metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1501-m1502

catena-Poly[[(2,2′-bi­pyridine)copper(II)]-μ-5-tert-butyl­isophthalato]

aCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Quanzhou Normal University, Quanzhou, Fujian 362000, People's Republic of China
*Correspondence e-mail: zhangwy_hi@126.com

(Received 21 October 2008; accepted 30 October 2008; online 8 November 2008)

In the crystal structure of the title polymeric compound, [Cu(C12H12O4)(C10H8N2)]n, the asymmetric unit consists of one CuII ion, one 5-tert-butyl­isophthalate (tbip) and one 2,2′-bipyridine (bpy) ligand. The copper(II) ion is four-coordin­ated by two N atoms from bipy and two O atoms from two tbip ligands, leading to a distorted tetrahedral coordination. Each tbip ligand adopts a bis-monodentate coordination mode to connect two symmetry-related copper(II) ions, so forming a zigzag polymer chain parallel to [001]. The tert-butyl methyl groups are disordered over two positions with occupancies of 0.506 (6)/0.494 (6)

Related literature

For related literature on the synthesis of flexible organic ligands, see: Chang et al. (2005[Chang, F., Wang, Z.-M., Sun, H.-L., Wen, G.-H. & Zhang, X.-X. (2005). Dalton Trans. pp. 2976-2978.]); Ma, Chen et al. (2008[Ma, C.-B., Chen, C.-N., Liu, Q.-T., Liao, D.-Z. & Li, L.-C. (2008). Eur. J. Inorg. Chem. pp. 1865-1870.]); Xu et al. (2006[Xu, Y.-Q., Yuan, D.-Q., Wu, B.-L., Han, L., Wu, M.-Y., Jiang, F.-L. & Hong, M.-C. (2006). Cryst. Growth Des. 6, 1168-1174.]). For related literature on coordination polymers, see: Ma, Wang, Huo et al. (2008[Ma, L.-F., Wang, L.-Y., Huo, X.-K., Wang, Y.-Y., Fan, Y.-T., Wang, J.-G. & Chen, S. H. (2008). Cryst. Growth Des. 8, 620-628.]); Ma, Wang, Wang et al. (2008[Ma, L.-F., Wang, Y.-Y., Wang, L.-Y., Liu, J.-Q., Wu, Y.-P., Wang, J.-G., Shi, Q.-Z. & Peng, S. M. (2008). Eur. J. Inorg. Chem. pp. 693-703.]); Pan et al. (2006[Pan, L., Parker, B., Huang, X. Y., Oison, D. H., Lee, J. Y. & Li, J. (2006). J. Am. Chem. Soc. 128, 4180-4181.]); Yang et al. (2002[Yang, S.-Y., Long, L.-S., Huang, R.-B. & Zheng, L.-S. (2002). Chem. Commun. pp. 472-473.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C12H12O4)(C10H8N2)]

  • Mr = 439.94

  • Monoclinic, P 21 /c

  • a = 8.905 (2) Å

  • b = 20.875 (5) Å

  • c = 11.564 (3) Å

  • β = 98.188 (3)°

  • V = 2127.8 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.06 mm−1

  • T = 296 (2) K

  • 0.29 × 0.22 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.716, Tmax = 0.845

  • 15716 measured reflections

  • 3949 independent reflections

  • 3021 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.130

  • S = 1.05

  • 3949 reflections

  • 260 parameters

  • 91 restraints

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.933 (2)
Cu1—O3i 1.956 (2)
Cu1—N1 1.985 (3)
Cu1—N2 1.983 (3)
O1—Cu1—O3i 88.17 (11)
O1—Cu1—N1 94.83 (11)
O3i—Cu1—N1 172.79 (11)
O1—Cu1—N2 173.34 (11)
O3i—Cu1—N2 96.69 (11)
N1—Cu1—N2 80.88 (11)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

It is well known that organic ligands play a crucial role in the design and construction of desirable frameworks. The changes in flexibility, length and symmetry of organic ligands can result in a remarkable class of materials bearing diverse architectures and functions. Thus, the construction of target molecules is a challenge for synthetic chemists (Ma et al., 2008; Chang et al., 2005; Xu et al., 2006). Benzene-1,3-dicarboxylic acid (isophthalic acid, H2isop) and its derivatives, with special conformations such as, an angle of 120° between two carboxylic groups, present versatile coordination modes that can yield predetermined networks. Such ligands have been widely used to construct coordination polymers (Pan et al., 2006; Yang et al., 2002; Ma et al., 2008).

The title compound, (I), was prepared by hydrothermal synthesis using 5-tert-butyl isophthalic acid, 2,2'-bipyridine and copper(II) actate. The asymmetric unit of (I) consists of one copper(II) ion, one tbip and one bipy ligand molecules (Fig. 1). Each copper(II) ion is four-coordinated by two nitrogen atoms from one bipy molecule and two oxygen atoms from two tbip ligands (Table 1). The coordination geometry of the copper(II) ion is distorted tetrahedral. The Cu—O bond lengths [1.933 (2)–1.965 (2) Å] are within the range reported for tetrahedral environments, and the Cu—N bond lengths [1.983 (3)–1.985 (3) Å] are also similar to those found in other tetrahedral copper complexes of bipy (Allen et al., 1987). Each tbip ligand adopts the bis-monodentated coordination mode to connect two symmetry related copper(II) ions so forming a zigzag polymer chain (Fig. 2).

Related literature top

For related literature on the synthesis of flexible organic ligands, see: Chang et al. (2005); Ma, Chen et al. (2008); Xu et al. (2006). For related literature on coordination polymers, see: Ma, Wang, Huo et al. (2008); Ma, Wang, Wang et al.(2008); Pan et al. (2006); Yang et al. (2002). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 5-tert-butyl isophthalic acid (0.1 mmol, 23.1 mg), 2,2'-bipyridine (0.1 mmol, 15.8 mg), Cu(OAc).2.4H2O (0.05 mmol, 11.5 mg), NaOH (0.1 mmol, 4.0 mg) and H2O (15 ml) was placed in a Teflon-lined stainless steel vessel, and heated to 160 °C for 4 days. It was then cooled to room temperature over a period of 24 h. Blue block-like crystals of compound (I) were obtained.

Refinement top

The tertiary butyl methyl groups are disordered over two almost equally occupied positions: 0.506 (6)/0.494 (6). The H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93–0.96 Å with Uiso(H) = 1.2 or 1.5Ueq(parent C-atom).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of compound (I), with thermal ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity. Atoms with label A are related to those without by symmetry operation (x, -y+1.5, z+0.5).
[Figure 2] Fig. 2. A partial view, along the a axis, of the crystal packing of compound (I) showing the zigzag polymer chain. H atoms have been omitted for clarity.
catena-Poly[[(2,2'-bipyridine)copper(II)]-µ-5-tert-butylisophthalato] top
Crystal data top
[Cu(C12H12O4)(C10H8N2)]F(000) = 908
Mr = 439.94Dx = 1.373 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3455 reflections
a = 8.905 (2) Åθ = 2.5–22.5°
b = 20.875 (5) ŵ = 1.06 mm1
c = 11.564 (3) ÅT = 296 K
β = 98.188 (3)°Block, blue
V = 2127.8 (9) Å30.29 × 0.22 × 0.16 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3949 independent reflections
Radiation source: fine-focus sealed tube3021 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1010
Tmin = 0.716, Tmax = 0.845k = 2525
15716 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.065P)2 + 1.7017P]
where P = (Fo2 + 2Fc2)/3
3949 reflections(Δ/σ)max = 0.001
260 parametersΔρmax = 0.64 e Å3
91 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Cu(C12H12O4)(C10H8N2)]V = 2127.8 (9) Å3
Mr = 439.94Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.905 (2) ŵ = 1.06 mm1
b = 20.875 (5) ÅT = 296 K
c = 11.564 (3) Å0.29 × 0.22 × 0.16 mm
β = 98.188 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3949 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
3021 reflections with I > 2σ(I)
Tmin = 0.716, Tmax = 0.845Rint = 0.040
15716 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04591 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.05Δρmax = 0.64 e Å3
3949 reflectionsΔρmin = 0.55 e Å3
260 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C100.2988 (8)0.7849 (4)0.0801 (8)0.0991 (17)0.50
H10A0.38080.78760.12550.149*0.50
H10B0.25800.74220.08510.149*0.50
H10C0.33550.79480.00000.149*0.50
C110.1382 (9)0.8222 (4)0.2581 (6)0.1033 (17)0.50
H11A0.05770.85060.28930.155*0.50
H11B0.10700.77860.27360.155*0.50
H11C0.22660.83100.29430.155*0.50
C120.2268 (8)0.9003 (3)0.1063 (7)0.1019 (19)0.50
H12A0.31130.90850.14730.153*0.50
H12B0.25700.90710.02420.153*0.50
H12C0.14500.92880.13410.153*0.50
C10'0.2432 (9)0.7777 (3)0.1868 (8)0.0991 (17)0.50
H10D0.20730.77910.26910.149*0.50
H10E0.21380.73780.15530.149*0.50
H10F0.35180.78130.17430.149*0.50
C11'0.1082 (9)0.8784 (4)0.2317 (7)0.1033 (17)0.50
H11D0.09670.92080.20210.155*0.50
H11E0.01120.86260.26710.155*0.50
H11F0.17640.87960.28900.155*0.50
C12'0.2878 (8)0.8749 (4)0.0548 (7)0.1019 (19)0.50
H12D0.36580.88710.09980.153*0.50
H12E0.33240.85230.01380.153*0.50
H12F0.23710.91250.03230.153*0.50
Cu10.30126 (5)0.570966 (18)0.17572 (3)0.03784 (16)
O10.1606 (3)0.63474 (11)0.1038 (2)0.0497 (6)
O20.3724 (3)0.67027 (13)0.0490 (3)0.0598 (7)
O30.3259 (3)0.87708 (12)0.1821 (2)0.0507 (6)
O40.1347 (3)0.94173 (12)0.1635 (2)0.0542 (7)
N10.2646 (3)0.50997 (13)0.0430 (2)0.0368 (6)
N20.4556 (3)0.50539 (13)0.2322 (2)0.0371 (6)
C10.2394 (5)0.67826 (18)0.0641 (3)0.0510 (8)
C20.1631 (4)0.74186 (15)0.0367 (3)0.0397 (8)
C30.2214 (4)0.78533 (16)0.0351 (3)0.0394 (8)
H30.30840.77560.06760.047*
C40.1487 (4)0.84380 (15)0.0584 (3)0.0378 (8)
C50.0213 (4)0.85804 (16)0.0065 (3)0.0430 (8)
H50.02610.89740.02200.052*
C60.0377 (4)0.81567 (17)0.0678 (3)0.0460 (9)
C70.0343 (4)0.75671 (16)0.0860 (3)0.0448 (9)
H70.00500.72640.13250.054*
C80.2057 (4)0.89150 (16)0.1391 (3)0.0422 (8)
C90.1753 (6)0.8323 (2)0.1271 (5)0.0809 (12)
C130.1605 (4)0.51736 (18)0.0526 (3)0.0469 (9)
H130.10310.55470.06080.056*
C140.1365 (4)0.4717 (2)0.1382 (3)0.0541 (10)
H140.06250.47750.20260.065*
C150.2233 (5)0.4176 (2)0.1271 (4)0.0575 (11)
H150.20870.38600.18420.069*
C160.3328 (4)0.40997 (18)0.0308 (3)0.0485 (9)
H160.39380.37360.02300.058*
C170.3503 (4)0.45690 (16)0.0533 (3)0.0352 (7)
C180.4614 (4)0.45458 (16)0.1610 (3)0.0353 (7)
C190.5640 (4)0.40508 (18)0.1901 (3)0.0478 (9)
H190.56750.37030.14020.057*
C200.6603 (5)0.4085 (2)0.2941 (4)0.0556 (10)
H200.72890.37550.31560.067*
C210.6549 (5)0.4606 (2)0.3664 (3)0.0548 (10)
H210.72030.46380.43640.066*
C220.5505 (4)0.50766 (18)0.3323 (3)0.0475 (9)
H220.54570.54280.38110.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C100.081 (4)0.096 (3)0.134 (4)0.009 (3)0.061 (3)0.009 (3)
C110.101 (4)0.102 (4)0.118 (4)0.020 (3)0.058 (3)0.004 (3)
C120.087 (4)0.084 (3)0.144 (5)0.035 (3)0.048 (3)0.007 (3)
C10'0.081 (4)0.096 (3)0.134 (4)0.009 (3)0.061 (3)0.009 (3)
C11'0.101 (4)0.102 (4)0.118 (4)0.020 (3)0.058 (3)0.004 (3)
C12'0.087 (4)0.084 (3)0.144 (5)0.035 (3)0.048 (3)0.007 (3)
Cu10.0495 (3)0.0268 (2)0.0376 (3)0.00568 (18)0.00751 (18)0.00124 (16)
O10.0618 (16)0.0312 (13)0.0578 (16)0.0093 (12)0.0143 (13)0.0113 (11)
O20.0639 (14)0.0477 (13)0.0722 (16)0.0222 (12)0.0247 (13)0.0112 (12)
O30.0599 (17)0.0424 (14)0.0514 (16)0.0017 (12)0.0132 (13)0.0113 (12)
O40.0725 (18)0.0373 (14)0.0517 (16)0.0066 (13)0.0042 (13)0.0124 (12)
N10.0414 (16)0.0347 (15)0.0340 (15)0.0035 (12)0.0042 (12)0.0052 (12)
N20.0448 (16)0.0336 (15)0.0322 (14)0.0010 (12)0.0029 (12)0.0018 (12)
C10.0611 (16)0.0381 (16)0.0573 (18)0.0190 (15)0.0207 (15)0.0079 (14)
C20.051 (2)0.0288 (17)0.0407 (19)0.0085 (15)0.0102 (16)0.0041 (14)
C30.046 (2)0.0351 (18)0.0373 (18)0.0047 (15)0.0085 (15)0.0008 (15)
C40.046 (2)0.0293 (16)0.0363 (18)0.0006 (14)0.0008 (15)0.0015 (14)
C50.046 (2)0.0299 (18)0.051 (2)0.0079 (15)0.0001 (16)0.0030 (15)
C60.047 (2)0.0335 (18)0.059 (2)0.0083 (16)0.0106 (17)0.0025 (17)
C70.051 (2)0.0324 (18)0.055 (2)0.0062 (16)0.0187 (17)0.0105 (16)
C80.058 (2)0.0337 (18)0.0317 (17)0.0047 (17)0.0048 (16)0.0022 (14)
C90.075 (3)0.062 (2)0.118 (3)0.021 (2)0.054 (3)0.011 (2)
C130.047 (2)0.049 (2)0.043 (2)0.0062 (17)0.0025 (16)0.0034 (17)
C140.047 (2)0.070 (3)0.043 (2)0.009 (2)0.0010 (17)0.0015 (19)
C150.062 (3)0.060 (3)0.049 (2)0.009 (2)0.0051 (19)0.020 (2)
C160.052 (2)0.042 (2)0.052 (2)0.0024 (17)0.0075 (18)0.0099 (17)
C170.0374 (18)0.0351 (17)0.0343 (17)0.0003 (14)0.0090 (14)0.0010 (14)
C180.0388 (18)0.0322 (17)0.0367 (18)0.0022 (14)0.0112 (14)0.0039 (14)
C190.053 (2)0.043 (2)0.048 (2)0.0117 (18)0.0132 (17)0.0019 (17)
C200.055 (2)0.058 (2)0.053 (2)0.020 (2)0.0061 (19)0.012 (2)
C210.057 (2)0.061 (3)0.044 (2)0.004 (2)0.0044 (18)0.0116 (19)
C220.057 (2)0.043 (2)0.041 (2)0.0016 (18)0.0012 (17)0.0005 (16)
Geometric parameters (Å, º) top
C10—C91.521 (9)N1—C171.341 (4)
C10—H10A0.9600N1—C131.347 (4)
C10—H10B0.9600N2—C221.333 (4)
C10—H10C0.9600N2—C181.348 (4)
C11—C91.519 (9)C1—C21.505 (5)
C11—H11A0.9600C2—C31.381 (5)
C11—H11B0.9600C2—C71.386 (5)
C11—H11C0.9600C3—C41.390 (5)
C12—C91.501 (7)C3—H30.9300
C12—H12A0.9600C4—C51.389 (5)
C12—H12B0.9600C4—C81.502 (5)
C12—H12C0.9600C5—C61.387 (5)
C10'—C91.504 (8)C5—H50.9300
C10'—H10D0.9600C6—C71.390 (5)
C10'—H10E0.9600C6—C91.527 (6)
C10'—H10F0.9600C7—H70.9300
C11'—C91.595 (9)C8—Cu1ii2.538 (4)
C11'—H11D0.9600C13—C141.368 (5)
C11'—H11E0.9600C13—H130.9300
C11'—H11F0.9600C14—C151.365 (6)
C12'—C91.502 (8)C14—H140.9300
C12'—H12D0.9600C15—C161.382 (6)
C12'—H12E0.9600C15—H150.9300
C12'—H12F0.9600C16—C171.373 (5)
Cu1—O11.933 (2)C16—H160.9300
Cu1—O3i1.956 (2)C17—C181.477 (5)
Cu1—N11.985 (3)C18—C191.388 (5)
Cu1—N21.983 (3)C19—C201.376 (5)
Cu1—C8i2.538 (4)C19—H190.9300
O1—C11.273 (4)C20—C211.377 (6)
O2—C11.233 (5)C20—H200.9300
O3—C81.279 (5)C21—C221.372 (5)
O3—Cu1ii1.956 (2)C21—H210.9300
O4—C81.236 (4)C22—H220.9300
C9—C10—H10A109.5C6—C5—C4122.4 (3)
C9—C10—H10B109.5C6—C5—H5118.8
H10A—C10—H10B109.5C4—C5—H5118.8
C9—C10—H10C109.5C5—C6—C7116.8 (3)
H10A—C10—H10C109.5C5—C6—C9122.1 (3)
H10B—C10—H10C109.5C7—C6—C9121.0 (4)
C9—C11—H11A109.5C2—C7—C6121.8 (3)
C9—C11—H11B109.5C2—C7—H7119.1
H11A—C11—H11B109.5C6—C7—H7119.1
C9—C11—H11C109.5O4—C8—O3122.7 (3)
H11A—C11—H11C109.5O4—C8—C4119.8 (4)
H11B—C11—H11C109.5O3—C8—C4117.5 (3)
C9—C12—H12A109.5O4—C8—Cu1ii76.6 (2)
C9—C12—H12B109.5O3—C8—Cu1ii49.07 (17)
H12A—C12—H12B109.5C4—C8—Cu1ii155.9 (2)
C9—C12—H12C109.5C12—C9—C10'131.1 (4)
H12A—C12—H12C109.5C12'—C9—C10'115.1 (5)
H12B—C12—H12C109.5C12—C9—C11108.0 (5)
C9—C10'—H10D109.5C12'—C9—C11132.1 (5)
C9—C10'—H10E109.5C10'—C9—C1158.7 (3)
H10D—C10'—H10E109.5C12—C9—C10111.7 (5)
C9—C10'—H10F109.5C12'—C9—C1078.2 (4)
H10D—C10'—H10F109.5C10'—C9—C1049.7 (2)
H10E—C10'—H10F109.5C11—C9—C10108.0 (4)
C9—C11'—H11D109.5C12—C9—C6112.9 (4)
C9—C11'—H11E109.5C12'—C9—C6113.5 (5)
H11D—C11'—H11E109.5C10'—C9—C6115.8 (4)
C9—C11'—H11F109.5C11—C9—C6110.0 (5)
H11D—C11'—H11F109.5C10—C9—C6106.1 (5)
H11E—C11'—H11F109.5C12—C9—C11'67.9 (3)
C9—C12'—H12D109.5C12'—C9—C11'102.3 (4)
C9—C12'—H12E109.5C10'—C9—C11'103.9 (5)
H12D—C12'—H12E109.5C11—C9—C11'47.3 (2)
C9—C12'—H12F109.5C10—C9—C11'146.9 (5)
H12D—C12'—H12F109.5C6—C9—C11'103.9 (5)
H12E—C12'—H12F109.5N1—C13—C14122.2 (4)
O1—Cu1—O3i88.17 (11)N1—C13—H13118.9
O1—Cu1—N194.83 (11)C14—C13—H13118.9
O3i—Cu1—N1172.79 (11)C15—C14—C13118.7 (4)
O1—Cu1—N2173.34 (11)C15—C14—H14120.6
O3i—Cu1—N296.69 (11)C13—C14—H14120.6
N1—Cu1—N280.88 (11)C14—C15—C16119.8 (4)
O1—Cu1—C8i82.87 (11)C14—C15—H15120.1
O3i—Cu1—C8i29.60 (11)C16—C15—H15120.1
N2—Cu1—C8i103.60 (11)C17—C16—C15119.0 (4)
N1—Cu1—C8i144.33 (12)C17—C16—H16120.5
C1—O1—Cu1106.8 (2)C15—C16—H16120.5
C8—O3—Cu1ii101.3 (2)N1—C17—C16121.4 (3)
C17—N1—C13118.9 (3)N1—C17—C18114.0 (3)
C17—N1—Cu1115.6 (2)C16—C17—C18124.6 (3)
C13—N1—Cu1125.4 (2)N2—C18—C19121.3 (3)
C22—N2—C18118.9 (3)N2—C18—C17114.2 (3)
C22—N2—Cu1125.8 (2)C19—C18—C17124.5 (3)
C18—N2—Cu1115.3 (2)C20—C19—C18118.7 (4)
O2—C1—O1123.0 (3)C20—C19—H19120.7
O2—C1—C2120.3 (3)C18—C19—H19120.7
O1—C1—C2116.7 (3)C19—C20—C21120.0 (4)
C3—C2—C7120.3 (3)C19—C20—H20120.0
C3—C2—C1120.6 (3)C21—C20—H20120.0
C7—C2—C1119.1 (3)C22—C21—C20118.2 (4)
C2—C3—C4119.3 (3)C22—C21—H21120.9
C2—C3—H3120.4C20—C21—H21120.9
C4—C3—H3120.4N2—C22—C21123.0 (4)
C5—C4—C3119.4 (3)N2—C22—H22118.5
C5—C4—C8119.7 (3)C21—C22—H22118.5
C3—C4—C8120.9 (3)
O3i—Cu1—O1—C184.9 (3)C3—C4—C8—Cu1ii47.6 (8)
N1—Cu1—O1—C1101.7 (3)C5—C6—C9—C126.0 (7)
C8i—Cu1—O1—C1114.1 (3)C7—C6—C9—C12174.1 (5)
O1—Cu1—N1—C17176.4 (2)C5—C6—C9—C12'32.7 (7)
N2—Cu1—N1—C171.5 (2)C7—C6—C9—C12'147.2 (5)
C8i—Cu1—N1—C1799.1 (3)C5—C6—C9—C10'169.2 (6)
N2—Cu1—N1—C13180.0 (3)C7—C6—C9—C10'10.7 (8)
C8i—Cu1—N1—C1379.4 (3)C5—C6—C9—C11126.8 (5)
O3i—Cu1—N2—C227.2 (3)C7—C6—C9—C1153.3 (7)
N1—Cu1—N2—C22179.6 (3)C5—C6—C9—C10116.6 (5)
C8i—Cu1—N2—C2236.5 (3)C7—C6—C9—C1063.3 (6)
O3i—Cu1—N2—C18172.5 (2)C5—C6—C9—C11'77.6 (6)
N1—Cu1—N2—C180.6 (2)C7—C6—C9—C11'102.6 (5)
C8i—Cu1—N2—C18143.3 (2)C17—N1—C13—C141.8 (5)
Cu1—O1—C1—O217.2 (5)Cu1—N1—C13—C14176.7 (3)
Cu1—O1—C1—C2162.2 (3)N1—C13—C14—C151.4 (6)
O2—C1—C2—C318.7 (6)C13—C14—C15—C160.1 (6)
O1—C1—C2—C3162.0 (3)C14—C15—C16—C171.1 (6)
O2—C1—C2—C7160.4 (4)C13—N1—C17—C160.7 (5)
O1—C1—C2—C719.0 (5)Cu1—N1—C17—C16178.0 (3)
C7—C2—C3—C40.7 (5)C13—N1—C17—C18179.3 (3)
C1—C2—C3—C4179.7 (3)Cu1—N1—C17—C182.1 (4)
C2—C3—C4—C51.7 (5)C15—C16—C17—N10.7 (6)
C2—C3—C4—C8178.1 (3)C15—C16—C17—C18179.3 (3)
C3—C4—C5—C60.5 (5)C22—N2—C18—C190.1 (5)
C8—C4—C5—C6179.3 (3)Cu1—N2—C18—C19179.8 (3)
C4—C5—C6—C71.7 (6)C22—N2—C18—C17179.5 (3)
C4—C5—C6—C9178.4 (4)Cu1—N2—C18—C170.3 (4)
C3—C2—C7—C61.7 (6)N1—C17—C18—N21.5 (4)
C1—C2—C7—C6177.4 (4)C16—C17—C18—N2178.5 (3)
C5—C6—C7—C22.8 (6)N1—C17—C18—C19178.9 (3)
C9—C6—C7—C2177.3 (4)C16—C17—C18—C191.1 (5)
Cu1ii—O3—C8—O422.7 (4)N2—C18—C19—C200.4 (5)
Cu1ii—O3—C8—C4155.6 (2)C17—C18—C19—C20179.2 (3)
C5—C4—C8—O43.7 (5)C18—C19—C20—C210.8 (6)
C3—C4—C8—O4176.1 (3)C19—C20—C21—C220.9 (6)
C5—C4—C8—O3178.0 (3)C18—N2—C22—C210.2 (5)
C3—C4—C8—O32.2 (5)Cu1—N2—C22—C21180.0 (3)
C5—C4—C8—Cu1ii132.2 (6)C20—C21—C22—N20.6 (6)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C12H12O4)(C10H8N2)]
Mr439.94
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.905 (2), 20.875 (5), 11.564 (3)
β (°) 98.188 (3)
V3)2127.8 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.06
Crystal size (mm)0.29 × 0.22 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.716, 0.845
No. of measured, independent and
observed [I > 2σ(I)] reflections
15716, 3949, 3021
Rint0.040
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.130, 1.05
No. of reflections3949
No. of parameters260
No. of restraints91
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.55

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O11.933 (2)Cu1—N11.985 (3)
Cu1—O3i1.956 (2)Cu1—N21.983 (3)
O1—Cu1—O3i88.17 (11)O1—Cu1—N2173.34 (11)
O1—Cu1—N194.83 (11)O3i—Cu1—N296.69 (11)
O3i—Cu1—N1172.79 (11)N1—Cu1—N280.88 (11)
Symmetry code: (i) x, y+3/2, z+1/2.
 

Acknowledgements

The authors thank Luo Yang Normal University for supporting this work.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChang, F., Wang, Z.-M., Sun, H.-L., Wen, G.-H. & Zhang, X.-X. (2005). Dalton Trans. pp. 2976–2978.  Web of Science CSD CrossRef Google Scholar
First citationMa, C.-B., Chen, C.-N., Liu, Q.-T., Liao, D.-Z. & Li, L.-C. (2008). Eur. J. Inorg. Chem. pp. 1865–1870.  Web of Science CSD CrossRef Google Scholar
First citationMa, L.-F., Wang, L.-Y., Huo, X.-K., Wang, Y.-Y., Fan, Y.-T., Wang, J.-G. & Chen, S. H. (2008). Cryst. Growth Des. 8, 620–628.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, L.-F., Wang, Y.-Y., Wang, L.-Y., Liu, J.-Q., Wu, Y.-P., Wang, J.-G., Shi, Q.-Z. & Peng, S. M. (2008). Eur. J. Inorg. Chem. pp. 693–703.  CSD CrossRef Google Scholar
First citationPan, L., Parker, B., Huang, X. Y., Oison, D. H., Lee, J. Y. & Li, J. (2006). J. Am. Chem. Soc. 128, 4180–4181.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Y.-Q., Yuan, D.-Q., Wu, B.-L., Han, L., Wu, M.-Y., Jiang, F.-L. & Hong, M.-C. (2006). Cryst. Growth Des. 6, 1168–1174.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, S.-Y., Long, L.-S., Huang, R.-B. & Zheng, L.-S. (2002). Chem. Commun. pp. 472–473.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1501-m1502
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds