metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Sodium 2-iodo­benzene­sulfonate monohydrate

aDepartment of Chemistry, Government College University, Lahore, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 29 October 2008; accepted 21 November 2008; online 29 November 2008)

In the title compound, Na+·C6H4IO3S·H2O, the Na atom is hexa­coordinated by O atoms, forming a two-dimensional sheet-like structure in the bc plane, with the iodo­benzene rings protruding above and below. Na⋯O contact distances are in the range 2.419 (2)–2.7218 (18) Å and O⋯Na⋯O angles are in the range 73.70 (5)–158.64 (7)°. The crystal structure is stabilized by O—H⋯O and C—H⋯O hydrogen bonds and C—H⋯π inter­actions. The I atom is disordered over two positions with occupancies of 0.78 (2) and 0.22 (2).

Related literature

For related literature on the synthesis of biologically active benzothia­zine derivatives, see: Arshad et al. (2008[Arshad, M. N., Khan, I. U., Ahmad, S., Shafiq, M. & Stoeckli-Evans, H. (2008). Acta Cryst. E64, m994.]); Chau & Kice (1977[Chau, M. M. & Kice, J. L. (1977). J. Org. Chem. 42, 3265-3270.]); Shafiq, Khan et al. (2008[Shafiq, M., Khan, I. U., Tahir, M. N. & Siddiqui, W. A. (2008). Acta Cryst. E64, o558.]); Shafiq, Tahir et al. (2008[Shafiq, M., Tahir, M. N., Khan, I. U., Ahmad, S. & Siddiqui, W. A. (2008). Acta Cryst. E64, o1270.]); Tahir et al. (2008[Tahir, M. N., Shafiq, M., Khan, I. U., Siddiqui, W. A. & Arshad, M. N. (2008). Acta Cryst. E64, o557.]).

[Scheme 1]

Experimental

Crystal data
  • Na+·C6H4IO3S·H2O

  • Mr = 324.06

  • Monoclinic, P 21 /c

  • a = 13.6141 (4) Å

  • b = 8.8233 (3) Å

  • c = 7.8493 (3) Å

  • β = 92.171 (1)°

  • V = 942.19 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.64 mm−1

  • T = 296 (2) K

  • 0.25 × 0.17 × 0.15 mm

Data collection
  • Bruker KAPPA APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.482, Tmax = 0.580

  • 10141 measured reflections

  • 2339 independent reflections

  • 2135 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.047

  • S = 1.05

  • 2339 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O2i 0.85 1.98 2.824 (2) 174
C6—H6⋯O1 0.93 2.42 2.834 (3) 107
C5—H5⋯Cgi 0.93 2.79 3.661 (3) 156
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]. Cg is the centroid of the benzene ring.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

In the continuation to our research work on the synthesis of biologically active benzothiazine derivatives (Arshad et al., 2008; Shafiq, Khan, Tahir & Siddiqui, 2008; Shafiq, Tahir, Khan, Ahmad & Siddiqui, 2008; Tahir et al., 2008), we synthesized the title compound, (I).

The molecular structure of compound (I) is illustrated in Fig. 1. The bond lengths and bond angles, as far as the 2-iodobenzenesulfonate is concerned, are similar to those reported for the potassium salt analogue, reported on recently (Arshad et al., 2008). The Na-atom is hexa-coordinated with O-atoms, involving four from the sulfonic groups and two water molecules. The range of the Na···O distances is 2.419 (2)–2.7218 (18) Å, whereas the range of O···Na···O angles is 73.70 (5)–158.64 (7)°. In this way a two-dimensional sheet-like structure in the bc plane is formed, with the iodobenzene rings protruding above and below.

It is interesting that one of the O-atoms of the sulfonic group is not involved in coordination with the Na-atom, but makes an intermolecular hydrogen bond with a water molecule, similar to the situation on the potassium salt analogue mentioned above. Also, one of the H-atoms of the H2O molecule is not involved in intra or intermolecular H-bonding.

In the crystal structure of compound (I) a two dimensional polymeric network extending along the b axis is formed (Fig. 2). There exist O-H···O and C-H···O hydrogen bonds, and C-H···π-interactions involving the centroid, Cg, of the benzene ring, see Table 1 for details.

Related literature top

For related literature on the synthesis of biologically active benzothiazine derivatives, see: Arshad et al. (2008); Chau & Kice (1977); Shafiq, Khan et al. (2008); Shafiq, Tahir et al. (2008); Tahir et al. (2008). Cg is the centroid of the benzene ring

Experimental top

The title compound was prepared following the method used by Chau & Kice (1977). Suitable crystals for X-ray analysis were obtained from the reaction mixture.

Refinement top

The Iodine atom was disordered over two positions (I1A/I1B) with occupancies of 0.78 (2)/0.22 (2). The water H-atoms were located in a difference Fourier map and were refined with distance restraints: O-H = 0.82 (2) Å with Uiso(H) = 1.2Ueq(O). The C-bound H-atoms were positioned geometrically and treated as riding atoms: C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Molecular structure of compound (I), with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the c axis of the crystal packing in compound (I), showing the coordination of the O-atoms with the sodium atom and the hydrogen bonding involving the water molecules (H-atoms not involved in hydrogen bonding have been removed for clarity).
Sodium 2-iodobenzenesulfonate monohydrate top
Crystal data top
Na+·C6H4IO3S·H2OF(000) = 616
Mr = 324.06Dx = 2.285 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2339 reflections
a = 13.6141 (4) Åθ = 1.5–28.3°
b = 8.8233 (3) ŵ = 3.64 mm1
c = 7.8493 (3) ÅT = 296 K
β = 92.171 (1)°Prismatic, colorless
V = 942.19 (6) Å30.25 × 0.17 × 0.15 mm
Z = 4
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
2339 independent reflections
Radiation source: fine-focus sealed tube2135 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 7.40 pixels mm-1θmax = 28.3°, θmin = 1.5°
ω scansh = 1818
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1111
Tmin = 0.482, Tmax = 0.580l = 1010
10141 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.047H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0176P)2 + 0.7234P]
where P = (Fo2 + 2Fc2)/3
2339 reflections(Δ/σ)max = 0.009
128 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
Na+·C6H4IO3S·H2OV = 942.19 (6) Å3
Mr = 324.06Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.6141 (4) ŵ = 3.64 mm1
b = 8.8233 (3) ÅT = 296 K
c = 7.8493 (3) Å0.25 × 0.17 × 0.15 mm
β = 92.171 (1)°
Data collection top
Bruker KAPPA APEXII CCD
diffractometer
2339 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2135 reflections with I > 2σ(I)
Tmin = 0.482, Tmax = 0.580Rint = 0.024
10141 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.047H-atom parameters constrained
S = 1.05Δρmax = 0.42 e Å3
2339 reflectionsΔρmin = 0.42 e Å3
128 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I1A0.19343 (9)0.1923 (2)0.55095 (18)0.0385 (2)0.78 (2)
I1B0.1984 (5)0.1716 (17)0.5644 (12)0.0628 (13)0.22 (2)
S10.37585 (3)0.02639 (5)0.34970 (6)0.0236 (1)
Na0.51091 (7)0.29771 (10)0.49492 (12)0.0402 (3)
O10.42883 (11)0.14214 (18)0.2606 (2)0.0369 (5)
O20.38308 (12)0.0514 (2)0.53146 (19)0.0461 (6)
O30.40017 (11)0.12539 (18)0.2976 (2)0.0390 (5)
O40.39172 (13)0.4952 (2)0.38765 (19)0.0413 (5)
C10.24956 (13)0.0530 (2)0.2877 (2)0.0227 (5)
C20.17328 (14)0.0292 (2)0.3573 (2)0.0251 (5)
C30.07722 (15)0.0064 (3)0.2991 (3)0.0328 (6)
C40.05587 (16)0.0976 (3)0.1724 (3)0.0386 (7)
C50.13033 (18)0.1803 (3)0.1044 (3)0.0412 (7)
C60.22673 (16)0.1593 (3)0.1618 (3)0.0332 (6)
H30.026730.061650.345900.0393*
H40.008750.111810.132990.0463*
H4A0.386450.486430.280180.0496*
H4B0.334950.516830.416580.0496*
H50.115860.250880.019140.0495*
H60.276530.216670.115780.0398*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I1A0.0425 (3)0.0384 (5)0.0345 (3)0.0046 (4)0.0010 (2)0.0146 (3)
I1B0.0625 (16)0.071 (3)0.0543 (18)0.0264 (19)0.0055 (11)0.0310 (15)
S10.0214 (2)0.0248 (2)0.0243 (2)0.0002 (2)0.0019 (2)0.0017 (2)
Na0.0466 (5)0.0325 (5)0.0407 (5)0.0011 (4)0.0087 (4)0.0053 (4)
O10.0285 (7)0.0346 (8)0.0478 (9)0.0059 (6)0.0027 (6)0.0055 (7)
O20.0349 (8)0.0784 (13)0.0245 (7)0.0004 (8)0.0055 (6)0.0061 (8)
O30.0301 (8)0.0252 (8)0.0612 (10)0.0051 (6)0.0043 (7)0.0076 (7)
O40.0447 (9)0.0519 (10)0.0274 (7)0.0000 (8)0.0018 (7)0.0009 (7)
C10.0224 (8)0.0227 (9)0.0227 (8)0.0025 (7)0.0012 (7)0.0016 (7)
C20.0277 (9)0.0240 (9)0.0234 (9)0.0001 (7)0.0006 (7)0.0011 (7)
C30.0261 (9)0.0349 (12)0.0373 (11)0.0030 (8)0.0008 (8)0.0037 (9)
C40.0283 (10)0.0430 (13)0.0438 (12)0.0083 (9)0.0091 (9)0.0036 (10)
C50.0405 (12)0.0413 (14)0.0413 (12)0.0096 (10)0.0066 (10)0.0141 (10)
C60.0333 (10)0.0316 (11)0.0346 (11)0.0019 (8)0.0017 (8)0.0091 (9)
Geometric parameters (Å, º) top
I1A—C22.104 (2)O4—H4B0.8400
I1B—C22.073 (12)O4—H4A0.8500
S1—O11.4459 (16)C1—C61.389 (3)
S1—O21.4433 (16)C1—C21.395 (3)
S1—O31.4424 (16)C2—C31.384 (3)
S1—C11.7846 (18)C3—C41.376 (4)
Na—O12.5219 (18)C4—C51.373 (3)
Na—O42.505 (2)C5—C61.384 (3)
Na—O3i2.7218 (18)C3—H30.9300
Na—O3ii2.5060 (18)C4—H40.9300
Na—O4iii2.419 (2)C5—H50.9300
Na—O1iv2.4609 (18)C6—H60.9300
I1A···O23.368 (2)O4···O1iv3.191 (2)
I1A···O33.557 (2)O4···O1i3.036 (2)
I1A···C1v3.750 (2)O1···H4Aviii2.8900
I1A···I1Avi4.055 (2)O1···H62.4200
I1A···I1Av4.055 (2)O2···H6iv2.6100
I1A···C2v3.456 (2)O2···H4Aiv1.9800
I1A···C3v3.688 (3)C1···I1Avi3.750 (2)
I1B···O33.540 (8)C1···I1Bvi3.846 (14)
I1B···O23.211 (11)C2···I1Avi3.456 (2)
I1B···C3v3.797 (13)C2···I1Bvi3.526 (13)
I1B···C1v3.846 (14)C3···I1Avi3.688 (3)
I1B···C2v3.526 (13)C3···I1Bvi3.797 (13)
I1A···H4vii3.3300C4···C4x3.506 (3)
S1···O2ii3.4468 (17)C2···H5iv2.8900
O1···O3i3.149 (2)C3···H5iv2.8800
O1···O4viii3.036 (2)C4···H4x3.0700
O1···O4ix3.191 (2)C6···H4Bix2.9200
O2···S1ii3.4468 (17)H4···I1Axi3.3300
O2···I1B3.211 (11)H4···C4x3.0700
O2···I1A3.368 (2)H4A···O2ix1.9800
O2···O4iv2.824 (2)H4B···C6iv2.9200
O3···I1B3.540 (8)H5···C2ix2.8900
O3···O1viii3.149 (2)H5···C3ix2.8800
O3···I1A3.557 (2)H6···O12.4200
O4···O2ix2.824 (2)H6···O2ix2.6100
O1—S1—O2110.70 (10)Na—O4—Naiii93.37 (7)
O1—S1—O3113.24 (9)Naiii—O4—H4A118.00
O1—S1—C1105.56 (9)Naiii—O4—H4B103.00
O2—S1—O3114.48 (10)Na—O4—H4A107.00
O2—S1—C1106.16 (9)Na—O4—H4B131.00
O3—S1—C1105.90 (9)H4A—O4—H4B104.00
O1—Na—O482.53 (6)C2—C1—C6118.68 (17)
O1—Na—O3i73.70 (5)S1—C1—C6118.04 (14)
O1—Na—O3ii109.48 (6)S1—C1—C2123.27 (13)
O1—Na—O4iii155.53 (7)I1A—C2—C3115.71 (15)
O1—Na—O1iv122.18 (6)I1A—C2—C1124.06 (14)
O3i—Na—O481.15 (6)I1B—C2—C3118.2 (2)
O3ii—Na—O4158.64 (7)C1—C2—C3120.23 (17)
O4—Na—O4iii86.63 (6)I1B—C2—C1121.3 (2)
O1iv—Na—O479.96 (6)C2—C3—C4120.5 (2)
O3i—Na—O3ii118.69 (6)C3—C4—C5119.8 (2)
O3i—Na—O4iii83.01 (6)C4—C5—C6120.5 (2)
O1iv—Na—O3i153.11 (6)C1—C6—C5120.4 (2)
O3ii—Na—O4iii88.08 (6)C2—C3—H3120.00
O1iv—Na—O3ii78.69 (6)C4—C3—H3120.00
O1iv—Na—O4iii76.94 (6)C3—C4—H4120.00
S1—O1—Na104.30 (8)C5—C4—H4120.00
S1—O1—Naix144.40 (10)C4—C5—H5120.00
Na—O1—Naix107.32 (6)C6—C5—H5120.00
S1—O3—Naviii125.79 (9)C1—C6—H6120.00
S1—O3—Naii119.31 (9)C5—C6—H6120.00
Naviii—O3—Naii100.23 (6)
O2—S1—O1—Na4.83 (11)O3i—Na—O4—Naiii83.44 (6)
O2—S1—O1—Naix156.95 (15)O3ii—Na—O4—Naiii75.95 (19)
O3—S1—O1—Na125.30 (9)O4iii—Na—O4—Naiii0.00 (7)
O3—S1—O1—Naix26.83 (19)O1iv—Na—O4—Naiii77.33 (6)
C1—S1—O1—Na119.29 (8)O1—Na—O3i—S1i136.29 (11)
C1—S1—O1—Naix88.58 (16)O1—Na—O3i—Naix1.72 (6)
O1—S1—O3—Naviii18.05 (13)O4—Na—O3i—S1i51.55 (11)
O1—S1—O3—Naii112.93 (10)O4—Na—O3i—Naix86.47 (6)
O2—S1—O3—Naviii146.24 (10)O1—Na—O3ii—S1ii19.44 (12)
O2—S1—O3—Naii15.26 (13)O1—Na—O3ii—Naiv122.08 (6)
C1—S1—O3—Naviii97.16 (10)O4—Na—O3ii—S1ii141.17 (16)
C1—S1—O3—Naii131.86 (9)O4—Na—O3ii—Naiv0.4 (2)
O1—S1—C1—C2174.65 (15)O1—Na—O4iii—Naiii63.66 (18)
O1—S1—C1—C66.44 (18)O4—Na—O4iii—Naiii0.00 (6)
O2—S1—C1—C257.08 (17)O1—Na—O1iv—S1iv100.39 (17)
O2—S1—C1—C6124.01 (17)O1—Na—O1iv—Naiv107.94 (8)
O3—S1—C1—C265.01 (16)O4—Na—O1iv—S1iv25.90 (16)
O3—S1—C1—C6113.91 (17)O4—Na—O1iv—Naiv177.57 (7)
O4—Na—O1—S1111.84 (9)S1—C1—C2—I1A2.0 (2)
O4—Na—O1—Naix84.73 (7)S1—C1—C2—C3177.78 (16)
O3i—Na—O1—S1165.24 (9)C6—C1—C2—I1A179.11 (16)
O3i—Na—O1—Naix1.81 (6)C6—C1—C2—C31.1 (3)
O3ii—Na—O1—S149.96 (10)S1—C1—C6—C5177.54 (18)
O3ii—Na—O1—Naix113.48 (7)C2—C1—C6—C51.4 (3)
O4iii—Na—O1—S1176.30 (14)I1A—C2—C3—C4179.9 (2)
O4iii—Na—O1—Naix20.27 (19)C1—C2—C3—C40.1 (3)
O1iv—Na—O1—S138.71 (11)C2—C3—C4—C50.6 (4)
O1iv—Na—O1—Naix157.85 (7)C3—C4—C5—C60.3 (4)
O1—Na—O4—Naiii158.02 (6)C4—C5—C6—C10.7 (4)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x, y+1/2, z+1/2; (v) x, y1/2, z+1/2; (vi) x, y1/2, z1/2; (vii) x, y1/2, z+1/2; (viii) x+1, y1/2, z+1/2; (ix) x, y+1/2, z1/2; (x) x, y, z; (xi) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O2ix0.851.982.824 (2)174
C6—H6···O10.932.422.834 (3)107
C5—H5···Cgix0.932.793.661 (3)156
Symmetry code: (ix) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaNa+·C6H4IO3S·H2O
Mr324.06
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.6141 (4), 8.8233 (3), 7.8493 (3)
β (°) 92.171 (1)
V3)942.19 (6)
Z4
Radiation typeMo Kα
µ (mm1)3.64
Crystal size (mm)0.25 × 0.17 × 0.15
Data collection
DiffractometerBruker KAPPA APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.482, 0.580
No. of measured, independent and
observed [I > 2σ(I)] reflections
10141, 2339, 2135
Rint0.024
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.047, 1.05
No. of reflections2339
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.42

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O2i0.851.982.824 (2)174
C6—H6···O10.932.422.834 (3)107
C5—H5···Cgi0.932.793.661 (3)156
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

MNA greatfully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing him a Schol­arship under the Indigenous PhD Program (PIN 042–120607–PS2–183).

References

First citationArshad, M. N., Khan, I. U., Ahmad, S., Shafiq, M. & Stoeckli-Evans, H. (2008). Acta Cryst. E64, m994.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChau, M. M. & Kice, J. L. (1977). J. Org. Chem. 42, 3265–3270.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationShafiq, M., Khan, I. U., Tahir, M. N. & Siddiqui, W. A. (2008). Acta Cryst. E64, o558.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Tahir, M. N., Khan, I. U., Ahmad, S. & Siddiqui, W. A. (2008). Acta Cryst. E64, o1270.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Shafiq, M., Khan, I. U., Siddiqui, W. A. & Arshad, M. N. (2008). Acta Cryst. E64, o557.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds