organic compounds
3-(2,4-Dibromoanilino)-2,2-dimethyl-2,3-dihydronaphtho[1,2-b]furan-4,5-dione: a new substituted arylamino nor-β-lapachone derivative
aInstituto de Química, Universidade de Brasília, 70910-970 Brasília, DF, Brazil, bInstituto de Química e Biotecnologia, Universidade Federal de Alagoas, 57072-970 Maceió, AL, Brazil, and cNućleo de Pesquisas em Produtos Naturais, Universidade Federal do Rio de Janeiro, 21944-971 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: cas@qui.ufal.br
The title compound, C20H15Br2NO3, shows the furan ring to adopt a half-chair conformation and the two ring systems to be approximately perpendicular [dihedral angle = 71.0 (2)°]. In the intermolecular C—H⋯O contacts link the molecules.
Related literature
For general background, see: Hillard et al. (2008); Pinto et al., (1997); Dos Santos et al. (2001); Lima et al. (2004). For related structures and biological activity, see: da Silva Júnior et al. (2007, 2008); Lima et al. (2002). For the synthesis, see: da Silva Júnior et al. (2007, 2008). For geometric analysis, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 2000); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808034545/tk2311sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808034545/tk2311Isup2.hkl
To a chloroform (25mL) solution of the nor-lapachol (2-hydroxy-3-(2-methylprop-1-enyl)naphthalene-1,4-dione, 228 mg, 1 mmol), bromine (2 mL, 38 mmol) was added. The bromo intermediate, 3-bromo-2,2-dimethyl-2,3-dihydro-naphtho[1,2-b]furan-4,5-dione, precipitated immediately as an orange solid. Over this mixture, an excess of 2,4-dibromobenzenamine was added and the mixture was left under agitation overnight. After the addition of water (50 ml), the organic phase was separated and washed with 10% HCl (3 x 50 ml), dried over sodium sulfate, filtered, and concentrated under reduced pressure. The arylaminoderivative,3-(2',4'-dibromophenylamine)-2H,3H-2,2- dimethylnaphtho[1,2 - b]furan-4,5-dione species, was purified by δ: 8.14 (1H, dd, J = 6.7, 1.3 Hz), 7.76–7.63 (3H, m), 7.56 (1H, d, J = 2.0 Hz), 7.30 (1H, dd, J = 8.8, 2.0 Hz), 6.53 (1H, d, J = 8.8 Hz), 4.83 (1H, d, J = 7.5 Hz), 4.48 (NH, d,J = 7.5 Hz), 1.66 (3H, s), 1.54 (3H, s). 13C NMR (75 MHz, CDCl3) δ: 180.6 (C=O), 175.0 (C=O), 169.7 (Cq), 143.0 (Cq), 134.6 (CH), 132.6 (CH),131.1 (CH), 131.0 (Cq), 129.5 (CH), 127.1 (Cq), 125.1 (CH), 114.4 (Cq),112.6(CH), 110.2 (Cq), 108.9 (Cq), 96.0 (Cq), 134.5(CH), 61.2 (CH), 27.5 (CH3), 21.6 (CH3).
over silica-gel, using as a gradient mixture of hexane/ethyl acetate (9/1 to 7/3) with increasing polarity and obtained as a red solid (330 mg, 0.70 mmol, 70% yield). 1H NMR (300 MHz, CDCl3)H atoms were located on stereochemical grounds and refined with fixed geometry, each riding on a
with N—H = 0.86 Å and C—H = 0.93 - 0.98 Å, and with U(H) set to 1.2–1.5 times Ueq(N, C). The maximum and minimum residual electron density peaks were located 0.59 and -1.49 Å, respectively, from the Br1 atom.Data collection: COLLECT (Nonius, 2000); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. Projection of a molecule of (IV), showing the atom labelling with 50% probability displacement ellipsoids. |
C20H15Br2NO3 | Z = 2 |
Mr = 477.15 | F(000) = 472 |
Triclinic, P1 | Dx = 1.771 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.1430 (3) Å | Cell parameters from 7882 reflections |
b = 11.2584 (4) Å | θ = 1.0–27.5° |
c = 11.4742 (5) Å | µ = 4.55 mm−1 |
α = 112.073 (2)° | T = 293 K |
β = 95.546 (2)° | Plate, colorless |
γ = 108.696 (2)° | 0.31 × 0.28 × 0.16 mm |
V = 894.70 (6) Å3 |
Nonius KappaCCD diffractometer | 4099 independent reflections |
Radiation source: Enraf Nonius FR590 | 3610 reflections with I > 2σ(I) |
Horizonally mounted graphite crystal monochromator | Rint = 0.032 |
Detector resolution: 9 pixels mm-1 | θmax = 27.5°, θmin = 2.7° |
CCD rotation images, thick slices scans | h = −10→9 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −14→14 |
Tmin = 0.272, Tmax = 0.490 | l = −14→14 |
9784 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.139 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0642P)2 + 1.7472P] where P = (Fo2 + 2Fc2)/3 |
4070 reflections | (Δ/σ)max < 0.001 |
235 parameters | Δρmax = 0.59 e Å−3 |
0 restraints | Δρmin = −1.49 e Å−3 |
C20H15Br2NO3 | γ = 108.696 (2)° |
Mr = 477.15 | V = 894.70 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.1430 (3) Å | Mo Kα radiation |
b = 11.2584 (4) Å | µ = 4.55 mm−1 |
c = 11.4742 (5) Å | T = 293 K |
α = 112.073 (2)° | 0.31 × 0.28 × 0.16 mm |
β = 95.546 (2)° |
Nonius KappaCCD diffractometer | 4099 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3610 reflections with I > 2σ(I) |
Tmin = 0.272, Tmax = 0.490 | Rint = 0.032 |
9784 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.139 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.59 e Å−3 |
4070 reflections | Δρmin = −1.49 e Å−3 |
235 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.13493 (6) | 0.15969 (6) | 0.15092 (5) | 0.06302 (18) | |
Br2 | 0.61904 (6) | 0.13670 (4) | −0.16856 (4) | 0.04728 (15) | |
O1 | 0.5871 (4) | 0.4358 (3) | 0.6646 (3) | 0.0405 (6) | |
O2 | 0.2827 (4) | −0.0404 (3) | 0.4343 (3) | 0.0475 (7) | |
O3 | 0.0912 (5) | −0.0405 (3) | 0.6162 (4) | 0.0647 (10) | |
N1 | 0.4572 (4) | 0.2348 (4) | 0.3578 (3) | 0.0388 (7) | |
H1 | 0.3585 | 0.2460 | 0.3654 | 0.047* | |
C2 | 0.6940 (5) | 0.3902 (4) | 0.5704 (4) | 0.0376 (8) | |
C3 | 0.5652 (5) | 0.2412 (4) | 0.4710 (4) | 0.0343 (7) | |
H3 | 0.6291 | 0.1787 | 0.4452 | 0.041* | |
C3A | 0.4399 (5) | 0.2026 (4) | 0.5504 (3) | 0.0335 (7) | |
C4 | 0.3082 (5) | 0.0695 (4) | 0.5251 (4) | 0.0355 (7) | |
C5 | 0.1911 (5) | 0.0697 (4) | 0.6241 (4) | 0.0396 (8) | |
C5A | 0.2076 (5) | 0.2057 (4) | 0.7271 (4) | 0.0356 (7) | |
C6 | 0.0916 (5) | 0.2100 (4) | 0.8081 (4) | 0.0430 (9) | |
H6 | 0.0005 | 0.1284 | 0.7967 | 0.052* | |
C7 | 0.1114 (6) | 0.3356 (5) | 0.9059 (4) | 0.0487 (10) | |
H7 | 0.0348 | 0.3379 | 0.9610 | 0.058* | |
C8 | 0.2437 (7) | 0.4573 (5) | 0.9222 (5) | 0.0503 (10) | |
H8 | 0.2560 | 0.5413 | 0.9882 | 0.060* | |
C9 | 0.3589 (6) | 0.4550 (4) | 0.8403 (4) | 0.0449 (9) | |
H9 | 0.4480 | 0.5374 | 0.8514 | 0.054* | |
C9A | 0.3410 (5) | 0.3304 (4) | 0.7427 (4) | 0.0347 (7) | |
C9B | 0.4547 (5) | 0.3204 (4) | 0.6524 (4) | 0.0339 (7) | |
C1' | 0.4990 (5) | 0.2127 (4) | 0.2403 (4) | 0.0336 (7) | |
C2' | 0.3688 (5) | 0.1795 (4) | 0.1324 (4) | 0.0349 (7) | |
C3' | 0.4010 (5) | 0.1562 (4) | 0.0115 (4) | 0.0384 (8) | |
H3' | 0.3101 | 0.1327 | −0.0586 | 0.046* | |
C4' | 0.5725 (5) | 0.1686 (4) | −0.0031 (4) | 0.0370 (8) | |
C5' | 0.7048 (6) | 0.2006 (5) | 0.1004 (4) | 0.0428 (9) | |
H5' | 0.8189 | 0.2081 | 0.0898 | 0.051* | |
C6' | 0.6691 (5) | 0.2220 (4) | 0.2212 (4) | 0.0406 (8) | |
H6' | 0.7597 | 0.2429 | 0.2904 | 0.049* | |
C1'' | 0.8530 (6) | 0.3854 (5) | 0.6478 (5) | 0.0509 (10) | |
H1A | 0.8108 | 0.3159 | 0.6791 | 0.076* | |
H1B | 0.9175 | 0.4744 | 0.7201 | 0.076* | |
H1C | 0.9308 | 0.3628 | 0.5930 | 0.076* | |
C2'' | 0.7497 (6) | 0.4983 (4) | 0.5182 (5) | 0.0466 (9) | |
H2A | 0.6454 | 0.4971 | 0.4703 | 0.070* | |
H2B | 0.8268 | 0.4777 | 0.4621 | 0.070* | |
H2C | 0.8124 | 0.5886 | 0.5891 | 0.070* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0428 (3) | 0.0937 (4) | 0.0536 (3) | 0.0282 (3) | 0.0146 (2) | 0.0306 (3) |
Br2 | 0.0576 (3) | 0.0534 (3) | 0.0380 (2) | 0.0228 (2) | 0.02256 (19) | 0.02340 (19) |
O1 | 0.0463 (15) | 0.0328 (12) | 0.0396 (14) | 0.0101 (11) | 0.0189 (12) | 0.0153 (11) |
O2 | 0.0541 (17) | 0.0357 (14) | 0.0432 (16) | 0.0129 (12) | 0.0138 (13) | 0.0105 (12) |
O3 | 0.075 (2) | 0.0385 (16) | 0.074 (2) | 0.0084 (15) | 0.0367 (19) | 0.0246 (16) |
N1 | 0.0419 (17) | 0.0533 (19) | 0.0326 (16) | 0.0262 (15) | 0.0153 (13) | 0.0222 (14) |
C2 | 0.0393 (19) | 0.0401 (19) | 0.0381 (19) | 0.0139 (15) | 0.0151 (16) | 0.0217 (16) |
C3 | 0.0386 (18) | 0.0405 (18) | 0.0338 (18) | 0.0199 (15) | 0.0151 (15) | 0.0209 (15) |
C3A | 0.0394 (18) | 0.0368 (17) | 0.0285 (16) | 0.0143 (15) | 0.0105 (14) | 0.0184 (14) |
C4 | 0.0398 (19) | 0.0353 (17) | 0.0323 (18) | 0.0144 (15) | 0.0083 (14) | 0.0157 (14) |
C5 | 0.0404 (19) | 0.0386 (19) | 0.041 (2) | 0.0121 (15) | 0.0120 (16) | 0.0207 (16) |
C5A | 0.0364 (18) | 0.0389 (18) | 0.0357 (18) | 0.0140 (15) | 0.0106 (15) | 0.0204 (15) |
C6 | 0.0378 (19) | 0.050 (2) | 0.048 (2) | 0.0166 (17) | 0.0189 (17) | 0.0268 (18) |
C7 | 0.051 (2) | 0.062 (3) | 0.045 (2) | 0.028 (2) | 0.0240 (19) | 0.027 (2) |
C8 | 0.061 (3) | 0.049 (2) | 0.042 (2) | 0.025 (2) | 0.022 (2) | 0.0159 (18) |
C9 | 0.054 (2) | 0.0382 (19) | 0.041 (2) | 0.0149 (17) | 0.0172 (18) | 0.0162 (17) |
C9A | 0.0393 (18) | 0.0355 (17) | 0.0302 (17) | 0.0124 (14) | 0.0101 (14) | 0.0165 (14) |
C9B | 0.0392 (18) | 0.0356 (17) | 0.0329 (17) | 0.0141 (14) | 0.0123 (14) | 0.0203 (14) |
C1' | 0.0389 (18) | 0.0373 (17) | 0.0314 (17) | 0.0177 (15) | 0.0121 (14) | 0.0185 (14) |
C2' | 0.0329 (17) | 0.0388 (18) | 0.0382 (19) | 0.0162 (14) | 0.0122 (14) | 0.0192 (15) |
C3' | 0.043 (2) | 0.043 (2) | 0.0331 (18) | 0.0185 (16) | 0.0097 (15) | 0.0195 (16) |
C4' | 0.046 (2) | 0.0383 (18) | 0.0341 (18) | 0.0186 (16) | 0.0189 (16) | 0.0199 (15) |
C5' | 0.041 (2) | 0.055 (2) | 0.044 (2) | 0.0241 (18) | 0.0193 (17) | 0.0271 (19) |
C6' | 0.0374 (19) | 0.055 (2) | 0.0371 (19) | 0.0220 (17) | 0.0111 (15) | 0.0235 (17) |
C1'' | 0.042 (2) | 0.054 (2) | 0.055 (3) | 0.0127 (18) | 0.0059 (19) | 0.029 (2) |
C2'' | 0.052 (2) | 0.044 (2) | 0.056 (3) | 0.0180 (18) | 0.027 (2) | 0.0305 (19) |
Br1—C2' | 1.887 (4) | C7—C8 | 1.377 (7) |
Br2—C4' | 1.895 (4) | C7—H7 | 0.9300 |
O1—C9B | 1.344 (4) | C8—C9 | 1.389 (6) |
O1—C2 | 1.497 (5) | C8—H8 | 0.9300 |
O2—C4 | 1.219 (5) | C9—C9A | 1.379 (6) |
O3—C5 | 1.210 (5) | C9—H9 | 0.9300 |
N1—C1' | 1.374 (5) | C9A—C9B | 1.451 (5) |
N1—C3 | 1.461 (5) | C1'—C2' | 1.394 (5) |
N1—H1 | 0.8600 | C1'—C6' | 1.400 (5) |
C2—C2'' | 1.514 (5) | C2'—C3' | 1.379 (5) |
C2—C1'' | 1.525 (6) | C3'—C4' | 1.392 (5) |
C2—C3 | 1.556 (5) | C3'—H3' | 0.9300 |
C3—C3A | 1.501 (5) | C4'—C5' | 1.372 (6) |
C3—H3 | 0.9800 | C5'—C6' | 1.391 (6) |
C3A—C9B | 1.360 (5) | C5'—H5' | 0.9300 |
C3A—C4 | 1.436 (5) | C6'—H6' | 0.9300 |
C4—C5 | 1.552 (5) | C1''—H1A | 0.9600 |
C5—C5A | 1.496 (5) | C1''—H1B | 0.9600 |
C5A—C6 | 1.387 (5) | C1''—H1C | 0.9600 |
C5A—C9A | 1.406 (5) | C2''—H2A | 0.9600 |
C6—C7 | 1.382 (6) | C2''—H2B | 0.9600 |
C6—H6 | 0.9300 | C2''—H2C | 0.9600 |
C9B—O1—C2 | 107.1 (3) | C9A—C9—H9 | 120.0 |
C1'—N1—C3 | 125.9 (3) | C8—C9—H9 | 120.0 |
C1'—N1—H1 | 117.0 | C9—C9A—C5A | 119.9 (4) |
C3—N1—H1 | 117.0 | C9—C9A—C9B | 122.9 (3) |
O1—C2—C2'' | 106.1 (3) | C5A—C9A—C9B | 117.2 (3) |
O1—C2—C1'' | 106.1 (3) | O1—C9B—C3A | 114.0 (3) |
C2''—C2—C1'' | 112.7 (3) | O1—C9B—C9A | 119.7 (3) |
O1—C2—C3 | 104.0 (3) | C3A—C9B—C9A | 126.2 (3) |
C2''—C2—C3 | 116.4 (3) | N1—C1'—C2' | 119.9 (3) |
C1''—C2—C3 | 110.5 (3) | N1—C1'—C6' | 123.5 (3) |
N1—C3—C3A | 106.9 (3) | C2'—C1'—C6' | 116.6 (3) |
N1—C3—C2 | 114.7 (3) | C3'—C2'—C1' | 123.2 (3) |
C3A—C3—C2 | 100.7 (3) | C3'—C2'—Br1 | 118.3 (3) |
N1—C3—H3 | 111.3 | C1'—C2'—Br1 | 118.5 (3) |
C3A—C3—H3 | 111.3 | C2'—C3'—C4' | 118.5 (3) |
C2—C3—H3 | 111.3 | C2'—C3'—H3' | 120.8 |
C9B—C3A—C4 | 121.3 (3) | C4'—C3'—H3' | 120.8 |
C9B—C3A—C3 | 108.9 (3) | C5'—C4'—C3' | 120.3 (3) |
C4—C3A—C3 | 129.6 (3) | C5'—C4'—Br2 | 120.6 (3) |
O2—C4—C3A | 125.6 (4) | C3'—C4'—Br2 | 119.0 (3) |
O2—C4—C5 | 118.8 (3) | C4'—C5'—C6' | 120.3 (4) |
C3A—C4—C5 | 115.6 (3) | C4'—C5'—H5' | 119.8 |
O3—C5—C5A | 122.3 (4) | C6'—C5'—H5' | 119.8 |
O3—C5—C4 | 118.7 (4) | C5'—C6'—C1' | 121.0 (4) |
C5A—C5—C4 | 119.0 (3) | C5'—C6'—H6' | 119.5 |
C6—C5A—C9A | 119.5 (4) | C1'—C6'—H6' | 119.5 |
C6—C5A—C5 | 120.3 (3) | C2—C1''—H1A | 109.5 |
C9A—C5A—C5 | 120.3 (3) | C2—C1''—H1B | 109.5 |
C7—C6—C5A | 119.9 (4) | H1A—C1''—H1B | 109.5 |
C7—C6—H6 | 120.0 | C2—C1''—H1C | 109.5 |
C5A—C6—H6 | 120.0 | H1A—C1''—H1C | 109.5 |
C8—C7—C6 | 120.5 (4) | H1B—C1''—H1C | 109.5 |
C8—C7—H7 | 119.7 | C2—C2''—H2A | 109.5 |
C6—C7—H7 | 119.7 | C2—C2''—H2B | 109.5 |
C7—C8—C9 | 120.2 (4) | H2A—C2''—H2B | 109.5 |
C7—C8—H8 | 119.9 | C2—C2''—H2C | 109.5 |
C9—C8—H8 | 119.9 | H2A—C2''—H2C | 109.5 |
C9A—C9—C8 | 119.9 (4) | H2B—C2''—H2C | 109.5 |
C9B—O1—C2—C2'' | 143.2 (3) | C8—C9—C9A—C5A | −0.8 (6) |
C9B—O1—C2—C1'' | −96.7 (3) | C8—C9—C9A—C9B | 179.1 (4) |
C9B—O1—C2—C3 | 19.9 (4) | C6—C5A—C9A—C9 | 2.0 (6) |
C1'—N1—C3—C3A | −154.9 (4) | C5—C5A—C9A—C9 | −178.1 (4) |
C1'—N1—C3—C2 | 94.4 (4) | C6—C5A—C9A—C9B | −177.9 (4) |
O1—C2—C3—N1 | 92.0 (3) | C5—C5A—C9A—C9B | 2.1 (5) |
C2''—C2—C3—N1 | −24.3 (5) | C2—O1—C9B—C3A | −8.8 (4) |
C1''—C2—C3—N1 | −154.5 (3) | C2—O1—C9B—C9A | 172.6 (3) |
O1—C2—C3—C3A | −22.4 (3) | C4—C3A—C9B—O1 | 178.5 (3) |
C2''—C2—C3—C3A | −138.7 (3) | C3—C3A—C9B—O1 | −6.9 (4) |
C1''—C2—C3—C3A | 91.1 (4) | C4—C3A—C9B—C9A | −3.0 (6) |
N1—C3—C3A—C9B | −101.7 (4) | C3—C3A—C9B—C9A | 171.6 (3) |
C2—C3—C3A—C9B | 18.4 (4) | C9—C9A—C9B—O1 | 1.7 (6) |
N1—C3—C3A—C4 | 72.3 (5) | C5A—C9A—C9B—O1 | −178.5 (3) |
C2—C3—C3A—C4 | −167.6 (4) | C9—C9A—C9B—C3A | −176.7 (4) |
C9B—C3A—C4—O2 | 178.0 (4) | C5A—C9A—C9B—C3A | 3.1 (6) |
C3—C3A—C4—O2 | 4.7 (7) | C3—N1—C1'—C2' | 166.3 (3) |
C9B—C3A—C4—C5 | −2.1 (5) | C3—N1—C1'—C6' | −14.0 (6) |
C3—C3A—C4—C5 | −175.4 (3) | N1—C1'—C2'—C3' | 179.8 (3) |
O2—C4—C5—O3 | 7.7 (6) | C6'—C1'—C2'—C3' | 0.1 (5) |
C3A—C4—C5—O3 | −172.1 (4) | N1—C1'—C2'—Br1 | −2.3 (5) |
O2—C4—C5—C5A | −173.3 (4) | C6'—C1'—C2'—Br1 | 178.0 (3) |
C3A—C4—C5—C5A | 6.8 (5) | C1'—C2'—C3'—C4' | −1.1 (6) |
O3—C5—C5A—C6 | −8.0 (6) | Br1—C2'—C3'—C4' | −179.0 (3) |
C4—C5—C5A—C6 | 173.1 (4) | C2'—C3'—C4'—C5' | 1.3 (6) |
O3—C5—C5A—C9A | 172.0 (4) | C2'—C3'—C4'—Br2 | 179.9 (3) |
C4—C5—C5A—C9A | −6.9 (5) | C3'—C4'—C5'—C6' | −0.4 (6) |
C9A—C5A—C6—C7 | −2.1 (6) | Br2—C4'—C5'—C6' | −179.1 (3) |
C5—C5A—C6—C7 | 177.9 (4) | C4'—C5'—C6'—C1' | −0.6 (6) |
C5A—C6—C7—C8 | 1.2 (7) | N1—C1'—C6'—C5' | −179.0 (4) |
C6—C7—C8—C9 | 0.0 (7) | C2'—C1'—C6'—C5' | 0.7 (6) |
C7—C8—C9—C9A | −0.1 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O2i | 0.98 | 2.64 | 3.347 (6) | 129 |
C1′′—H1A···O2i | 0.96 | 2.67 | 3.389 (6) | 132 |
Symmetry code: (i) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C20H15Br2NO3 |
Mr | 477.15 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 8.1430 (3), 11.2584 (4), 11.4742 (5) |
α, β, γ (°) | 112.073 (2), 95.546 (2), 108.696 (2) |
V (Å3) | 894.70 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 4.55 |
Crystal size (mm) | 0.31 × 0.28 × 0.16 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.272, 0.490 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9784, 4099, 3610 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.139, 1.09 |
No. of reflections | 4070 |
No. of parameters | 235 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.59, −1.49 |
Computer programs: COLLECT (Nonius, 2000), SCALEPACK (Otwinowski & Minor, 1997), DENZO (Otwinowski & Minor, 1997) and SCALEPACK, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O2i | 0.98 | 2.64 | 3.347 (6) | 129 |
C1''—H1A···O2i | 0.96 | 2.67 | 3.389 (6) | 132 |
Symmetry code: (i) −x+1, −y, −z+1. |
Acknowledgements
This work received partial support from CNPq, CAPES, FAPEAL, FAPERJ, IM-INOFAR, CTPETRO and FINEP.
References
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dos Santos, A. F., Ferraz, P. A. L., De Abreu, F. C., Chiari, E., Goulart, M. O. F. & Sant'Ana, A. E. G. (2001). Planta Med. 67, 92–93. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hillard, E. A., de Abreu, F. C., Ferreira, D. C. M., Jaouen, G., Goulart, M. O. F. & Amatore, C. (2008). Chem. Commun. pp. 2612–2628. Web of Science CrossRef Google Scholar
Lima, N. M. F., Correia, C. S., Ferraz, P. A. L., Pinto, A. V., Pinto, M. C. R. F., Sant'Ana, A. E. G. & Goulart, M. O. F. (2002). J. Braz. Chem. Soc. 13, 822–829. CrossRef CAS Google Scholar
Lima, N. M. F., Correia, C. S., Leon, L. L., Machado, G. M. C., Madeira, M. F., Santana, A. E. G. & Goulart, M. O. F. (2004). Mem. Inst. Oswaldo Cruz, 99, 757–761. Web of Science CrossRef PubMed CAS Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet Vol. 276, 307–326, New York: Academic Press. Google Scholar
Pinto, A. V., Neves-Pinto, C., Pinto, M. C. F. R., Santa-Rita, R. M., Pezzella, C. & De Castro, S. L. (1997). Arzneim. Forsch. 47, 74–79. CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Silva Júnior, E. N. da, de Souza, M. C. B. V., Fernades, M. C., Menna-Barreto, R. F. S., Pinto, A. V., Pinto, M. C. F. R., Lopes, F. A., De Simone, C. A., Andrade, C. K. Z., Ferreira, V. F. & De Castro, S. L. (2008). Bioorg. Med. Chem. 16, 5030–5038. Web of Science PubMed Google Scholar
Silva Júnior, E. N. da, de Souza, M. C. B. V., Pinto, A. V., Pinto, M. C. F. R., Goulart, M. O. F., Pessoa, C., Costa-Lotufo, L., Montenegro, R. C., Moraes, M. O. & Ferreira, V. F. (2007). Bioorg. Med. Chem. 15, 7035–7041. Web of Science PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The search for substances with pharmacological activity has grown exponentially in recent years and quinones play a major role as bioreductive drugs, reactive oxygen species (ROS) enhancers, and redox catalysts (Hillard et al., 2008). Substances such as lapachol (I), (Pinto et al., 1997; dos Santos et al., 2001; Lima et al., 2004), β-lapachone (II) (Hillard et al., 2008) and nor-β-lapachone (III) (da Silva Júnior et al., 2007), Scheme 1, are prototypes that can be used as starting points for the synthesis of new bioactive molecules. In this context, different compounds with anti-cancer activity (da Silva Júnior et al., 2007), trypanocides (da Silva Júnior et al., 2008), molluscicides (Lima et al., 2002) among others, were synthesized. The introduction of arylamino groups in the furan ring of III retained/enhanced the anticancer activity against six cancer cell lines with IC50 values below 1µg/ml (da Silva Júnior et al., 2007), as well as intensified trypanocidal activity (da Silva Júnior et al., 2008), demonstrating clearly that the arylamino group is important for pharmacological activity. In this paper, we report the molecular and crystal structure of (IV) that was easily obtained as described in the literature (da Silva Júnior et al., 2007; 2008).
The atoms of the naphthoquinonic ring of (IV), Fig. 1, are co-planar and the greatest deviation from their least-squares plane is exhibited by atom C5 [0.069 (4) Å]. The O1 atom lies in the mean least-square plane of the naphthoquinonic ring with a deviation of 0.051 (3) Å while atoms O2 and O3 are -0.129 (3) and 0.212 (4)Å out of that plane, respectively. The furane ring adopts a half chair conformation and the calculated puckering parameters are: q2 = 0.229 (4) Å and ϕ = -12 8.04 (1)° (Cremer & Pople, 1975). The dihedral angle between planes passing through atoms C1'-C6' of the aromatic ring and the naphthoquinonic ring is 71.0 (2) °. In the crystal packing, molecules interact through two intermolecular C—H···O contacts, Table 1.