organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(2-Chloro­eth­oxy)phthalo­nitrile

aInstitute of Animal and Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100029, People's Republic of China
*Correspondence e-mail: zhushf@netchina.com.cn

(Received 2 August 2008; accepted 23 August 2008; online 13 November 2008)

In the title compound, C10H7ClN2O, the O and both C atoms of the chloroethoxy group are disordered over two positions, the occupancy factor of the major disorder component refining to 0.54 (2).

Related literature

For background to the use of phthalonitriles and phthalocyanines, see: McKeown (1998[McKeown, N. B. (1998). Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press.]); Leznoff & Lever (1989–1996[Leznoff, C. C. & Lever, A. B. P. (1989-1996). Phthalocyanines: Properties and Applications, Vols. 1, 2, 3 and 4. Weinheim/New York: VCH Publishers Inc.]); Moser & Thomas (1983[Moser, F. H. & Thomas, A. L. (1983). The Phthalocyanines, Vols. 1 and 2. Boca Raton, Florida: CRC Press.]). For related structures, see: Nesi et al. (1998[Nesi, R., Turchi, S., Giomi, D. & Corsi, C. (1998). Tetrahedron, 54, 10851-10856.]); Dinçer et al. (2004[Dinçer, M., Ağar, A., Akdemir, N., Ağar, E. & Özdemir, N. (2004). Acta Cryst. E60, o79-o80.]); Ocak et al. (2004[Ocak, N., Işık, Ş., Akdemir, N., Kantar, C. & Ağar, E. (2004). Acta Cryst. E60, o361-o362.]).

[Scheme 1]

Experimental

Crystal data
  • C10H7ClN2O

  • Mr = 206.63

  • Monoclinic, P 21 /c

  • a = 4.9021 (8) Å

  • b = 19.014 (3) Å

  • c = 10.640 (3) Å

  • β = 97.123 (18)°

  • V = 984.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 295 (2) K

  • 0.6 × 0.2 × 0.1 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: none

  • 2496 measured reflections

  • 1741 independent reflections

  • 890 reflections with I > 2σ(I)

  • Rint = 0.062

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.240

  • S = 1.08

  • 1741 reflections

  • 155 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: XSCANS (Bruker, 1997[Bruker (1997). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Substituted phthalonitriles are generally used for preparing peripherally substituted symmetrical and unsymmetrical phthalocyanine complexes and subphthalocyanines (McKeown, 1998; Leznoff & Lever, 1989–1996). Phthalocyanines were first developed as dyes and pigments (Moser & Thomas, 1983). Over last few years, a great deal of interest has been focused on the synthesis of phthalocyanine derivatives due to their applications in fields, such as chemical sensors, electrochromism, batteries, semiconducting materials, liquid crystals, non-linear optics and photodynamic therapy (PDT) (Leznoff & Lever, 1989–1996). We report here the structure of the title phthalonitrile derivative, (I), (Fig 1).

The title compound, C10H7ClN2O, contains a pathalonitrile ring and 2-chloroethoxy substituent in the 4-position. The oxygen and both carbon atoms of this substituent are disordered over two positions. The occupancy factor of the major disorder component refined to 0.54 (2). The C1N1 and C2N2 bond distances are both 1.138 (4) °, consistent with NC triple-bond character, They are also in good agreement with literature values (Nesi et al., 1998; Dinçer et al., 2004; Ocak et al., 2004).

Related literature top

For background to the use of phthalonitriles and phthalocyanines, see: McKeown (1998); Leznoff & Lever (1989–1996); Moser & Thomas (1983). For related structures, see: Nesi et al. (1998); Dinçer et al. (2004); Ocak et al. (2004).

Experimental top

2-chloroethanol (1.6 g, 20 mmol) and 3-nitrophthalonitrile (1.73 g, 10 mmol) were dissolved in dry dimethylformamide (50 ml). After stirring for 1 h at room temperature, dry fine-powdered potassium carbonate (2.76 g, 20 mmol) was added portionwise over a period of 2 h with stirring. The reaction mixture was stirred for 36 h at room temperature and poured into ice-water (300 g). The product was filtered off and washed with water until the filtrate was neutral. Recrystallization from toluene gave a white product (yield 1.6 g, 77.4%). Single crystals were obtained from ethanol at room temperature by slow evaporation. Spectroscopic analysis: IR (KBr, ν cm-1): 2963, 2868, 2237, 2229; MS(ESI, CH3OH): m/z =207.2 [M+H]+; Anal. Found: C,58.45; H, 3.72; N, 13.23%. Calcd for C18H16N2O: C, 58.13; H, 3.41; N, 13.56%

Refinement top

The oxygen and both carbon atoms of the chloroethoxy group were disordered over two positions. The occupancy factor of the major disorder component refined to 0.52 (2). All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic and 0.96 Å, Uiso =1.2eq (C) for CH2 atoms.

Computing details top

Data collection: XSCANS (Bruker, 1997); cell refinement: XSCANS(Bruker, 1997); data reduction: XSCANS(Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, (I), showing 35% probability ellipsoids and the atom numbering scheme. For clarity only atoms of the major disorder component are shown.
[Figure 2] Fig. 2. The molecular packing of (I) viewed along the a axis. H atoms and atoms of the minor disorder component have been omitted.
(I) top
Crystal data top
C10H7ClN2OF(000) = 424
Mr = 206.63Dx = 1.395 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 43 reflections
a = 4.9021 (8) Åθ = 4.9–12.4°
b = 19.014 (3) ŵ = 0.35 mm1
c = 10.640 (3) ÅT = 295 K
β = 97.123 (18)°Prism, colorless
V = 984.1 (3) Å30.6 × 0.2 × 0.1 mm
Z = 4
Data collection top
Bruker P4
diffractometer
Rint = 0.062
Radiation source: fine-focus sealed tubeθmax = 25.1°, θmin = 2.1°
Graphite monochromatorh = 51
ω scansk = 122
2496 measured reflectionsl = 1212
1741 independent reflections3 standard reflections every 97 reflections
890 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.240H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.1087P)2 + 0.4256P]
where P = (Fo2 + 2Fc2)/3
1741 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.27 e Å3
3 restraintsΔρmin = 0.34 e Å3
Crystal data top
C10H7ClN2OV = 984.1 (3) Å3
Mr = 206.63Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.9021 (8) ŵ = 0.35 mm1
b = 19.014 (3) ÅT = 295 K
c = 10.640 (3) Å0.6 × 0.2 × 0.1 mm
β = 97.123 (18)°
Data collection top
Bruker P4
diffractometer
Rint = 0.062
2496 measured reflections3 standard reflections every 97 reflections
1741 independent reflections intensity decay: none
890 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0653 restraints
wR(F2) = 0.240H-atom parameters constrained
S = 1.08Δρmax = 0.27 e Å3
1741 reflectionsΔρmin = 0.34 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.5427 (3)0.44767 (7)0.83121 (16)0.1010 (7)
N10.8645 (10)0.8557 (2)0.4503 (5)0.1033 (15)
N21.0442 (9)0.6789 (2)0.3064 (4)0.0871 (13)
C10.7656 (10)0.8069 (2)0.4867 (5)0.0759 (13)
C20.8952 (9)0.6778 (2)0.3795 (5)0.0689 (12)
C30.6468 (8)0.7433 (2)0.5291 (4)0.0662 (11)
C40.7097 (8)0.6785 (2)0.4738 (4)0.0621 (11)
C50.5977 (8)0.6167 (2)0.5135 (4)0.0707 (12)
H5A0.63930.57380.47850.085*
C60.4228 (9)0.6196 (2)0.6063 (5)0.0761 (13)
C70.3573 (9)0.6827 (3)0.6596 (4)0.0755 (13)
H7A0.23880.68370.72140.091*
C80.4698 (9)0.7442 (2)0.6201 (5)0.0717 (12)
H8A0.42540.78690.65530.086*
O10.297 (3)0.5510 (8)0.6161 (17)0.084 (4)0.54 (2)
C90.134 (4)0.5396 (9)0.719 (2)0.098 (6)0.54 (2)
H9A0.05130.58370.74010.118*0.54 (2)
H9B0.01270.50680.69220.118*0.54 (2)
C100.294 (4)0.5130 (10)0.8277 (15)0.101 (6)0.54 (2)
H10A0.16410.49680.88300.121*0.54 (2)
H10B0.38630.55340.86940.121*0.54 (2)
O1'0.352 (4)0.5616 (10)0.6669 (13)0.080 (4)0.46 (2)
C9'0.255 (3)0.5600 (6)0.7816 (13)0.059 (4)0.46 (2)
H9C0.08150.58510.77710.071*0.46 (2)
H9D0.38490.58190.84580.071*0.46 (2)
C10'0.2133 (14)0.4813 (7)0.8148 (17)0.070 (4)0.46 (2)
H10C0.09700.45760.74740.085*0.46 (2)
H10D0.13180.47670.89300.085*0.46 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0865 (10)0.0857 (9)0.1351 (14)0.0058 (7)0.0306 (8)0.0097 (8)
N10.114 (4)0.077 (3)0.121 (4)0.011 (3)0.024 (3)0.005 (3)
N20.091 (3)0.088 (3)0.090 (3)0.007 (2)0.041 (2)0.009 (2)
C10.074 (3)0.070 (3)0.084 (3)0.001 (2)0.012 (2)0.008 (3)
C20.075 (3)0.058 (2)0.076 (3)0.001 (2)0.021 (2)0.001 (2)
C30.064 (2)0.061 (2)0.074 (3)0.0028 (19)0.008 (2)0.003 (2)
C40.060 (2)0.062 (2)0.066 (3)0.0064 (19)0.0145 (19)0.003 (2)
C50.073 (3)0.059 (2)0.083 (3)0.008 (2)0.023 (2)0.006 (2)
C60.079 (3)0.068 (3)0.086 (3)0.008 (2)0.027 (2)0.017 (2)
C70.072 (3)0.091 (3)0.066 (3)0.019 (2)0.019 (2)0.002 (2)
C80.070 (3)0.070 (3)0.076 (3)0.009 (2)0.010 (2)0.002 (2)
O10.115 (8)0.067 (6)0.083 (9)0.010 (5)0.062 (7)0.012 (6)
C90.088 (9)0.096 (9)0.120 (13)0.007 (7)0.053 (9)0.033 (8)
C100.073 (8)0.141 (15)0.089 (8)0.017 (10)0.015 (7)0.041 (10)
O1'0.125 (8)0.056 (5)0.066 (8)0.004 (5)0.041 (8)0.004 (6)
C9'0.046 (6)0.063 (7)0.071 (8)0.009 (5)0.017 (6)0.018 (5)
C10'0.051 (6)0.056 (7)0.109 (10)0.020 (5)0.029 (6)0.009 (6)
Geometric parameters (Å, º) top
Cl1—C10'1.726 (5)C7—H7A0.9300
Cl1—C101.738 (5)C8—H8A0.9300
N1—C11.137 (6)O1—C91.450 (16)
N2—C21.132 (5)C9—C101.41 (3)
C1—C31.439 (6)C9—H9A0.9700
C2—C41.435 (6)C9—H9B0.9700
C3—C81.378 (6)C10—H10A0.9700
C3—C41.416 (5)C10—H10B0.9700
C4—C51.386 (6)O1'—C9'1.366 (5)
C5—C61.386 (6)C9'—C10'1.556 (19)
C5—H5A0.9300C9'—H9C0.9700
C6—O1'1.344 (17)C9'—H9D0.9700
C6—C71.382 (6)C10'—H10C0.9700
C6—O11.452 (15)C10'—H10D0.9700
C7—C81.381 (6)
N1—C1—C3177.5 (5)C10—C9—H9A109.3
N2—C2—C4178.3 (5)O1—C9—H9A109.3
C8—C3—C4119.5 (4)C10—C9—H9B109.3
C8—C3—C1121.6 (4)O1—C9—H9B109.3
C4—C3—C1118.9 (4)H9A—C9—H9B107.9
C5—C4—C3119.8 (4)C9—C10—Cl1126.4 (13)
C5—C4—C2121.0 (4)C9—C10—H10A105.7
C3—C4—C2119.2 (4)Cl1—C10—H10A105.7
C4—C5—C6119.1 (4)C9—C10—H10B105.7
C4—C5—H5A120.4Cl1—C10—H10B105.7
C6—C5—H5A120.4H10A—C10—H10B106.2
O1'—C6—C7115.4 (7)C6—O1'—C9'125.9 (13)
O1'—C6—C5121.8 (8)O1'—C9'—C10'107.1 (12)
C7—C6—C5121.5 (4)O1'—C9'—H9C110.3
C7—C6—O1128.9 (7)C10'—C9'—H9C110.3
C5—C6—O1108.7 (7)O1'—C9'—H9D110.3
C8—C7—C6119.2 (4)C10'—C9'—H9D110.3
C8—C7—H7A120.4H9C—C9'—H9D108.5
C6—C7—H7A120.4C9'—C10'—Cl1103.4 (9)
C3—C8—C7120.9 (4)C9'—C10'—H10C111.1
C3—C8—H8A119.6Cl1—C10'—H10C111.1
C7—C8—H8A119.6C9'—C10'—H10D111.1
C6—O1—C9117.8 (11)Cl1—C10'—H10D111.1
C10—C9—O1111.8 (13)H10C—C10'—H10D109.0

Experimental details

Crystal data
Chemical formulaC10H7ClN2O
Mr206.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)4.9021 (8), 19.014 (3), 10.640 (3)
β (°) 97.123 (18)
V3)984.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.6 × 0.2 × 0.1
Data collection
DiffractometerBruker P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2496, 1741, 890
Rint0.062
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.240, 1.08
No. of reflections1741
No. of parameters155
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.34

Computer programs: XSCANS (Bruker, 1997), XSCANS(Bruker, 1997), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We are grateful for the support of the National Key Project of Scientific and Technical Supporting Programs funded by the Ministry of Science and Technology of China during the 11th Five-Year Plan (No. 2006BAK10B06).

References

First citationBruker (1997). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDinçer, M., Ağar, A., Akdemir, N., Ağar, E. & Özdemir, N. (2004). Acta Cryst. E60, o79–o80.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLeznoff, C. C. & Lever, A. B. P. (1989–1996). Phthalocyanines: Properties and Applications, Vols. 1, 2, 3 and 4. Weinheim/New York: VCH Publishers Inc.  Google Scholar
First citationMcKeown, N. B. (1998). Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press.  Google Scholar
First citationMoser, F. H. & Thomas, A. L. (1983). The Phthalocyanines, Vols. 1 and 2. Boca Raton, Florida: CRC Press.  Google Scholar
First citationNesi, R., Turchi, S., Giomi, D. & Corsi, C. (1998). Tetrahedron, 54, 10851–10856.  Web of Science CSD CrossRef CAS Google Scholar
First citationOcak, N., Işık, Ş., Akdemir, N., Kantar, C. & Ağar, E. (2004). Acta Cryst. E60, o361–o362.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds