (8)0.0070 (7)0.0013 (9)
Geometric parameters (Å, º) top
C1—C21.368 (5)C11—C121.532 (4)
C1—C61.376 (5)C11—H110.9800
C1—N11.473 (4)C12—C131.528 (4)
C2—C31.376 (4)C12—H12A0.9700
C2—H20.9300C12—H12B0.9700
C3—C41.401 (4)C13—C151.494 (6)
C3—H100.9300C13—C141.537 (6)
C4—C51.379 (3)C13—H130.9800
C4—C71.515 (3)C14—H14A0.9600
C5—C61.388 (4)C14—H14B0.9600
C5—H50.9300C14—H14C0.9600
C6—H60.9300C15—H15A0.9600
C7—O31.424 (3)C15—H15B0.9600
C7—C81.531 (3)C15—H15C0.9600
C7—H70.9800N1—O21.195 (6)
C8—N21.489 (3)N1—O11.228 (7)
C8—C91.528 (3)N2—H2B0.87 (3)
C8—H80.9800N2—H2C0.99 (3)
C9—O41.231 (3)N2—H2A0.95 (3)
C9—N31.323 (3)N3—H3A0.8600
C10—O61.236 (3)O3—H40.8200
C10—O51.267 (3)O7—H7W0.9174
C10—C111.538 (3)O7—H8W0.8845
C11—N31.461 (3)
C2—C1—C6122.5 (3)C12—C11—H11109.3
C2—C1—N1118.8 (4)C10—C11—H11109.3
C6—C1—N1118.6 (4)C13—C12—C11116.2 (2)
C1—C2—C3119.0 (3)C13—C12—H12A108.2
C1—C2—H2120.5C11—C12—H12A108.2
C3—C2—H2120.5C13—C12—H12B108.2
C2—C3—C4120.2 (3)C11—C12—H12B108.2
C2—C3—H10119.9H12A—C12—H12B107.4
C4—C3—H10119.9C15—C13—C12112.1 (4)
C5—C4—C3119.3 (3)C15—C13—C14111.3 (3)
C5—C4—C7120.7 (2)C12—C13—C14109.2 (3)
C3—C4—C7120.0 (2)C15—C13—H13108.1
C4—C5—C6120.8 (3)C12—C13—H13108.1
C4—C5—H5119.6C14—C13—H13108.1
C6—C5—H5119.6C13—C14—H14A109.5
C1—C6—C5118.1 (3)C13—C14—H14B109.5
C1—C6—H6120.9H14A—C14—H14B109.5
C5—C6—H6120.9C13—C14—H14C109.5
O3—C7—C4112.48 (18)H14A—C14—H14C109.5
O3—C7—C8107.33 (17)H14B—C14—H14C109.5
C4—C7—C8110.03 (18)C13—C15—H15A109.5
O3—C7—H7109.0C13—C15—H15B109.5
C4—C7—H7109.0H15A—C15—H15B109.5
C8—C7—H7109.0C13—C15—H15C109.5
N2—C8—C9109.07 (18)H15A—C15—H15C109.5
N2—C8—C7110.07 (17)H15B—C15—H15C109.5
C9—C8—C7109.85 (18)O2—N1—O1123.3 (4)
N2—C8—H8109.3O2—N1—C1119.1 (5)
C9—C8—H8109.3O1—N1—C1117.6 (4)
C7—C8—H8109.3C8—N2—H2B114.5 (19)
O4—C9—N3124.7 (2)C8—N2—H2C111.6 (18)
O4—C9—C8119.3 (2)H2B—N2—H2C107 (3)
N3—C9—C8116.0 (2)C8—N2—H2A107.1 (19)
O6—C10—O5124.3 (2)H2B—N2—H2A104 (3)
O6—C10—C11118.5 (2)H2C—N2—H2A112 (3)
O5—C10—C11117.1 (2)C9—N3—C11123.3 (2)
N3—C11—C12109.3 (2)C9—N3—H3A118.3
N3—C11—C10111.00 (19)C11—N3—H3A118.3
C12—C11—C10108.64 (19)C7—O3—H4109.5
N3—C11—H11109.3H7W—O7—H8W118.1
C6—C1—C2—C30.5 (5)C7—C8—C9—O461.9 (3)
N1—C1—C2—C3179.3 (3)N2—C8—C9—N3122.4 (2)
C1—C2—C3—C40.3 (4)C7—C8—C9—N3116.9 (2)
C2—C3—C4—C50.2 (4)O6—C10—C11—N3155.5 (2)
C2—C3—C4—C7178.6 (2)O5—C10—C11—N326.6 (3)
C3—C4—C5—C60.2 (4)O6—C10—C11—C1284.4 (3)
C7—C4—C5—C6178.6 (2)O5—C10—C11—C1293.6 (3)
C2—C1—C6—C50.5 (5)N3—C11—C12—C1354.7 (3)
N1—C1—C6—C5179.3 (3)C10—C11—C12—C13175.9 (3)
C4—C5—C6—C10.4 (4)C11—C12—C13—C1564.0 (4)
C5—C4—C7—O3119.8 (2)C11—C12—C13—C14172.3 (3)
C3—C4—C7—O361.3 (3)C2—C1—N1—O2174.0 (4)
C5—C4—C7—C8120.6 (2)C6—C1—N1—O24.9 (5)
C3—C4—C7—C858.2 (3)C2—C1—N1—O14.6 (6)
O3—C7—C8—N247.8 (2)C6—C1—N1—O1176.5 (4)
C4—C7—C8—N2170.52 (19)O4—C9—N3—C111.5 (3)
O3—C7—C8—C9167.95 (18)C8—C9—N3—C11179.66 (19)
C4—C7—C8—C969.4 (2)C12—C11—N3—C9156.1 (2)
N2—C8—C9—O458.8 (3)C10—C11—N3—C984.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7W···O50.921.872.679 (2)146
O7—H8W···O4i0.881.962.734 (3)146
N2—H2B···O3ii0.87 (3)1.99 (3)2.854 (3)172 (3)
O3—H4···O5iii0.821.792.612 (2)175
N3—H3A···O7i0.862.082.914 (3)163
N2—H2C···O6i0.99 (3)1.96 (3)2.811 (3)143 (3)
N2—H2A···O70.95 (3)1.89 (3)2.801 (2)158 (3)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y1/2, z+1; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC15H21N3O6·H2O
Mr357.36
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)8.9787 (7), 6.7850 (5), 14.7148 (11)
β (°) 95.362 (5)
V3)892.51 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.50 × 0.20 × 0.15
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.949, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
8245, 2254, 1853
Rint0.028
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.105, 1.04
No. of reflections2254
No. of parameters243
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.16

Computer programs: , APEX2 (Bruker, 2005) and SAINT (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7W···O50.921.872.679 (2)145.7
O7—H8W···O4i0.881.962.734 (3)145.5
N2—H2B···O3ii0.87 (3)1.99 (3)2.854 (3)172 (3)
O3—H4···O5iii0.821.792.612 (2)175.2
N3—H3A···O7i0.862.082.914 (3)162.5
N2—H2C···O6i0.99 (3)1.96 (3)2.811 (3)143 (3)
N2—H2A···O70.95 (3)1.89 (3)2.801 (2)158 (3)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y1/2, z+1; (iii) x1, y, z.
 

Acknowledgements

Financial support from the National Natural Foundation Research (grant Nos. 30701053, 30772654, 36072541) is gratefully acknowledged.

References

First citationAozuka, Y., Koizumi, K., Saitoh, Y., Ueda, Y., Sakurai, H. & Saiki, I. (2004). Cancer Lett. 216, 35–42.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShin, W. & Pyo, M. (1984). Bull. Korean Chem. Soc. 5, 158–162.  CAS Google Scholar
First citationShinagawa, S., Kanamaru, T., Harada, S., Asai, M. & Ookazaki, H. (1987). J. Med. Chem. 30, 1458–1463.  CrossRef CAS PubMed Web of Science Google Scholar
First citationTesta, M. L., Ciriminna, R., Hajji, C., Garcia, E. Z., Ciclosi, M., Arques, J. S. & Pagliaroa, M. (2004). Adv. Synth. Catal. 346, 655–660.  Web of Science CrossRef CAS Google Scholar
First citationXu, W. F. & Li, Q. B. (2005). Curr. Med. Chem. Anti-Cancer Agents, 5, 281–301.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds