organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2,4-Di­bromo­anilino)-2,2-di­methyl-2,3-di­hydro­naphtho[1,2-b]furan-4,5-dione: a new substituted aryl­amino nor-β-lapachone derivative

aInstituto de Química, Universidade de Brasília, 70910-970 Brasília, DF, Brazil, bInstituto de Química e Biotecnologia, Universidade Federal de Alagoas, 57072-970 Maceió, AL, Brazil, and cNućleo de Pesquisas em Produtos Naturais, Universidade Federal do Rio de Janeiro, 21944-971 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: cas@qui.ufal.br

(Received 22 September 2008; accepted 22 October 2008; online 13 November 2008)

The title compound, C20H15Br2NO3, shows the furan ring to adopt a half-chair conformation and the two ring systems to be approximately perpendicular [dihedral angle = 71.0 (2)°]. In the crystal structure, inter­molecular C—H⋯O contacts link the mol­ecules.

Related literature

For general background, see: Hillard et al. (2008[Hillard, E. A., de Abreu, F. C., Ferreira, D. C. M., Jaouen, G., Goulart, M. O. F. & Amatore, C. (2008). Chem. Commun. pp. 2612-2628.]); Pinto et al., (1997[Pinto, A. V., Neves-Pinto, C., Pinto, M. C. F. R., Santa-Rita, R. M., Pezzella, C. & De Castro, S. L. (1997). Arzneim. Forsch. 47, 74-79.]); Dos Santos et al. (2001[Dos Santos, A. F., Ferraz, P. A. L., De Abreu, F. C., Chiari, E., Goulart, M. O. F. & Sant'Ana, A. E. G. (2001). Planta Med. 67, 92-93.]); Lima et al. (2004[Lima, N. M. F., Correia, C. S., Leon, L. L., Machado, G. M. C., Madeira, M. F., Santana, A. E. G. & Goulart, M. O. F. (2004). Mem. Inst. Oswaldo Cruz, 99, 757-761.]). For related structures and biological activity, see: da Silva Júnior et al. (2007[Silva Júnior, E. N. da, de Souza, M. C. B. V., Pinto, A. V., Pinto, M. C. F. R., Goulart, M. O. F., Pessoa, C., Costa-Lotufo, L., Montenegro, R. C., Moraes, M. O. & Ferreira, V. F. (2007). Bioorg. Med. Chem. 15, 7035-7041.], 2008[Silva Júnior, E. N. da, de Souza, M. C. B. V., Fernades, M. C., Menna-Barreto, R. F. S., Pinto, A. V., Pinto, M. C. F. R., Lopes, F. A., De Simone, C. A., Andrade, C. K. Z., Ferreira, V. F. & De Castro, S. L. (2008). Bioorg. Med. Chem. 16, 5030-5038.]); Lima et al. (2002[Lima, N. M. F., Correia, C. S., Ferraz, P. A. L., Pinto, A. V., Pinto, M. C. R. F., Sant'Ana, A. E. G. & Goulart, M. O. F. (2002). J. Braz. Chem. Soc. 13, 822-829.]). For the synthesis, see: da Silva Júnior et al. (2007[Silva Júnior, E. N. da, de Souza, M. C. B. V., Pinto, A. V., Pinto, M. C. F. R., Goulart, M. O. F., Pessoa, C., Costa-Lotufo, L., Montenegro, R. C., Moraes, M. O. & Ferreira, V. F. (2007). Bioorg. Med. Chem. 15, 7035-7041.], 2008[Silva Júnior, E. N. da, de Souza, M. C. B. V., Fernades, M. C., Menna-Barreto, R. F. S., Pinto, A. V., Pinto, M. C. F. R., Lopes, F. A., De Simone, C. A., Andrade, C. K. Z., Ferreira, V. F. & De Castro, S. L. (2008). Bioorg. Med. Chem. 16, 5030-5038.]). For geometric analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15Br2NO3

  • Mr = 477.15

  • Triclinic, [P \overline 1]

  • a = 8.1430 (3) Å

  • b = 11.2584 (4) Å

  • c = 11.4742 (5) Å

  • α = 112.073 (2)°

  • β = 95.546 (2)°

  • γ = 108.696 (2)°

  • V = 894.70 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.55 mm−1

  • T = 293 (2) K

  • 0.31 × 0.28 × 0.16 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.272, Tmax = 0.490

  • 9784 measured reflections

  • 4099 independent reflections

  • 3610 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.139

  • S = 1.09

  • 4070 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −1.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.98 2.64 3.347 (6) 129
C1′′—H1A⋯O2i 0.96 2.67 3.389 (6) 132
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet Vol. 276, 307-326, New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet Vol. 276, 307-326, New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The search for substances with pharmacological activity has grown exponentially in recent years and quinones play a major role as bioreductive drugs, reactive oxygen species (ROS) enhancers, and redox catalysts (Hillard et al., 2008). Substances such as lapachol (I), (Pinto et al., 1997; dos Santos et al., 2001; Lima et al., 2004), β-lapachone (II) (Hillard et al., 2008) and nor-β-lapachone (III) (da Silva Júnior et al., 2007), Scheme 1, are prototypes that can be used as starting points for the synthesis of new bioactive molecules. In this context, different compounds with anti-cancer activity (da Silva Júnior et al., 2007), trypanocides (da Silva Júnior et al., 2008), molluscicides (Lima et al., 2002) among others, were synthesized. The introduction of arylamino groups in the furan ring of III retained/enhanced the anticancer activity against six cancer cell lines with IC50 values below 1µg/ml (da Silva Júnior et al., 2007), as well as intensified trypanocidal activity (da Silva Júnior et al., 2008), demonstrating clearly that the arylamino group is important for pharmacological activity. In this paper, we report the molecular and crystal structure of (IV) that was easily obtained as described in the literature (da Silva Júnior et al., 2007; 2008).

The atoms of the naphthoquinonic ring of (IV), Fig. 1, are co-planar and the greatest deviation from their least-squares plane is exhibited by atom C5 [0.069 (4) Å]. The O1 atom lies in the mean least-square plane of the naphthoquinonic ring with a deviation of 0.051 (3) Å while atoms O2 and O3 are -0.129 (3) and 0.212 (4)Å out of that plane, respectively. The furane ring adopts a half chair conformation and the calculated puckering parameters are: q2 = 0.229 (4) Å and ϕ = -12 8.04 (1)° (Cremer & Pople, 1975). The dihedral angle between planes passing through atoms C1'-C6' of the aromatic ring and the naphthoquinonic ring is 71.0 (2) °. In the crystal packing, molecules interact through two intermolecular C—H···O contacts, Table 1.

Related literature top

For general background, see: Hillard et al. (2008); Pinto et al., (1997); Dos Santos et al. (2001); Lima et al. (2004). For related structures and biological activity, see: da Silva Júnior et al. (2007, 2008); Lima et al. (2002). For the synthesis, see: da Silva Júnior et al., (2007, 2008). For geometric analysis, see: Cremer & Pople (1975).

Experimental top

To a chloroform (25mL) solution of the nor-lapachol (2-hydroxy-3-(2-methylprop-1-enyl)naphthalene-1,4-dione, 228 mg, 1 mmol), bromine (2 mL, 38 mmol) was added. The bromo intermediate, 3-bromo-2,2-dimethyl-2,3-dihydro-naphtho[1,2-b]furan-4,5-dione, precipitated immediately as an orange solid. Over this mixture, an excess of 2,4-dibromobenzenamine was added and the mixture was left under agitation overnight. After the addition of water (50 ml), the organic phase was separated and washed with 10% HCl (3 x 50 ml), dried over sodium sulfate, filtered, and concentrated under reduced pressure. The arylaminoderivative,3-(2',4'-dibromophenylamine)-2H,3H-2,2- dimethylnaphtho[1,2 - b]furan-4,5-dione species, was purified by column chromatography over silica-gel, using as eluent a gradient mixture of hexane/ethyl acetate (9/1 to 7/3) with increasing polarity and obtained as a red solid (330 mg, 0.70 mmol, 70% yield). 1H NMR (300 MHz, CDCl3) δ: 8.14 (1H, dd, J = 6.7, 1.3 Hz), 7.76–7.63 (3H, m), 7.56 (1H, d, J = 2.0 Hz), 7.30 (1H, dd, J = 8.8, 2.0 Hz), 6.53 (1H, d, J = 8.8 Hz), 4.83 (1H, d, J = 7.5 Hz), 4.48 (NH, d,J = 7.5 Hz), 1.66 (3H, s), 1.54 (3H, s). 13C NMR (75 MHz, CDCl3) δ: 180.6 (C=O), 175.0 (C=O), 169.7 (Cq), 143.0 (Cq), 134.6 (CH), 132.6 (CH),131.1 (CH), 131.0 (Cq), 129.5 (CH), 127.1 (Cq), 125.1 (CH), 114.4 (Cq),112.6(CH), 110.2 (Cq), 108.9 (Cq), 96.0 (Cq), 134.5(CH), 61.2 (CH), 27.5 (CH3), 21.6 (CH3).

