metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of cis-di­aqua­diglycolato­zinc(II)

aDepartment of Chemistry, Bucknell University, Lewisburg, PA 17837, USA
*Correspondence e-mail: kastner@bucknell.edu

(Received 5 November 2008; accepted 24 November 2008; online 29 November 2008)

The title complex, [Zn(C2H3O3)2(H2O)2], was prepared and the crystal structure determined as part of a 67Zn solid state nuclear magnetic resonance study. In the title complex, the Zn atom has a disorted octa­hedral coordination comprising two bidentate glycolate ligands and two water mol­ecules. The water mol­ecules are cis to each other; one is trans to a carboxyl­ate O atom and the other trans to an alcohol O atom. The crystal structure has an extensive O—H⋯O hydrogen-bond network.

Related literature

The crystal structure of the title complex was first reported by Fischinger & Webb (1969[Fischinger, A. J. & Webb, L. E. (1969). Chem. Commun. pp. 407-408.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C2H3O3)2(H2O)2]

  • Mr = 251.49

  • Monoclinic, P 21 /c

  • a = 11.391 (2) Å

  • b = 5.857 (1) Å

  • c = 12.511 (2) Å

  • β = 91.198 (9)°

  • V = 834.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.96 mm−1

  • T = 273 (2) K

  • 0.3 × 0.3 × 0.1 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: ψ scan (SADABS; Bruker, 2000[Bruker (2000). XSCANS and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.425, Tmax = 0.744

  • 2102 measured reflections

  • 2102 independent reflections

  • 1751 reflections with I > 2σ(I)

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.072

  • S = 0.99

  • 2102 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H8⋯O4i 0.90 1.93 2.821 (3) 167
O1—H7⋯O8ii 0.88 1.84 2.716 (3) 174
O2—H6⋯O5i 0.91 1.82 2.697 (3) 161
O2—H5⋯O5iii 0.85 1.88 2.688 (3) 158
O6—H4⋯O8iv 0.84 1.82 2.665 (2) 177
O3—H3⋯O7iv 0.83 1.97 2.761 (3) 160
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+2, -y, -z+1; (iv) x, y-1, z.

Data collection: XSCANS (Bruker, 2000[Bruker (2000). XSCANS and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of a Zinc-67 solid state nuclear magnetic resonance study the title complex, (I), was prepared and the crystal structure determined. The structure of this complex was first report by Fischinger & Webb (1969) but no fractional crystal coordinates were reported.

The molecular structure of (I) is illustrated in Fig. 1. The zinc atom has a distorted octahedral coordination sphere composed of two bidentate gylcolato ligands and two water molecules. The water molecules are cis to each other; one (O1) is trans to a carboxylate O-atom (O4), and the other, (O2), is trans to an alcohol O-atom (O6). The bond distances and angles are normal for zinc(II) complexes (Allen et al., 1987)

In the crystal structure of (I) there in an extensive O—H···O hydrogen bonding network (Table 1). The two water molecules (O1 and O2) bond to the two oxygens (O4 and O5) of a carboxylate group related by the c-glide. The two alcohol groups (O3 and O6) form hydrogen bonds with the other carboxylate group (atoms O7 and O8) translated by one unit cell along the b axis. The carbonyl oxygen O8 of this ligand also makes a two dimensional hydrogen bonded network with one of the waters (O1) around the inversion center. The other water molecule, (O2), forms an H-bond with a carbonyl oxygen (O5) related by the 2-fold screw axis.

Related literature top

The crystal structure of the title complex was first reported by Fischinger & Webb (1969). For bond-length data, see: Allen et al. (1987).

Experimental top

Glycolic acid (100 mg, 3 mmol), purchased from Sigma-Aldrich (99%), was dissolved in 5 ml of deionized water. Basic zinc carbonate (80 mg, 2 mmol) was added and the mixture stirred for 10 minutes while heating to ca. 60°C. The resulting mixture was filtered, and the filtrate left to stand at room temperature until large needle-like crystals grew by slow evaporation of the water.

Refinement top

The alcohol and water H-atoms were placed at the locations identified in a difference Fourier map and were held fixed, with Uiso(H) set to 0.05 A2: O-H = 0.8293 - 0.9135 Å. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.97 Å with Uiso(H) = 1.2Ueq(parent C-atom).

Computing details top

Data collection: XSCANS (Bruker, 2000); cell refinement: XSCANS (Bruker, 2000); data reduction: XSCANS (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of compound (I), showing the atom numbering scheme and dispacement ellipsods drawn at the 50% probability level.
cis-diaquadiglycolatozinc(II) top
Crystal data top
[Zn(C2H3O3)2(H2O)2]F(000) = 512
Mr = 251.49Dx = 2.002 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 20 reflections
a = 11.391 (2) Åθ = 9.6–17.4°
b = 5.857 (1) ŵ = 2.96 mm1
c = 12.511 (2) ÅT = 273 K
β = 91.198 (9)°Needle, colorless
V = 834.5 (2) Å30.3 × 0.3 × 0.1 mm
Z = 4
Data collection top
Bruker P4
diffractometer
1751 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 28.5°, θmin = 3.3°
2θ/ω scansh = 1515
Absorption correction: ψ scan
(SADABS; Bruker, 2000)
k = 07
Tmin = 0.425, Tmax = 0.744l = 016
2102 measured reflections3 standard reflections every 97 reflections
2102 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0337P)2 + 0.5879P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.030
2102 reflectionsΔρmax = 0.45 e Å3
119 parametersΔρmin = 0.51 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0094 (8)
Crystal data top
[Zn(C2H3O3)2(H2O)2]V = 834.5 (2) Å3
Mr = 251.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.391 (2) ŵ = 2.96 mm1
b = 5.857 (1) ÅT = 273 K
c = 12.511 (2) Å0.3 × 0.3 × 0.1 mm
β = 91.198 (9)°
Data collection top
Bruker P4
diffractometer
1751 reflections with I > 2σ(I)
Absorption correction: ψ scan
(SADABS; Bruker, 2000)
Rint = 0.000
Tmin = 0.425, Tmax = 0.7443 standard reflections every 97 reflections
2102 measured reflections intensity decay: none
2102 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 0.99Δρmax = 0.45 e Å3
2102 reflectionsΔρmin = 0.51 e Å3
119 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.76227 (2)0.14144 (5)0.65837 (2)0.02431 (11)
O10.73409 (15)0.0926 (3)0.82160 (13)0.0323 (4)
O20.91409 (16)0.3091 (3)0.69490 (15)0.0349 (4)
O30.82248 (17)0.1945 (3)0.64048 (13)0.0307 (4)
O40.80776 (17)0.1349 (3)0.49645 (13)0.0310 (4)
O50.90455 (17)0.0608 (4)0.37503 (13)0.0367 (4)
O60.58388 (16)0.0302 (3)0.63177 (15)0.0339 (4)
O70.66840 (15)0.4419 (3)0.64627 (14)0.0299 (4)
O80.49499 (15)0.6096 (3)0.62300 (13)0.0275 (4)
C10.8665 (2)0.2479 (4)0.53732 (19)0.0297 (5)
H1A0.82150.37270.50620.036*
H1B0.94770.29680.54440.036*
C20.8588 (2)0.0423 (4)0.46432 (18)0.0242 (5)
C30.4989 (2)0.2052 (4)0.62244 (18)0.0242 (5)
H2A0.44220.18960.67870.029*
H2B0.45750.19270.55420.029*
C40.5587 (2)0.4364 (4)0.63092 (16)0.0218 (4)
H30.76970.28650.65470.050*
H40.55870.10480.62930.050*
H50.98030.26540.67190.050*
H60.92840.38980.75630.050*
H70.66120.08920.84270.050*
H80.76880.17590.87420.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.02730 (16)0.01890 (15)0.02686 (15)0.00221 (12)0.00378 (10)0.00151 (11)
O10.0314 (9)0.0381 (10)0.0275 (8)0.0050 (8)0.0044 (7)0.0032 (7)
O20.0280 (9)0.0360 (10)0.0408 (10)0.0002 (8)0.0038 (7)0.0114 (8)
O30.0452 (10)0.0204 (8)0.0269 (8)0.0026 (8)0.0121 (7)0.0011 (7)
O40.0404 (10)0.0270 (9)0.0260 (8)0.0094 (8)0.0063 (7)0.0037 (7)
O50.0435 (11)0.0390 (11)0.0280 (9)0.0100 (9)0.0116 (8)0.0036 (8)
O60.0327 (10)0.0161 (8)0.0527 (11)0.0002 (8)0.0013 (8)0.0041 (8)
O70.0268 (9)0.0174 (8)0.0457 (10)0.0012 (7)0.0026 (7)0.0014 (8)
O80.0294 (9)0.0198 (8)0.0333 (9)0.0036 (7)0.0046 (7)0.0029 (7)
C10.0414 (14)0.0203 (11)0.0277 (12)0.0026 (11)0.0100 (10)0.0006 (10)
C20.0216 (11)0.0255 (12)0.0257 (11)0.0017 (10)0.0017 (8)0.0014 (9)
C30.0294 (12)0.0196 (10)0.0238 (10)0.0008 (10)0.0008 (9)0.0002 (9)
C40.0284 (11)0.0185 (10)0.0188 (9)0.0011 (9)0.0049 (8)0.0010 (8)
Geometric parameters (Å, º) top
Zn—O22.0325 (19)O4—C21.259 (3)
Zn—O72.0630 (17)O5—C21.247 (3)
Zn—O12.0935 (17)O6—C31.412 (3)
Zn—O32.0974 (18)O6—H40.8417
Zn—O42.1019 (17)O7—C41.261 (3)
Zn—O62.1531 (19)O8—C41.250 (3)
O1—H70.8768C1—C21.513 (3)
O1—H80.9037C1—H1A0.9700
O2—H50.8522C1—H1B0.9700
O2—H60.9135C3—C41.518 (3)
O3—C11.429 (3)C3—H2A0.9700
O3—H30.8293C3—H2B0.9700
O2—Zn—O792.38 (7)C2—O4—Zn116.58 (15)
O2—Zn—O189.65 (7)C3—O6—Zn115.85 (14)
O7—Zn—O195.65 (7)C3—O6—H4116.5
O2—Zn—O3101.47 (8)Zn—O6—H4127.6
O7—Zn—O3164.27 (7)C4—O7—Zn120.00 (16)
O1—Zn—O391.89 (7)O3—C1—C2110.72 (19)
O2—Zn—O489.99 (7)O3—C1—H1A109.5
O7—Zn—O494.74 (7)C2—C1—H1A109.5
O1—Zn—O4169.61 (7)O3—C1—H1B109.5
O3—Zn—O478.01 (7)C2—C1—H1B109.5
O2—Zn—O6167.62 (7)H1A—C1—H1B108.1
O7—Zn—O676.15 (7)O5—C2—O4124.2 (2)
O1—Zn—O686.90 (7)O5—C2—C1116.8 (2)
O3—Zn—O690.53 (7)O4—C2—C1119.00 (19)
O4—Zn—O695.53 (7)O6—C3—C4109.64 (19)
Zn—O1—H7117.5O6—C3—H2A109.7
Zn—O1—H8124.3C4—C3—H2A109.7
H7—O1—H8101.3O6—C3—H2B109.7
Zn—O2—H5122.2C4—C3—H2B109.7
Zn—O2—H6125.1H2A—C3—H2B108.2
H5—O2—H6107.2O8—C4—O7124.3 (2)
C1—O3—Zn115.05 (14)O8—C4—C3117.4 (2)
C1—O3—H3108.8O7—C4—C3118.3 (2)
Zn—O3—H3110.3
O2—Zn—O3—C184.29 (19)O2—Zn—O7—C4174.79 (18)
O7—Zn—O3—C167.0 (3)O1—Zn—O7—C484.91 (18)
O1—Zn—O3—C1174.31 (18)O3—Zn—O7—C433.4 (4)
O4—Zn—O3—C13.24 (18)O4—Zn—O7—C495.01 (18)
O6—Zn—O3—C198.77 (18)O6—Zn—O7—C40.47 (17)
O2—Zn—O4—C294.74 (19)Zn—O3—C1—C20.1 (3)
O7—Zn—O4—C2172.86 (19)Zn—O4—C2—O5170.4 (2)
O1—Zn—O4—C26.7 (5)Zn—O4—C2—C19.4 (3)
O3—Zn—O4—C26.98 (18)O3—C1—C2—O5173.5 (2)
O6—Zn—O4—C296.36 (19)O3—C1—C2—O46.3 (3)
O2—Zn—O6—C321.4 (5)Zn—O6—C3—C41.6 (2)
O7—Zn—O6—C31.22 (16)Zn—O7—C4—O8179.73 (17)
O1—Zn—O6—C395.41 (17)Zn—O7—C4—C30.3 (3)
O3—Zn—O6—C3172.75 (16)O6—C3—C4—O8179.2 (2)
O4—Zn—O6—C394.73 (17)O6—C3—C4—O71.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H8···O4i0.901.932.821 (3)167
O1—H7···O8ii0.881.842.716 (3)174
O2—H6···O5i0.911.822.697 (3)161
O2—H5···O5iii0.851.882.688 (3)158
O6—H4···O8iv0.841.822.665 (2)177
O3—H3···O7iv0.831.972.761 (3)160
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+3/2; (iii) x+2, y, z+1; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formula[Zn(C2H3O3)2(H2O)2]
Mr251.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)11.391 (2), 5.857 (1), 12.511 (2)
β (°) 91.198 (9)
V3)834.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.96
Crystal size (mm)0.3 × 0.3 × 0.1
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionψ scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.425, 0.744
No. of measured, independent and
observed [I > 2σ(I)] reflections
2102, 2102, 1751
Rint0.000
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.072, 0.99
No. of reflections2102
No. of parameters119
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.51

Computer programs: XSCANS (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H8···O4i0.901.932.821 (3)167
O1—H7···O8ii0.881.842.716 (3)174
O2—H6···O5i0.911.822.697 (3)161
O2—H5···O5iii0.851.882.688 (3)158
O6—H4···O8iv0.841.822.665 (2)177
O3—H3···O7iv0.831.972.761 (3)160
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+3/2; (iii) x+2, y, z+1; (iv) x, y1, z.
 

Acknowledgements

The authors thank the Research Corporation (CC6447) for financial support and the National Science Foundation for grant No. ILI8951058.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). XSCANS and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFischinger, A. J. & Webb, L. E. (1969). Chem. Commun. pp. 407–408.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds