organic compounds
Methyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate
aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr
The title compound, C12H11BrO4S, was synthesized by the oxidation of methyl 2-(5-bromo-3-methylsulfanyl-1-benzofuran-2-yl)acetate with 3-chloroperoxybenzoic acid. The O atom and the methyl group of the methylsulfinyl substituent lie on opposite sides of the plane of the benzofuran ring system. The is stabilized by C—H⋯π interactions, involving a methyl H atom and the benzene ring of a neighbouring molecule, and by weak intermolecular C—H⋯O hydrogen bonds.
Related literature
For the crystal structures of similar methyl 2-(3-methylsulfinyl-1-benzofuran-2-yl)acetate derivatives, see: Choi et al. (2008a,b).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808037768/su2077sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808037768/su2077Isup2.hkl
77% 3-Chloroperoxybenzoic acid (190 mg, 0.85 mmol) was added in small portions to a stirred solution of methyl 2-(5-bromo-3-methylsulfanyl-1-benzofuran-2-yl)acetate (252 mg, 0.8 mmol) in dichloromethane (30 ml) at 273 K. After stirring for 3 h at rt, the mixture was washed with a saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated under vacuum. The residue was purified by δ 3.06 (s, 3H), 3.75 (s, 3H), 4.04 (s, 2H), 7.34–7.53 (m, 2H), 7.44 (d, J = 8.80 Hz, 1H), 8.07 (d, J = 1.84 Hz, 1H); EI—MS 332 [M+2], 330[M+].
(hexane-ethyl acetate 1:2, v/v) to afford compound (I) as a colorless solid [yield 86%, m.p. 405–406 K; Rf = 0.45 (hexane-ethyl acetate, 1:2, v/v)]. Single crystals, suitable for X-ray analysis, were prepared by evaporation of a solution of compound (I) in benzene at rt. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz)All the H-atoms were geometrically positioned and refined using a riding model: C—H = 0.93 (aromatic), 0.97 (methylene), and 0.96 Å (methyl) H atoms, with Uiso(H) = 1.2Ueq(C) (aromatic & methylene), and 1.5Ueq(C) (methyl) H atoms.
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of compound (I), showing the atom numbering scheme and displacement ellipsoids drawn at the 30% probability level. | |
Fig. 2. A view of the crystal packing of compound (I), showing the C—H···π and C—H···O interactions as dotted lines. Cg denotes the ring centroid. [Symmetry codes: (i) -x + 1, -y + 1, -zz; (ii) -x + 2, -y + 1, -z + 1; (iii) -x + 2, -y + 1, -z; (iv) x, y + 1, z; (v) -x + 2, -y + 1, -z; (vi) -x + 1, -y + 1, -z.] |
C12H11BrO4S | Z = 2 |
Mr = 331.18 | F(000) = 332 |
Triclinic, P1 | Dx = 1.656 Mg m−3 |
Hall symbol: -P 1 | Melting point = 405–406 K |
a = 7.9696 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.1146 (6) Å | Cell parameters from 1892 reflections |
c = 10.3100 (7) Å | θ = 2.1–27.8° |
α = 72.587 (1)° | µ = 3.25 mm−1 |
β = 78.716 (1)° | T = 298 K |
γ = 69.082 (1)° | Block, colourless |
V = 664.17 (8) Å3 | 0.40 × 0.30 × 0.20 mm |
Bruker SMART CCD diffractometer | 2560 independent reflections |
Radiation source: fine-focus sealed tube | 2084 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.015 |
Detector resolution: 10.0 pixels mm-1 | θmax = 26.0°, θmin = 2.5° |
ϕ and ω scans | h = −9→5 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1999) | k = −11→11 |
Tmin = 0.327, Tmax = 0.530 | l = −12→12 |
3786 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 0.98 | w = 1/[σ2(Fo2) + (0.0506P)2 + 0.5362P] where P = (Fo2 + 2Fc2)/3 |
2560 reflections | (Δ/σ)max = 0.001 |
164 parameters | Δρmax = 0.35 e Å−3 |
0 restraints | Δρmin = −0.80 e Å−3 |
C12H11BrO4S | γ = 69.082 (1)° |
Mr = 331.18 | V = 664.17 (8) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.9696 (5) Å | Mo Kα radiation |
b = 9.1146 (6) Å | µ = 3.25 mm−1 |
c = 10.3100 (7) Å | T = 298 K |
α = 72.587 (1)° | 0.40 × 0.30 × 0.20 mm |
β = 78.716 (1)° |
Bruker SMART CCD diffractometer | 2560 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1999) | 2084 reflections with I > 2σ(I) |
Tmin = 0.327, Tmax = 0.530 | Rint = 0.015 |
3786 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 0.98 | Δρmax = 0.35 e Å−3 |
2560 reflections | Δρmin = −0.80 e Å−3 |
164 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br | 0.26775 (5) | 0.20066 (4) | 0.38327 (5) | 0.07396 (18) | |
S | 0.73771 (11) | 0.63026 (10) | 0.03527 (7) | 0.0505 (2) | |
O1 | 0.8367 (3) | 0.4636 (2) | 0.42105 (19) | 0.0450 (5) | |
O2 | 0.7437 (4) | 0.4993 (3) | −0.0262 (2) | 0.0668 (7) | |
O3 | 1.0188 (3) | 0.8974 (3) | 0.2240 (3) | 0.0718 (7) | |
O4 | 0.7513 (3) | 0.8989 (3) | 0.1905 (3) | 0.0724 (7) | |
C1 | 0.7429 (4) | 0.5435 (3) | 0.2117 (3) | 0.0422 (6) | |
C2 | 0.6455 (4) | 0.4363 (3) | 0.2987 (3) | 0.0408 (6) | |
C3 | 0.5121 (4) | 0.3798 (3) | 0.2824 (3) | 0.0466 (7) | |
H3 | 0.4651 | 0.4089 | 0.1993 | 0.056* | |
C4 | 0.4537 (4) | 0.2784 (4) | 0.3965 (4) | 0.0510 (7) | |
C5 | 0.5227 (5) | 0.2305 (4) | 0.5228 (4) | 0.0550 (8) | |
H5 | 0.4796 | 0.1604 | 0.5964 | 0.066* | |
C6 | 0.6542 (4) | 0.2870 (4) | 0.5381 (3) | 0.0526 (8) | |
H6 | 0.7023 | 0.2566 | 0.6210 | 0.063* | |
C7 | 0.7117 (4) | 0.3904 (3) | 0.4254 (3) | 0.0419 (6) | |
C8 | 0.8535 (4) | 0.5552 (3) | 0.2893 (3) | 0.0413 (6) | |
C9 | 0.9848 (4) | 0.6447 (4) | 0.2609 (3) | 0.0473 (7) | |
H9A | 1.0742 | 0.6117 | 0.1877 | 0.057* | |
H9B | 1.0470 | 0.6145 | 0.3416 | 0.057* | |
C10 | 0.9012 (4) | 0.8259 (4) | 0.2215 (3) | 0.0483 (7) | |
C11 | 0.5088 (5) | 0.7628 (4) | 0.0366 (4) | 0.0637 (9) | |
H11A | 0.4834 | 0.8234 | −0.0551 | 0.096* | |
H11B | 0.4918 | 0.8363 | 0.0916 | 0.096* | |
H11C | 0.4285 | 0.6997 | 0.0740 | 0.096* | |
C12 | 0.9545 (7) | 1.0738 (5) | 0.1880 (7) | 0.1065 (18) | |
H12A | 1.0493 | 1.1133 | 0.1927 | 0.160* | |
H12B | 0.8527 | 1.1114 | 0.2506 | 0.160* | |
H12C | 0.9191 | 1.1131 | 0.0968 | 0.160* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br | 0.0572 (2) | 0.0513 (2) | 0.1163 (4) | −0.02436 (17) | −0.0138 (2) | −0.0133 (2) |
S | 0.0535 (5) | 0.0626 (5) | 0.0392 (4) | −0.0239 (4) | −0.0121 (3) | −0.0067 (3) |
O1 | 0.0450 (11) | 0.0494 (11) | 0.0411 (10) | −0.0113 (9) | −0.0157 (9) | −0.0094 (9) |
O2 | 0.0746 (17) | 0.0842 (17) | 0.0506 (13) | −0.0229 (14) | −0.0132 (12) | −0.0286 (12) |
O3 | 0.0615 (15) | 0.0579 (14) | 0.108 (2) | −0.0253 (12) | −0.0235 (14) | −0.0201 (14) |
O4 | 0.0561 (15) | 0.0537 (14) | 0.103 (2) | −0.0180 (12) | −0.0308 (14) | 0.0016 (13) |
C1 | 0.0433 (15) | 0.0454 (15) | 0.0412 (14) | −0.0144 (13) | −0.0090 (12) | −0.0122 (12) |
C2 | 0.0431 (15) | 0.0361 (14) | 0.0437 (15) | −0.0096 (12) | −0.0107 (12) | −0.0105 (12) |
C3 | 0.0475 (17) | 0.0398 (15) | 0.0533 (17) | −0.0105 (13) | −0.0115 (13) | −0.0131 (13) |
C4 | 0.0404 (16) | 0.0385 (15) | 0.073 (2) | −0.0091 (13) | −0.0074 (15) | −0.0153 (15) |
C5 | 0.0507 (18) | 0.0400 (16) | 0.0600 (19) | −0.0085 (14) | −0.0028 (15) | −0.0010 (14) |
C6 | 0.0524 (18) | 0.0459 (17) | 0.0472 (17) | −0.0063 (14) | −0.0094 (14) | −0.0025 (13) |
C7 | 0.0393 (15) | 0.0379 (14) | 0.0455 (15) | −0.0044 (12) | −0.0102 (12) | −0.0117 (12) |
C8 | 0.0424 (16) | 0.0395 (14) | 0.0429 (15) | −0.0099 (12) | −0.0103 (12) | −0.0116 (12) |
C9 | 0.0423 (16) | 0.0534 (17) | 0.0510 (16) | −0.0155 (13) | −0.0136 (13) | −0.0142 (14) |
C10 | 0.0496 (18) | 0.0541 (17) | 0.0458 (16) | −0.0208 (15) | −0.0087 (13) | −0.0116 (14) |
C11 | 0.063 (2) | 0.059 (2) | 0.066 (2) | −0.0120 (17) | −0.0275 (17) | −0.0062 (17) |
C12 | 0.100 (4) | 0.057 (2) | 0.175 (5) | −0.034 (2) | −0.038 (4) | −0.019 (3) |
Br—C4 | 1.898 (3) | C4—C5 | 1.400 (5) |
S—O2 | 1.493 (3) | C5—C6 | 1.374 (5) |
S—C1 | 1.755 (3) | C5—H5 | 0.9300 |
S—C11 | 1.793 (4) | C6—C7 | 1.376 (4) |
O1—C7 | 1.370 (3) | C6—H6 | 0.9300 |
O1—C8 | 1.375 (3) | C8—C9 | 1.481 (4) |
O3—C10 | 1.327 (4) | C9—C10 | 1.501 (4) |
O3—C12 | 1.454 (5) | C9—H9A | 0.9700 |
O4—C10 | 1.195 (4) | C9—H9B | 0.9700 |
C1—C8 | 1.350 (4) | C11—H11A | 0.9600 |
C1—C2 | 1.451 (4) | C11—H11B | 0.9600 |
C2—C3 | 1.391 (4) | C11—H11C | 0.9600 |
C2—C7 | 1.395 (4) | C12—H12A | 0.9600 |
C3—C4 | 1.377 (4) | C12—H12B | 0.9600 |
C3—H3 | 0.9300 | C12—H12C | 0.9600 |
O2—S—C1 | 106.07 (14) | C6—C7—C2 | 123.2 (3) |
O2—S—C11 | 106.21 (17) | C1—C8—O1 | 111.1 (2) |
C1—S—C11 | 98.55 (16) | C1—C8—C9 | 133.3 (3) |
C7—O1—C8 | 106.4 (2) | O1—C8—C9 | 115.6 (2) |
C10—O3—C12 | 116.0 (3) | C8—C9—C10 | 114.0 (2) |
C8—C1—C2 | 107.2 (3) | C8—C9—H9A | 108.8 |
C8—C1—S | 124.7 (2) | C10—C9—H9A | 108.8 |
C2—C1—S | 127.9 (2) | C8—C9—H9B | 108.8 |
C3—C2—C7 | 120.0 (3) | C10—C9—H9B | 108.8 |
C3—C2—C1 | 135.6 (3) | H9A—C9—H9B | 107.7 |
C7—C2—C1 | 104.4 (2) | O4—C10—O3 | 123.4 (3) |
C4—C3—C2 | 116.2 (3) | O4—C10—C9 | 126.2 (3) |
C4—C3—H3 | 121.9 | O3—C10—C9 | 110.4 (3) |
C2—C3—H3 | 121.9 | S—C11—H11A | 109.5 |
C3—C4—C5 | 123.5 (3) | S—C11—H11B | 109.5 |
C3—C4—Br | 118.6 (3) | H11A—C11—H11B | 109.5 |
C5—C4—Br | 117.9 (2) | S—C11—H11C | 109.5 |
C6—C5—C4 | 119.9 (3) | H11A—C11—H11C | 109.5 |
C6—C5—H5 | 120.0 | H11B—C11—H11C | 109.5 |
C4—C5—H5 | 120.0 | O3—C12—H12A | 109.5 |
C5—C6—C7 | 117.1 (3) | O3—C12—H12B | 109.5 |
C5—C6—H6 | 121.5 | H12A—C12—H12B | 109.5 |
C7—C6—H6 | 121.5 | O3—C12—H12C | 109.5 |
O1—C7—C6 | 125.9 (3) | H12A—C12—H12C | 109.5 |
O1—C7—C2 | 110.9 (2) | H12B—C12—H12C | 109.5 |
O2—S—C1—C8 | 131.5 (3) | C5—C6—C7—C2 | −1.3 (5) |
C11—S—C1—C8 | −118.8 (3) | C3—C2—C7—O1 | −177.8 (2) |
O2—S—C1—C2 | −42.4 (3) | C1—C2—C7—O1 | 1.1 (3) |
C11—S—C1—C2 | 67.3 (3) | C3—C2—C7—C6 | 1.4 (4) |
C8—C1—C2—C3 | 177.9 (3) | C1—C2—C7—C6 | −179.7 (3) |
S—C1—C2—C3 | −7.3 (5) | C2—C1—C8—O1 | 0.1 (3) |
C8—C1—C2—C7 | −0.7 (3) | S—C1—C8—O1 | −174.9 (2) |
S—C1—C2—C7 | 174.1 (2) | C2—C1—C8—C9 | −179.8 (3) |
C7—C2—C3—C4 | −0.3 (4) | S—C1—C8—C9 | 5.1 (5) |
C1—C2—C3—C4 | −178.8 (3) | C7—O1—C8—C1 | 0.6 (3) |
C2—C3—C4—C5 | −0.8 (4) | C7—O1—C8—C9 | −179.5 (2) |
C2—C3—C4—Br | 178.5 (2) | C1—C8—C9—C10 | 63.6 (4) |
C3—C4—C5—C6 | 0.9 (5) | O1—C8—C9—C10 | −116.3 (3) |
Br—C4—C5—C6 | −178.4 (2) | C12—O3—C10—O4 | 0.8 (5) |
C4—C5—C6—C7 | 0.1 (5) | C12—O3—C10—C9 | −179.9 (4) |
C8—O1—C7—C6 | 179.7 (3) | C8—C9—C10—O4 | −12.9 (5) |
C8—O1—C7—C2 | −1.1 (3) | C8—C9—C10—O3 | 167.7 (3) |
C5—C6—C7—O1 | 177.8 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O2i | 0.93 | 2.43 | 3.334 (4) | 163 |
C9—H9B···O1ii | 0.97 | 2.59 | 3.555 (3) | 171 |
C9—H9A···O2iii | 0.97 | 2.22 | 3.177 (4) | 169 |
C12—H12B···Cgiv | 0.96 | 2.99 | 3.903 (4) | 159 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+1, −z+1; (iii) −x+2, −y+1, −z; (iv) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C12H11BrO4S |
Mr | 331.18 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 7.9696 (5), 9.1146 (6), 10.3100 (7) |
α, β, γ (°) | 72.587 (1), 78.716 (1), 69.082 (1) |
V (Å3) | 664.17 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 3.25 |
Crystal size (mm) | 0.40 × 0.30 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1999) |
Tmin, Tmax | 0.327, 0.530 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3786, 2560, 2084 |
Rint | 0.015 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.099, 0.98 |
No. of reflections | 2560 |
No. of parameters | 164 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.35, −0.80 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O2i | 0.93 | 2.43 | 3.334 (4) | 163 |
C9—H9B···O1ii | 0.97 | 2.59 | 3.555 (3) | 171 |
C9—H9A···O2iii | 0.97 | 2.22 | 3.177 (4) | 169 |
C12—H12B···Cgiv | 0.96 | 2.99 | 3.903 (4) | 159 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+1, −z+1; (iii) −x+2, −y+1, −z; (iv) x, y+1, z. |
References
Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o1711. Web of Science CSD CrossRef IUCr Journals Google Scholar
Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o2139. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As a part of our ongoing research on the synthesis and structure of methyl 2-(3-methylsulfinyl-1-benzofuran-2-yl)acetate analogues, the crystal structure of methyl 2-(5-methyl-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2008a) and methyl 2-(5-chloro-3-methylsulfinyl-1-benzofuran-2-yl) acetate (Choi et al., 2008b) have been reported. Here we describe the crystal structure of the title compound (I), synthesized by the oxidation of methyl 2-(5-bromo-3-methylsulfanyl-1-benzofuran-2-yl)acetate with 3-chloroperoxybenzoic acid.
The molecular structure of compound (I) is illustrated in Fig. 1. The benzofuran unit is essentially planar, with a mean deviation of 0.013 (2) Å from the least-squares plane defined by the nine constituent atoms.
The crystal packing of compound (I) (see Fig. 2) is stabilized by intermolecular C—H···π interactions between an H-atom of the C12-methyl group and the benzene ring of the benzofuran fragment, with a C12—H12B···Cgiv separation of 3.903 (4) Å (Fig. 2 and Table 1; Cg is the centroid of benzene ring C2–C7, symmetry codes as in Fig. 2). In addition, the molecular packing exhibits three intermolecular C—H···O hydrogen bonds (Fig. 2 & Table 1).