Refinement top

H atoms were located on stereochemical grounds and refined with fixed geometry, each riding on a carrier atom, with N—H = 0.86 Å and C—H = 0.93 - 0.98 Å, and with U(H) set to 1.2–1.5 times Ueq(N, C). The maximum and minimum residual electron density peaks were located 0.59 and -1.49 Å, respectively, from the Br1 atom.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Projection of a molecule of (IV), showing the atom labelling with 50% probability displacement ellipsoids.
3-(2,4-Dibromoanilino)-2,2-dimethyl-2,3-dihydronaphtho[1,2-b]furan- 4,5-dione top
Crystal data top
C20H15Br2NO3Z = 2
Mr = 477.15F(000) = 472
Triclinic, P1Dx = 1.771 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1430 (3) ÅCell parameters from 7882 reflections
b = 11.2584 (4) Åθ = 1.0–27.5°
c = 11.4742 (5) ŵ = 4.55 mm1
α = 112.073 (2)°T = 293 K
β = 95.546 (2)°Plate, colorless
γ = 108.696 (2)°0.31 × 0.28 × 0.16 mm
V = 894.70 (6) Å3
Data collection top
Nonius KappaCCD
diffractometer
4099 independent reflections
Radiation source: Enraf Nonius FR5903610 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.032
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.7°
CCD rotation images, thick slices scansh = 109
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1414
Tmin = 0.272, Tmax = 0.490l = 1414
9784 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0642P)2 + 1.7472P]
where P = (Fo2 + 2Fc2)/3
4070 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 1.49 e Å3
Crystal data top
C20H15Br2NO3γ = 108.696 (2)°
Mr = 477.15V = 894.70 (6) Å3
Triclinic, P1Z = 2
a = 8.1430 (3) ÅMo Kα radiation
b = 11.2584 (4) ŵ = 4.55 mm1
c = 11.4742 (5) ÅT = 293 K
α = 112.073 (2)°0.31 × 0.28 × 0.16 mm
β = 95.546 (2)°
Data collection top
Nonius KappaCCD
diffractometer
4099 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3610 reflections with I > 2σ(I)
Tmin = 0.272, Tmax = 0.490Rint = 0.032
9784 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.09Δρmax = 0.59 e Å3
4070 reflectionsΔρmin = 1.49 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.13493 (6)0.15969 (6)0.15092 (5)0.06302 (18)
Br20.61904 (6)0.13670 (4)0.16856 (4)0.04728 (15)
O10.5871 (4)0.4358 (3)0.6646 (3)0.0405 (6)
O20.2827 (4)0.0404 (3)0.4343 (3)0.0475 (7)
O30.0912 (5)0.0405 (3)0.6162 (4)0.0647 (10)
N10.4572 (4)0.2348 (4)0.3578 (3)0.0388 (7)
H10.35850.24600.36540.047*
C20.6940 (5)0.3902 (4)0.5704 (4)0.0376 (8)
C30.5652 (5)0.2412 (4)0.4710 (4)0.0343 (7)
H30.62910.17870.44520.041*
C3A0.4399 (5)0.2026 (4)0.5504 (3)0.0335 (7)
C40.3082 (5)0.0695 (4)0.5251 (4)0.0355 (7)
C50.1911 (5)0.0697 (4)0.6241 (4)0.0396 (8)
C5A0.2076 (5)0.2057 (4)0.7271 (4)0.0356 (7)
C60.0916 (5)0.2100 (4)0.8081 (4)0.0430 (9)
H60.00050.12840.79670.052*
C70.1114 (6)0.3356 (5)0.9059 (4)0.0487 (10)
H70.03480.33790.96100.058*
C80.2437 (7)0.4573 (5)0.9222 (5)0.0503 (10)
H80.25600.54130.98820.060*
C90.3589 (6)0.4550 (4)0.8403 (4)0.0449 (9)
H90.44800.53740.85140.054*
C9A0.3410 (5)0.3304 (4)0.7427 (4)0.0347 (7)
C9B0.4547 (5)0.3204 (4)0.6524 (4)0.0339 (7)
C1'0.4990 (5)0.2127 (4)0.2403 (4)0.0336 (7)
C2'0.3688 (5)0.1795 (4)0.1324 (4)0.0349 (7)
C3'0.4010 (5)0.1562 (4)0.0115 (4)0.0384 (8)
H3'0.31010.13270.05860.046*
C4'0.5725 (5)0.1686 (4)0.0031 (4)0.0370 (8)
C5'0.7048 (6)0.2006 (5)0.1004 (4)0.0428 (9)
H5'0.81890.20810.08980.051*
C6'0.6691 (5)0.2220 (4)0.2212 (4)0.0406 (8)
H6'0.75970.24290.29040.049*
C1''0.8530 (6)0.3854 (5)0.6478 (5)0.0509 (10)
H1A0.81080.31590.67910.076*
H1B0.91750.47440.72010.076*
H1C0.93080.36280.59300.076*
C2''0.7497 (6)0.4983 (4)0.5182 (5)0.0466 (9)
H2A0.64540.49710.47030.070*
H2B0.82680.47770.46210.070*
H2C0.81240.58860.58910.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0428 (3)0.0937 (4)0.0536 (3)0.0282 (3)0.0146 (2)0.0306 (3)
Br20.0576 (3)0.0534 (3)0.0380 (2)0.0228 (2)0.02256 (19)0.02340 (19)
O10.0463 (15)0.0328 (12)0.0396 (14)0.0101 (11)0.0189 (12)0.0153 (11)
O20.0541 (17)0.0357 (14)0.0432 (16)0.0129 (12)0.0138 (13)0.0105 (12)
O30.075 (2)0.0385 (16)0.074 (2)0.0084 (15)0.0367 (19)0.0246 (16)
N10.0419 (17)0.0533 (19)0.0326 (16)0.0262 (15)0.0153 (13)0.0222 (14)
C20.0393 (19)0.0401 (19)0.0381 (19)0.0139 (15)0.0151 (16)0.0217 (16)
C30.0386 (18)0.0405 (18)0.0338 (18)0.0199 (15)0.0151 (15)0.0209 (15)
C3A0.0394 (18)0.0368 (17)0.0285 (16)0.0143 (15)0.0105 (14)0.0184 (14)
C40.0398 (19)0.0353 (17)0.0323 (18)0.0144 (15)0.0083 (14)0.0157 (14)
C50.0404 (19)0.0386 (19)0.041 (2)0.0121 (15)0.0120 (16)0.0207 (16)
C5A0.0364 (18)0.0389 (18)0.0357 (18)0.0140 (15)0.0106 (15)0.0204 (15)
C60.0378 (19)0.050 (2)0.048 (2)0.0166 (17)0.0189 (17)0.0268 (18)
C70.051 (2)0.062 (3)0.045 (2)0.028 (2)0.0240 (19)0.027 (2)
C80.061 (3)0.049 (2)0.042 (2)0.025 (2)0.022 (2)0.0159 (18)
C90.054 (2)0.0382 (19)0.041 (2)0.0149 (17)0.0172 (18)0.0162 (17)
C9A0.0393 (18)0.0355 (17)0.0302 (17)0.0124 (14)0.0101 (14)0.0165 (14)
C9B0.0392 (18)0.0356 (17)0.0329 (17)0.0141 (14)0.0123 (14)0.0203 (14)
C1'0.0389 (18)0.0373 (17)0.0314 (17)0.0177 (15)0.0121 (14)0.0185 (14)
C2'0.0329 (17)0.0388 (18)0.0382 (19)0.0162 (14)0.0122 (14)0.0192 (15)
C3'0.043 (2)0.043 (2)0.0331 (18)0.0185 (16)0.0097 (15)0.0195 (16)
C4'0.046 (2)0.0383 (18)0.0341 (18)0.0186 (16)0.0189 (16)0.0199 (15)
C5'0.041 (2)0.055 (2)0.044 (2)0.0241 (18)0.0193 (17)0.0271 (19)
C6'0.0374 (19)0.055 (2)0.0371 (19)0.0220 (17)0.0111 (15)0.0235 (17)
C1''0.042 (2)0.054 (2)0.055 (3)0.0127 (18)0.0059 (19)0.029 (2)
C2''0.052 (2)0.044 (2)0.056 (3)0.0180 (18)0.027 (2)0.0305 (19)
Geometric parameters (Å, º) top
Br1—C2'1.887 (4)C7—C81.377 (7)
Br2—C4'1.895 (4)C7—H70.9300
O1—C9B1.344 (4)C8—C91.389 (6)
O1—C21.497 (5)C8—H80.9300
O2—C41.219 (5)C9—C9A1.379 (6)
O3—C51.210 (5)C9—H90.9300
N1—C1'1.374 (5)C9A—C9B1.451 (5)
N1—C31.461 (5)C1'—C2'1.394 (5)
N1—H10.8600C1'—C6'1.400 (5)
C2—C2''1.514 (5)C2'—C3'1.379 (5)
C2—C1''1.525 (6)C3'—C4'1.392 (5)
C2—C31.556 (5)C3'—H3'0.9300
C3—C3A1.501 (5)C4'—C5'1.372 (6)
C3—H30.9800C5'—C6'1.391 (6)
C3A—C9B1.360 (5)C5'—H5'0.9300
C3A—C41.436 (5)C6'—H6'0.9300
C4—C51.552 (5)C1''—H1A0.9600
C5—C5A1.496 (5)C1''—H1B0.9600
C5A—C61.387 (5)C1''—H1C0.9600
C5A—C9A1.406 (5)C2''—H2A0.9600
C6—C71.382 (6)C2''—H2B0.9600
C6—H60.9300C2''—H2C0.9600
C9B—O1—C2107.1 (3)C9A—C9—H9120.0
C1'—N1—C3125.9 (3)C8—C9—H9120.0
C1'—N1—H1117.0C9—C9A—C5A119.9 (4)
C3—N1—H1117.0C9—C9A—C9B122.9 (3)
O1—C2—C2''106.1 (3)C5A—C9A—C9B117.2 (3)
O1—C2—C1''106.1 (3)O1—C9B—C3A114.0 (3)
C2''—C2—C1''112.7 (3)O1—C9B—C9A119.7 (3)
O1—C2—C3104.0 (3)C3A—C9B—C9A126.2 (3)
C2''—C2—C3116.4 (3)N1—C1'—C2'119.9 (3)
C1''—C2—C3110.5 (3)N1—C1'—C6'123.5 (3)
N1—C3—C3A106.9 (3)C2'—C1'—C6'116.6 (3)
N1—C3—C2114.7 (3)C3'—C2'—C1'123.2 (3)
C3A—C3—C2100.7 (3)C3'—C2'—Br1118.3 (3)
N1—C3—H3111.3C1'—C2'—Br1118.5 (3)
C3A—C3—H3111.3C2'—C3'—C4'118.5 (3)
C2—C3—H3111.3C2'—C3'—H3'120.8
C9B—C3A—C4121.3 (3)C4'—C3'—H3'120.8
C9B—C3A—C3108.9 (3)C5'—C4'—C3'120.3 (3)
C4—C3A—C3129.6 (3)C5'—C4'—Br2120.6 (3)
O2—C4—C3A125.6 (4)C3'—C4'—Br2119.0 (3)
O2—C4—C5118.8 (3)C4'—C5'—C6'120.3 (4)
C3A—C4—C5115.6 (3)C4'—C5'—H5'119.8
O3—C5—C5A122.3 (4)C6'—C5'—H5'119.8
O3—C5—C4118.7 (4)C5'—C6'—C1'121.0 (4)
C5A—C5—C4119.0 (3)C5'—C6'—H6'119.5
C6—C5A—C9A119.5 (4)C1'—C6'—H6'119.5
C6—C5A—C5120.3 (3)C2—C1''—H1A109.5
C9A—C5A—C5120.3 (3)C2—C1''—H1B109.5
C7—C6—C5A119.9 (4)H1A—C1''—H1B109.5
C7—C6—H6120.0C2—C1''—H1C109.5
C5A—C6—H6120.0H1A—C1''—H1C109.5
C8—C7—C6120.5 (4)H1B—C1''—H1C109.5
C8—C7—H7119.7C2—C2''—H2A109.5
C6—C7—H7119.7C2—C2''—H2B109.5
C7—C8—C9120.2 (4)H2A—C2''—H2B109.5
C7—C8—H8119.9C2—C2''—H2C109.5
C9—C8—H8119.9H2A—C2''—H2C109.5
C9A—C9—C8119.9 (4)H2B—C2''—H2C109.5
C9B—O1—C2—C2''143.2 (3)C8—C9—C9A—C5A0.8 (6)
C9B—O1—C2—C1''96.7 (3)C8—C9—C9A—C9B179.1 (4)
C9B—O1—C2—C319.9 (4)C6—C5A—C9A—C92.0 (6)
C1'—N1—C3—C3A154.9 (4)C5—C5A—C9A—C9178.1 (4)
C1'—N1—C3—C294.4 (4)C6—C5A—C9A—C9B177.9 (4)
O1—C2—C3—N192.0 (3)C5—C5A—C9A—C9B2.1 (5)
C2''—C2—C3—N124.3 (5)C2—O1—C9B—C3A8.8 (4)
C1''—C2—C3—N1154.5 (3)C2—O1—C9B—C9A172.6 (3)
O1—C2—C3—C3A22.4 (3)C4—C3A—C9B—O1178.5 (3)
C2''—C2—C3—C3A138.7 (3)C3—C3A—C9B—O16.9 (4)
C1''—C2—C3—C3A91.1 (4)C4—C3A—C9B—C9A3.0 (6)
N1—C3—C3A—C9B101.7 (4)C3—C3A—C9B—C9A171.6 (3)
C2—C3—C3A—C9B18.4 (4)C9—C9A—C9B—O11.7 (6)
N1—C3—C3A—C472.3 (5)C5A—C9A—C9B—O1178.5 (3)
C2—C3—C3A—C4167.6 (4)C9—C9A—C9B—C3A176.7 (4)
C9B—C3A—C4—O2178.0 (4)C5A—C9A—C9B—C3A3.1 (6)
C3—C3A—C4—O24.7 (7)C3—N1—C1'—C2'166.3 (3)
C9B—C3A—C4—C52.1 (5)C3—N1—C1'—C6'14.0 (6)
C3—C3A—C4—C5175.4 (3)N1—C1'—C2'—C3'179.8 (3)
O2—C4—C5—O37.7 (6)C6'—C1'—C2'—C3'0.1 (5)
C3A—C4—C5—O3172.1 (4)N1—C1'—C2'—Br12.3 (5)
O2—C4—C5—C5A173.3 (4)C6'—C1'—C2'—Br1178.0 (3)
C3A—C4—C5—C5A6.8 (5)C1'—C2'—C3'—C4'1.1 (6)
O3—C5—C5A—C68.0 (6)Br1—C2'—C3'—C4'179.0 (3)
C4—C5—C5A—C6173.1 (4)C2'—C3'—C4'—C5'1.3 (6)
O3—C5—C5A—C9A172.0 (4)C2'—C3'—C4'—Br2179.9 (3)
C4—C5—C5A—C9A6.9 (5)C3'—C4'—C5'—C6'0.4 (6)
C9A—C5A—C6—C72.1 (6)Br2—C4'—C5'—C6'179.1 (3)
C5—C5A—C6—C7177.9 (4)C4'—C5'—C6'—C1'0.6 (6)
C5A—C6—C7—C81.2 (7)N1—C1'—C6'—C5'179.0 (4)
C6—C7—C8—C90.0 (7)C2'—C1'—C6'—C5'0.7 (6)
C7—C8—C9—C9A0.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.982.643.347 (6)129
C1—H1A···O2i0.962.673.389 (6)132
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC20H15Br2NO3
Mr477.15
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.1430 (3), 11.2584 (4), 11.4742 (5)
α, β, γ (°)112.073 (2), 95.546 (2), 108.696 (2)
V3)894.70 (6)
Z2
Radiation typeMo Kα
µ (mm1)4.55
Crystal size (mm)0.31 × 0.28 × 0.16
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.272, 0.490
No. of measured, independent and
observed [I > 2σ(I)] reflections
9784, 4099, 3610
Rint0.032
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.139, 1.09
No. of reflections4070
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 1.49

Computer programs: COLLECT (Nonius, 2000), SCALEPACK (Otwinowski & Minor, 1997), DENZO (Otwinowski & Minor, 1997) and SCALEPACK, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.982.643.347 (6)129
C1''—H1A···O2i0.962.673.389 (6)132
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

This work received partial support from CNPq, CAPES, FAPEAL, FAPERJ, IM-INOFAR, CTPETRO and FINEP.

References

First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDos Santos, A. F., Ferraz, P. A. L., De Abreu, F. C., Chiari, E., Goulart, M. O. F. & Sant'Ana, A. E. G. (2001). Planta Med. 67, 92–93.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHillard, E. A., de Abreu, F. C., Ferreira, D. C. M., Jaouen, G., Goulart, M. O. F. & Amatore, C. (2008). Chem. Commun. pp. 2612–2628.  Web of Science CrossRef Google Scholar
First citationLima, N. M. F., Correia, C. S., Ferraz, P. A. L., Pinto, A. V., Pinto, M. C. R. F., Sant'Ana, A. E. G. & Goulart, M. O. F. (2002). J. Braz. Chem. Soc. 13, 822–829.  CrossRef CAS Google Scholar
First citationLima, N. M. F., Correia, C. S., Leon, L. L., Machado, G. M. C., Madeira, M. F., Santana, A. E. G. & Goulart, M. O. F. (2004). Mem. Inst. Oswaldo Cruz, 99, 757–761.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet Vol. 276, 307–326, New York: Academic Press.  Google Scholar
First citationPinto, A. V., Neves-Pinto, C., Pinto, M. C. F. R., Santa-Rita, R. M., Pezzella, C. & De Castro, S. L. (1997). Arzneim. Forsch. 47, 74–79.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva Júnior, E. N. da, de Souza, M. C. B. V., Fernades, M. C., Menna-Barreto, R. F. S., Pinto, A. V., Pinto, M. C. F. R., Lopes, F. A., De Simone, C. A., Andrade, C. K. Z., Ferreira, V. F. & De Castro, S. L. (2008). Bioorg. Med. Chem. 16, 5030–5038.  Web of Science PubMed Google Scholar
First citationSilva Júnior, E. N. da, de Souza, M. C. B. V., Pinto, A. V., Pinto, M. C. F. R., Goulart, M. O. F., Pessoa, C., Costa-Lotufo, L., Montenegro, R. C., Moraes, M. O. & Ferreira, V. F. (2007). Bioorg. Med. Chem. 15, 7035–7041.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds