organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-(5-bromo-3-methyl­sulfinyl-1-benzo­furan-2-yl)acetate

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 30 October 2008; accepted 14 November 2008; online 20 November 2008)

The title compound, C12H11BrO4S, was synthesized by the oxidation of methyl 2-(5-bromo-3-methyl­sulfanyl-1-benzofuran-2-yl)acetate with 3-chloro­peroxy­benzoic acid. The O atom and the methyl group of the methyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran ring system. The crystal structure is stabilized by C—H⋯π inter­actions, involving a methyl H atom and the benzene ring of a neighbouring mol­ecule, and by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the crystal structures of similar methyl 2-(3-methyl­sulfinyl-1-benzofuran-2-yl)acetate derivatives, see: Choi et al. (2008a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o1711.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o2139.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11BrO4S

  • Mr = 331.18

  • Triclinic, [P \overline 1]

  • a = 7.9696 (5) Å

  • b = 9.1146 (6) Å

  • c = 10.3100 (7) Å

  • α = 72.587 (1)°

  • β = 78.716 (1)°

  • γ = 69.082 (1)°

  • V = 664.17 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.25 mm−1

  • T = 298 (2) K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.327, Tmax = 0.530

  • 3786 measured reflections

  • 2560 independent reflections

  • 2084 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.099

  • S = 0.98

  • 2560 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.80 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the benzene ring C2–C7.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.93 2.43 3.334 (4) 163
C9—H9B⋯O1ii 0.97 2.59 3.555 (3) 171
C9—H9A⋯O2iii 0.97 2.22 3.177 (4) 169
C12—H12BCgiv 0.96 2.99 3.903 (4) 159
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+1, -z+1; (iii) -x+2, -y+1, -z; (iv) x, y+1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our ongoing research on the synthesis and structure of methyl 2-(3-methylsulfinyl-1-benzofuran-2-yl)acetate analogues, the crystal structure of methyl 2-(5-methyl-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2008a) and methyl 2-(5-chloro-3-methylsulfinyl-1-benzofuran-2-yl) acetate (Choi et al., 2008b) have been reported. Here we describe the crystal structure of the title compound (I), synthesized by the oxidation of methyl 2-(5-bromo-3-methylsulfanyl-1-benzofuran-2-yl)acetate with 3-chloroperoxybenzoic acid.

The molecular structure of compound (I) is illustrated in Fig. 1. The benzofuran unit is essentially planar, with a mean deviation of 0.013 (2) Å from the least-squares plane defined by the nine constituent atoms.

The crystal packing of compound (I) (see Fig. 2) is stabilized by intermolecular C—H···π interactions between an H-atom of the C12-methyl group and the benzene ring of the benzofuran fragment, with a C12—H12B···Cgiv separation of 3.903 (4) Å (Fig. 2 and Table 1; Cg is the centroid of benzene ring C2–C7, symmetry codes as in Fig. 2). In addition, the molecular packing exhibits three intermolecular C—H···O hydrogen bonds (Fig. 2 & Table 1).

Related literature top

For the crystal structures of similar methyl 2-(3-methylsulfinyl-1-benzofuran-2-yl)acetate derivatives, see: Choi et al. (2008a,b).

Experimental top

77% 3-Chloroperoxybenzoic acid (190 mg, 0.85 mmol) was added in small portions to a stirred solution of methyl 2-(5-bromo-3-methylsulfanyl-1-benzofuran-2-yl)acetate (252 mg, 0.8 mmol) in dichloromethane (30 ml) at 273 K. After stirring for 3 h at rt, the mixture was washed with a saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated under vacuum. The residue was purified by column chromatography (hexane-ethyl acetate 1:2, v/v) to afford compound (I) as a colorless solid [yield 86%, m.p. 405–406 K; Rf = 0.45 (hexane-ethyl acetate, 1:2, v/v)]. Single crystals, suitable for X-ray analysis, were prepared by evaporation of a solution of compound (I) in benzene at rt. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 3.06 (s, 3H), 3.75 (s, 3H), 4.04 (s, 2H), 7.34–7.53 (m, 2H), 7.44 (d, J = 8.80 Hz, 1H), 8.07 (d, J = 1.84 Hz, 1H); EI—MS 332 [M+2], 330[M+].

Refinement top

All the H-atoms were geometrically positioned and refined using a riding model: C—H = 0.93 (aromatic), 0.97 (methylene), and 0.96 Å (methyl) H atoms, with Uiso(H) = 1.2Ueq(C) (aromatic & methylene), and 1.5Ueq(C) (methyl) H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), showing the atom numbering scheme and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the crystal packing of compound (I), showing the C—H···π and C—H···O interactions as dotted lines. Cg denotes the ring centroid. [Symmetry codes: (i) -x + 1, -y + 1, -zz; (ii) -x + 2, -y + 1, -z + 1; (iii) -x + 2, -y + 1, -z; (iv) x, y + 1, z; (v) -x + 2, -y + 1, -z; (vi) -x + 1, -y + 1, -z.]
Methyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate top
Crystal data top
C12H11BrO4SZ = 2
Mr = 331.18F(000) = 332
Triclinic, P1Dx = 1.656 Mg m3
Hall symbol: -P 1Melting point = 405–406 K
a = 7.9696 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.1146 (6) ÅCell parameters from 1892 reflections
c = 10.3100 (7) Åθ = 2.1–27.8°
α = 72.587 (1)°µ = 3.25 mm1
β = 78.716 (1)°T = 298 K
γ = 69.082 (1)°Block, colourless
V = 664.17 (8) Å30.40 × 0.30 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
2560 independent reflections
Radiation source: fine-focus sealed tube2084 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 10.0 pixels mm-1θmax = 26.0°, θmin = 2.5°
ϕ and ω scansh = 95
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
k = 1111
Tmin = 0.327, Tmax = 0.530l = 1212
3786 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.5362P]
where P = (Fo2 + 2Fc2)/3
2560 reflections(Δ/σ)max = 0.001
164 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.80 e Å3
Crystal data top
C12H11BrO4Sγ = 69.082 (1)°
Mr = 331.18V = 664.17 (8) Å3
Triclinic, P1Z = 2
a = 7.9696 (5) ÅMo Kα radiation
b = 9.1146 (6) ŵ = 3.25 mm1
c = 10.3100 (7) ÅT = 298 K
α = 72.587 (1)°0.40 × 0.30 × 0.20 mm
β = 78.716 (1)°
Data collection top
Bruker SMART CCD
diffractometer
2560 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
2084 reflections with I > 2σ(I)
Tmin = 0.327, Tmax = 0.530Rint = 0.015
3786 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 0.98Δρmax = 0.35 e Å3
2560 reflectionsΔρmin = 0.80 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.26775 (5)0.20066 (4)0.38327 (5)0.07396 (18)
S0.73771 (11)0.63026 (10)0.03527 (7)0.0505 (2)
O10.8367 (3)0.4636 (2)0.42105 (19)0.0450 (5)
O20.7437 (4)0.4993 (3)0.0262 (2)0.0668 (7)
O31.0188 (3)0.8974 (3)0.2240 (3)0.0718 (7)
O40.7513 (3)0.8989 (3)0.1905 (3)0.0724 (7)
C10.7429 (4)0.5435 (3)0.2117 (3)0.0422 (6)
C20.6455 (4)0.4363 (3)0.2987 (3)0.0408 (6)
C30.5121 (4)0.3798 (3)0.2824 (3)0.0466 (7)
H30.46510.40890.19930.056*
C40.4537 (4)0.2784 (4)0.3965 (4)0.0510 (7)
C50.5227 (5)0.2305 (4)0.5228 (4)0.0550 (8)
H50.47960.16040.59640.066*
C60.6542 (4)0.2870 (4)0.5381 (3)0.0526 (8)
H60.70230.25660.62100.063*
C70.7117 (4)0.3904 (3)0.4254 (3)0.0419 (6)
C80.8535 (4)0.5552 (3)0.2893 (3)0.0413 (6)
C90.9848 (4)0.6447 (4)0.2609 (3)0.0473 (7)
H9A1.07420.61170.18770.057*
H9B1.04700.61450.34160.057*
C100.9012 (4)0.8259 (4)0.2215 (3)0.0483 (7)
C110.5088 (5)0.7628 (4)0.0366 (4)0.0637 (9)
H11A0.48340.82340.05510.096*
H11B0.49180.83630.09160.096*
H11C0.42850.69970.07400.096*
C120.9545 (7)1.0738 (5)0.1880 (7)0.1065 (18)
H12A1.04931.11330.19270.160*
H12B0.85271.11140.25060.160*
H12C0.91911.11310.09680.160*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0572 (2)0.0513 (2)0.1163 (4)0.02436 (17)0.0138 (2)0.0133 (2)
S0.0535 (5)0.0626 (5)0.0392 (4)0.0239 (4)0.0121 (3)0.0067 (3)
O10.0450 (11)0.0494 (11)0.0411 (10)0.0113 (9)0.0157 (9)0.0094 (9)
O20.0746 (17)0.0842 (17)0.0506 (13)0.0229 (14)0.0132 (12)0.0286 (12)
O30.0615 (15)0.0579 (14)0.108 (2)0.0253 (12)0.0235 (14)0.0201 (14)
O40.0561 (15)0.0537 (14)0.103 (2)0.0180 (12)0.0308 (14)0.0016 (13)
C10.0433 (15)0.0454 (15)0.0412 (14)0.0144 (13)0.0090 (12)0.0122 (12)
C20.0431 (15)0.0361 (14)0.0437 (15)0.0096 (12)0.0107 (12)0.0105 (12)
C30.0475 (17)0.0398 (15)0.0533 (17)0.0105 (13)0.0115 (13)0.0131 (13)
C40.0404 (16)0.0385 (15)0.073 (2)0.0091 (13)0.0074 (15)0.0153 (15)
C50.0507 (18)0.0400 (16)0.0600 (19)0.0085 (14)0.0028 (15)0.0010 (14)
C60.0524 (18)0.0459 (17)0.0472 (17)0.0063 (14)0.0094 (14)0.0025 (13)
C70.0393 (15)0.0379 (14)0.0455 (15)0.0044 (12)0.0102 (12)0.0117 (12)
C80.0424 (16)0.0395 (14)0.0429 (15)0.0099 (12)0.0103 (12)0.0116 (12)
C90.0423 (16)0.0534 (17)0.0510 (16)0.0155 (13)0.0136 (13)0.0142 (14)
C100.0496 (18)0.0541 (17)0.0458 (16)0.0208 (15)0.0087 (13)0.0116 (14)
C110.063 (2)0.059 (2)0.066 (2)0.0120 (17)0.0275 (17)0.0062 (17)
C120.100 (4)0.057 (2)0.175 (5)0.034 (2)0.038 (4)0.019 (3)
Geometric parameters (Å, º) top
Br—C41.898 (3)C4—C51.400 (5)
S—O21.493 (3)C5—C61.374 (5)
S—C11.755 (3)C5—H50.9300
S—C111.793 (4)C6—C71.376 (4)
O1—C71.370 (3)C6—H60.9300
O1—C81.375 (3)C8—C91.481 (4)
O3—C101.327 (4)C9—C101.501 (4)
O3—C121.454 (5)C9—H9A0.9700
O4—C101.195 (4)C9—H9B0.9700
C1—C81.350 (4)C11—H11A0.9600
C1—C21.451 (4)C11—H11B0.9600
C2—C31.391 (4)C11—H11C0.9600
C2—C71.395 (4)C12—H12A0.9600
C3—C41.377 (4)C12—H12B0.9600
C3—H30.9300C12—H12C0.9600
O2—S—C1106.07 (14)C6—C7—C2123.2 (3)
O2—S—C11106.21 (17)C1—C8—O1111.1 (2)
C1—S—C1198.55 (16)C1—C8—C9133.3 (3)
C7—O1—C8106.4 (2)O1—C8—C9115.6 (2)
C10—O3—C12116.0 (3)C8—C9—C10114.0 (2)
C8—C1—C2107.2 (3)C8—C9—H9A108.8
C8—C1—S124.7 (2)C10—C9—H9A108.8
C2—C1—S127.9 (2)C8—C9—H9B108.8
C3—C2—C7120.0 (3)C10—C9—H9B108.8
C3—C2—C1135.6 (3)H9A—C9—H9B107.7
C7—C2—C1104.4 (2)O4—C10—O3123.4 (3)
C4—C3—C2116.2 (3)O4—C10—C9126.2 (3)
C4—C3—H3121.9O3—C10—C9110.4 (3)
C2—C3—H3121.9S—C11—H11A109.5
C3—C4—C5123.5 (3)S—C11—H11B109.5
C3—C4—Br118.6 (3)H11A—C11—H11B109.5
C5—C4—Br117.9 (2)S—C11—H11C109.5
C6—C5—C4119.9 (3)H11A—C11—H11C109.5
C6—C5—H5120.0H11B—C11—H11C109.5
C4—C5—H5120.0O3—C12—H12A109.5
C5—C6—C7117.1 (3)O3—C12—H12B109.5
C5—C6—H6121.5H12A—C12—H12B109.5
C7—C6—H6121.5O3—C12—H12C109.5
O1—C7—C6125.9 (3)H12A—C12—H12C109.5
O1—C7—C2110.9 (2)H12B—C12—H12C109.5
O2—S—C1—C8131.5 (3)C5—C6—C7—C21.3 (5)
C11—S—C1—C8118.8 (3)C3—C2—C7—O1177.8 (2)
O2—S—C1—C242.4 (3)C1—C2—C7—O11.1 (3)
C11—S—C1—C267.3 (3)C3—C2—C7—C61.4 (4)
C8—C1—C2—C3177.9 (3)C1—C2—C7—C6179.7 (3)
S—C1—C2—C37.3 (5)C2—C1—C8—O10.1 (3)
C8—C1—C2—C70.7 (3)S—C1—C8—O1174.9 (2)
S—C1—C2—C7174.1 (2)C2—C1—C8—C9179.8 (3)
C7—C2—C3—C40.3 (4)S—C1—C8—C95.1 (5)
C1—C2—C3—C4178.8 (3)C7—O1—C8—C10.6 (3)
C2—C3—C4—C50.8 (4)C7—O1—C8—C9179.5 (2)
C2—C3—C4—Br178.5 (2)C1—C8—C9—C1063.6 (4)
C3—C4—C5—C60.9 (5)O1—C8—C9—C10116.3 (3)
Br—C4—C5—C6178.4 (2)C12—O3—C10—O40.8 (5)
C4—C5—C6—C70.1 (5)C12—O3—C10—C9179.9 (4)
C8—O1—C7—C6179.7 (3)C8—C9—C10—O412.9 (5)
C8—O1—C7—C21.1 (3)C8—C9—C10—O3167.7 (3)
C5—C6—C7—O1177.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.433.334 (4)163
C9—H9B···O1ii0.972.593.555 (3)171
C9—H9A···O2iii0.972.223.177 (4)169
C12—H12B···Cgiv0.962.993.903 (4)159
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z+1; (iii) x+2, y+1, z; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H11BrO4S
Mr331.18
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.9696 (5), 9.1146 (6), 10.3100 (7)
α, β, γ (°)72.587 (1), 78.716 (1), 69.082 (1)
V3)664.17 (8)
Z2
Radiation typeMo Kα
µ (mm1)3.25
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.327, 0.530
No. of measured, independent and
observed [I > 2σ(I)] reflections
3786, 2560, 2084
Rint0.015
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.099, 0.98
No. of reflections2560
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.80

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.433.334 (4)163
C9—H9B···O1ii0.972.593.555 (3)171
C9—H9A···O2iii0.972.223.177 (4)169
C12—H12B···Cgiv0.962.993.903 (4)159
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z+1; (iii) x+2, y+1, z; (iv) x, y+1, z.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o1711.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o2139.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds