organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-(4-chloro­phen­yl)-3-(3,5-di­meth­oxy­phen­­oxy)acrylate

aEngineering Research Center for Clean Production of Textile Printing, Ministry of Education, Wuhan University of Science & Engineering, Wuhan 430073, People's Republic of China
*Correspondence e-mail: qingfu_zeng@163.com

(Received 31 October 2008; accepted 21 November 2008; online 29 November 2008)

The title compound, C19H19ClO5, displays a dihedral angle of 74.7 (3)° between the mean planes of the 4-chloro­phenyl and phenol rings.

Related literature

For phenyl­acetate and styrene derivatives, see: Fang et al. (2007[Fang, R.-Q., Li, H.-Q., Shi, L., Xiao, Z.-P. & Zhu, H.-L. (2007). Acta Cryst. E63, o3975.]); Huang et al. (2007[Huang, X.-F., Ruan, B.-F., Wang, X.-T., Xu, C., Ge, H.-M. & Zhu, H.-L. (2007). Eur. J. Med. Chem. 42, 263-267.]); Li et al. (2007[Li, H.-Q., Xu, C., Li, H.-S., Xiao, Z.-P., Shi, L. & Zhu, H.-L. (2007). Chem. Med. Chem. 2, 1361-1369.]).

[Scheme 1]

Experimental

Crystal data
  • C19H19ClO5

  • Mr = 362.80

  • Triclinic, [P \overline 1]

  • a = 9.601 (2) Å

  • b = 9.607 (3) Å

  • c = 10.368 (2) Å

  • α = 77.84 (2)°

  • β = 75.42 (3)°

  • γ = 87.40 (3)°

  • V = 904.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 298 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.932, Tmax = 0.977

  • 6132 measured reflections

  • 3280 independent reflections

  • 2153 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.147

  • S = 1.03

  • 3280 reflections

  • 230 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Phenylacetate and styrene derivatives are important for their extensive biological activities. Recently a large number of such compounds have been synthesized, and found to have good biological activities (Fang et al., 2007; Huang et al., 2007; Li et al., 2007). Here report on the crystal structure of the new acrylate compound, (I).

The molecular structure of compound (I) is illustrated in Fig. 1. All the bond lengths and angles are within normal values. The dihedral angle between the mean plane of the 4-chlorophenyl ring (C1—C6) and the mean plane through the phenol ring (C7—C12) is 74.7 (3)°. The [O5/C13—C15/O1/O2] mean plane forms dihedral angles of 23.6 (3)° and 59.6 (3)° with the mean planes of rings (C1—C6) and (C7—C12), respectively.

In the crystal structure the molecules stack head-to-head along the c direction.

Related literature top

For phenylacetate and styrene derivatives, see: Fang et al. (2007); Huang et al. (2007); Li et al. (2007).

Experimental top

Ethyl 3-bromo-2-(4-chlorophenyl)acrylate (0.1 mmol) and 3,5-dimethoxyphenol (0.1 mmol) were reacted in chloroform for 12 h, giving a clear colorless solution. Crytals of compound (I) were formed by gradual evaporation of the solution.

Refinement top

All the H-atoms were placed in calculated positions and treated as rding atoms: C–H = 0.93–0.97 Å with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probabilty level.
Ethyl 2-(4-chlorophenyl)-3-(3,5-dimethoxyphenoxy)acrylate top
Crystal data top
C19H19ClO5Z = 2
Mr = 362.80F(000) = 382
Triclinic, P1Dx = 1.335 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.601 (2) ÅCell parameters from 1273 reflections
b = 9.607 (3) Åθ = 2.4–25.3°
c = 10.368 (2) ŵ = 0.24 mm1
α = 77.84 (2)°T = 298 K
β = 75.42 (3)°Block, colorless
γ = 87.40 (3)°0.30 × 0.20 × 0.10 mm
V = 904.7 (4) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3280 independent reflections
Radiation source: fine-focus sealed tube2153 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 25.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1111
Tmin = 0.932, Tmax = 0.977k = 1111
6132 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0584P)2 + 0.3443P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3280 reflectionsΔρmax = 0.48 e Å3
230 parametersΔρmin = 0.40 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (3)
Crystal data top
C19H19ClO5γ = 87.40 (3)°
Mr = 362.80V = 904.7 (4) Å3
Triclinic, P1Z = 2
a = 9.601 (2) ÅMo Kα radiation
b = 9.607 (3) ŵ = 0.24 mm1
c = 10.368 (2) ÅT = 298 K
α = 77.84 (2)°0.30 × 0.20 × 0.10 mm
β = 75.42 (3)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3280 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2153 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.977Rint = 0.028
6132 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.03Δρmax = 0.48 e Å3
3280 reflectionsΔρmin = 0.40 e Å3
230 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9387 (3)0.1311 (3)0.7046 (3)0.0377 (7)
C21.0552 (3)0.1122 (3)0.5995 (3)0.0393 (7)
H21.07970.18120.51970.047*
C31.1345 (3)0.0115 (3)0.6159 (3)0.0411 (7)
C41.0993 (3)0.1153 (3)0.7352 (3)0.0433 (8)
H41.15170.19900.74470.052*
C50.9853 (3)0.0911 (3)0.8389 (3)0.0399 (7)
C60.9046 (3)0.0313 (3)0.8241 (3)0.0424 (7)
H60.82760.04610.89470.051*
C70.6961 (3)0.5299 (3)0.6619 (3)0.0341 (7)
C80.5498 (3)0.5569 (3)0.6821 (3)0.0429 (7)
H80.50040.53040.62450.051*
C90.4755 (3)0.6225 (3)0.7858 (3)0.0476 (8)
H90.37730.63910.79820.057*
C100.5490 (3)0.6624 (3)0.8697 (3)0.0442 (8)
C110.6936 (3)0.6343 (3)0.8557 (3)0.0472 (8)
H110.74140.65910.91540.057*
C120.7665 (3)0.5688 (3)0.7519 (3)0.0416 (7)
H120.86420.55030.74170.050*
C130.8483 (3)0.3402 (3)0.5672 (3)0.0400 (7)
H130.89870.30890.48960.048*
C140.7768 (3)0.4626 (3)0.5486 (3)0.0352 (7)
C150.7837 (3)0.5296 (3)0.4060 (3)0.0378 (7)
C160.7084 (4)0.7295 (3)0.2597 (3)0.0469 (8)
H16A0.69150.66670.20310.056*
H16B0.80170.77500.21820.056*
C170.5928 (4)0.8392 (4)0.2728 (4)0.0638 (10)
H17A0.50090.79290.31160.096*
H17B0.59410.89590.18440.096*
H17C0.60950.89930.33070.096*
C181.0305 (4)0.3072 (3)0.9843 (3)0.0595 (10)
H18A1.03360.36270.91670.089*
H18B0.99060.36391.07310.089*
H18C1.12620.27730.97880.089*
C191.2980 (4)0.0648 (3)0.3998 (3)0.0580 (9)
H19A1.22290.08320.35250.087*
H19B1.38220.03250.34180.087*
H19C1.32060.15060.42420.087*
Cl10.45938 (11)0.75361 (11)0.99503 (10)0.0720 (4)
O50.8538 (3)0.2570 (3)0.6900 (3)0.0694 (7)
O10.8506 (2)0.4862 (2)0.3068 (2)0.0560 (6)
O20.7048 (2)0.6494 (2)0.39530 (19)0.0412 (5)
O30.9429 (2)0.1850 (2)0.9607 (2)0.0501 (6)
O41.2510 (2)0.0425 (2)0.5203 (2)0.0545 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0428 (17)0.0281 (15)0.0451 (17)0.0087 (13)0.0152 (14)0.0104 (13)
C20.0505 (19)0.0275 (15)0.0389 (16)0.0037 (14)0.0133 (14)0.0030 (13)
C30.0410 (17)0.0355 (16)0.0457 (18)0.0035 (14)0.0090 (14)0.0092 (14)
C40.0502 (19)0.0317 (16)0.0469 (18)0.0087 (14)0.0154 (15)0.0037 (14)
C50.0468 (18)0.0340 (16)0.0392 (17)0.0037 (14)0.0143 (14)0.0047 (13)
C60.0441 (18)0.0400 (17)0.0417 (17)0.0064 (14)0.0088 (14)0.0085 (14)
C70.0346 (16)0.0272 (14)0.0382 (16)0.0018 (12)0.0096 (13)0.0011 (12)
C80.0400 (18)0.0495 (19)0.0417 (17)0.0017 (14)0.0125 (14)0.0117 (14)
C90.0367 (17)0.056 (2)0.0488 (19)0.0084 (15)0.0066 (15)0.0145 (16)
C100.051 (2)0.0403 (17)0.0370 (17)0.0070 (15)0.0037 (15)0.0091 (14)
C110.053 (2)0.0493 (19)0.0432 (18)0.0025 (16)0.0194 (15)0.0101 (15)
C120.0383 (17)0.0409 (17)0.0461 (17)0.0061 (14)0.0136 (14)0.0073 (14)
C130.0464 (18)0.0365 (17)0.0361 (16)0.0070 (14)0.0114 (14)0.0048 (13)
C140.0323 (16)0.0321 (15)0.0404 (16)0.0037 (13)0.0078 (13)0.0078 (13)
C150.0351 (16)0.0352 (16)0.0441 (17)0.0025 (13)0.0106 (14)0.0097 (13)
C160.059 (2)0.0425 (18)0.0396 (17)0.0061 (16)0.0195 (16)0.0024 (14)
C170.082 (3)0.053 (2)0.066 (2)0.0239 (19)0.038 (2)0.0124 (18)
C180.074 (2)0.0423 (19)0.053 (2)0.0162 (18)0.0132 (18)0.0046 (16)
C190.063 (2)0.046 (2)0.051 (2)0.0065 (17)0.0064 (17)0.0061 (16)
Cl10.0792 (7)0.0803 (7)0.0582 (6)0.0120 (5)0.0040 (5)0.0363 (5)
O50.0825 (19)0.0557 (15)0.0689 (17)0.0162 (14)0.0212 (14)0.0105 (13)
O10.0676 (16)0.0554 (14)0.0401 (12)0.0240 (12)0.0068 (11)0.0121 (11)
O20.0476 (12)0.0376 (11)0.0373 (11)0.0130 (10)0.0115 (9)0.0068 (9)
O30.0569 (14)0.0403 (12)0.0454 (12)0.0099 (11)0.0100 (11)0.0031 (10)
O40.0587 (15)0.0414 (13)0.0512 (13)0.0129 (11)0.0011 (11)0.0028 (11)
Geometric parameters (Å, º) top
C1—C61.373 (4)C12—H120.9300
C1—C21.387 (4)C13—C141.338 (4)
C1—O51.430 (3)C13—O51.366 (4)
C2—C31.385 (4)C13—H130.9300
C2—H20.9300C14—C151.469 (4)
C3—O41.363 (3)C15—O11.212 (3)
C3—C41.392 (4)C15—O21.349 (3)
C4—C51.378 (4)C16—O21.446 (3)
C4—H40.9300C16—C171.496 (4)
C5—O31.367 (3)C16—H16A0.9700
C5—C61.381 (4)C16—H16B0.9700
C6—H60.9300C17—H17A0.9600
C7—C81.388 (4)C17—H17B0.9600
C7—C121.398 (4)C17—H17C0.9600
C7—C141.487 (4)C18—O31.427 (4)
C8—C91.385 (4)C18—H18A0.9600
C8—H80.9300C18—H18B0.9600
C9—C101.370 (4)C18—H18C0.9600
C9—H90.9300C19—O41.429 (4)
C10—C111.379 (4)C19—H19A0.9600
C10—Cl11.745 (3)C19—H19B0.9600
C11—C121.382 (4)C19—H19C0.9600
C11—H110.9300
C6—C1—C2120.9 (3)C14—C13—H13117.1
C6—C1—O5119.2 (3)O5—C13—H13117.1
C2—C1—O5119.9 (3)C13—C14—C15115.3 (3)
C3—C2—C1118.7 (3)C13—C14—C7123.7 (3)
C3—C2—H2120.7C15—C14—C7121.0 (2)
C1—C2—H2120.7O1—C15—O2122.0 (3)
O4—C3—C2124.2 (3)O1—C15—C14126.0 (3)
O4—C3—C4114.6 (3)O2—C15—C14112.0 (2)
C2—C3—C4121.2 (3)O2—C16—C17107.5 (3)
C5—C4—C3118.5 (3)O2—C16—H16A110.2
C5—C4—H4120.7C17—C16—H16A110.2
C3—C4—H4120.7O2—C16—H16B110.2
O3—C5—C4123.3 (3)C17—C16—H16B110.2
O3—C5—C6115.7 (3)H16A—C16—H16B108.5
C4—C5—C6121.0 (3)C16—C17—H17A109.5
C1—C6—C5119.7 (3)C16—C17—H17B109.5
C1—C6—H6120.2H17A—C17—H17B109.5
C5—C6—H6120.2C16—C17—H17C109.5
C8—C7—C12117.6 (3)H17A—C17—H17C109.5
C8—C7—C14121.8 (3)H17B—C17—H17C109.5
C12—C7—C14120.6 (3)O3—C18—H18A109.5
C9—C8—C7121.7 (3)O3—C18—H18B109.5
C9—C8—H8119.1H18A—C18—H18B109.5
C7—C8—H8119.1O3—C18—H18C109.5
C10—C9—C8118.9 (3)H18A—C18—H18C109.5
C10—C9—H9120.5H18B—C18—H18C109.5
C8—C9—H9120.5O4—C19—H19A109.5
C9—C10—C11121.4 (3)O4—C19—H19B109.5
C9—C10—Cl1119.6 (2)H19A—C19—H19B109.5
C11—C10—Cl1119.1 (3)O4—C19—H19C109.5
C10—C11—C12119.1 (3)H19A—C19—H19C109.5
C10—C11—H11120.4H19B—C19—H19C109.5
C12—C11—H11120.4C13—O5—C1123.7 (2)
C11—C12—C7121.2 (3)C15—O2—C16117.4 (2)
C11—C12—H12119.4C5—O3—C18117.4 (2)
C7—C12—H12119.4C3—O4—C19116.9 (2)
C14—C13—O5125.8 (3)

Experimental details

Crystal data
Chemical formulaC19H19ClO5
Mr362.80
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.601 (2), 9.607 (3), 10.368 (2)
α, β, γ (°)77.84 (2), 75.42 (3), 87.40 (3)
V3)904.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.932, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
6132, 3280, 2153
Rint0.028
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.147, 1.03
No. of reflections3280
No. of parameters230
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.40

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the National Science & Technology Program of China (No. 2006BAC02A11), the Key Technologies R & D Program of the Education Commission of Hubei Province of China (No. Z20081701) and the Technologies R & D Program of Hubei Province of China (No. 2007AA301B62).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFang, R.-Q., Li, H.-Q., Shi, L., Xiao, Z.-P. & Zhu, H.-L. (2007). Acta Cryst. E63, o3975.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, X.-F., Ruan, B.-F., Wang, X.-T., Xu, C., Ge, H.-M. & Zhu, H.-L. (2007). Eur. J. Med. Chem. 42, 263–267.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, H.-Q., Xu, C., Li, H.-S., Xiao, Z.-P., Shi, L. & Zhu, H.-L. (2007). Chem. Med. Chem. 2, 1361–1369.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds