metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[μ-10,21-Di­methyl-3,6,14,17-tetra­za­tri­cyclo­[17.3.1.18,12]tetra­cosa-1(23),2,6,8,10,12 (24),13,17,19,21-deca­ene-23,24-diolato-κ4N3,N6,O23,O24:κ4N14,N17,O23,O24]bis­­(perchlorato-κO)dimanganese(II)

aKey Laboratory for Green Chemical Processes of the Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China, and bState Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: zhiqpan@163.com

(Received 14 October 2008; accepted 30 October 2008; online 8 November 2008)

In the centrosymmetric and dinuclear title complex, [Mn2(C22H22N4O2)(ClO4)2], the two Mn atoms are bridged by two phenolate O atoms of the N4O2 macrocycle with an Mn⋯Mn distance of 2.9228 (11) Å. The distorted square–pyramidal N2O3 coordination geometry is completed by an O atom derived from a perchlorate anion.

Related literature

For related literature, see: Bai et al. (2007[Bai, J.-L., Zhou, H., Pan, Z.-Q. & Meng, X.-G. (2007). Acta Cryst. E63, m2641.]); Venegas-Yazigi et al. (2006[Venegas-Yazigi, D., Cortés, S., Paredes-García, V., Peña, O., Ibañez, A., Baggio, R. & Spodine, E. (2006). Polyhedron, 25, 2072-2082.]); Jong et al. (2006[Jong, C. B., Chung, H. H. & Ki, J. K. (2006). Inorg. Chem. Commun. 9, 171-174.]); Ki et al. (2006[Ki, J. K., Duk, S. J., Duk, S. K., Chi, K. C., Ki, M. P. & Jong, C. B. (2006). Bull. Korean Chem. Soc. 27, 1747-1751.]); Tei et al. (2001[Tei, L., Blake, A. J., Devillanova, F. A., Garau, A., Lippolis, V., Wilson, C. & Schröder, M. (2001). Chem. Commun. pp. 2582-2583.]); Brooker & Croucher (1997[Brooker, S. & Croucher, P. D. (1997). Chem. Commun. pp. 459-460.]); Chattopadhyay et al. (2007[Chattopadhyay, T., Banu, K. S., Banerjee, A., Ribas, J., Majee, A., Nethaji, M. & Das, D. (2007). J. Mol. Struct. 833, 13-22.]). For synthesis, see: Taniguchi (1984[Taniguchi, S. (1984). Bull. Chem. Soc. Jpn, 57, 2683-2684.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn2(C22H22N4O2)(ClO4)2]

  • Mr = 683.22

  • Triclinic, [P \overline 1]

  • a = 8.3129 (10) Å

  • b = 8.3759 (11) Å

  • c = 9.9712 (12) Å

  • α = 81.484 (2)°

  • β = 68.520 (3)°

  • γ = 78.838 (2)°

  • V = 631.56 (14) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.28 mm−1

  • T = 291 (2) K

  • 0.31 × 0.21 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.73, Tmax = 0.83

  • 3663 measured reflections

  • 2439 independent reflections

  • 1701 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.118

  • S = 0.99

  • 2439 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.58 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base macrocyclic complexes, derived from the cyclocondensation of 2,6-di-formyl-4-phenol and alkylenediamine in the presence of metal ions, have been extensively studied (Ki et al., 2006; Brooker & Croucher, 1997). The properties of the complexes vary with the differences in the macrocyclic structures and in the nature of the metal ions (Tei et al., 2001; Jong et al., 2006; Venegas-Yazigi et al., 2006). Although the same macrocyclic ligand featured in the title complex, (I), exists in the literature (Bai et al., 2007; Chattopadhyay et al., 2007), the dinuclear Mn(II) complex is novel; the structure is reported herein.

The dinuclear and centrosymmetric structure of (I), Fig. 1, is constructed about a Mn2O2 core. The macrocyclic ligand is hexadentate forming an N4O2 donor set. The Mn ion is coordinated by two endogenous phenolic-O atoms and two azomethine-N atoms that form an approximately square planar geometry. The distorted square pyramidal geometry is completed by a weakly coordinated O atom derived from the perchlorate anion, 2.390 (3) Å. The latter distance is greater than the range of the other Mn-(donor atom) distances, i.e. 1.888 (3) to 1.909 (3) Å. The Mn—Mn distance is 2.9228 (11) Å.

Related literature top

For related literature, see: Bai et al. (2007); Venegas-Yazigi et al. (2006); Jong et al. (2006); Ki et al. (2006); Tei et al. (2001); Brooker & Croucher (1997); Chattopadhyay et al. (2007). For synthesis, see: Taniguchi (1984).

Experimental top

2,6-Di-formyl-4-methylphenol was prepared according to the literature method (Taniguchi, 1984). Ethylenediamine (0.8 mmol, 0.048 g) in absolute methanol (10 ml) was added to a methanol solution (10 ml) containing 2,6-di-formyl-4-methylphenol (0.8 mmol, 0.13 g). The solution was stirred vigorously for 3 h in a ice-bath. Afterwards, a methanol solution (5 ml) of Mn(OAc)2.4H2O (0.4 mmol, 0.1 g) was added dropwise over a period of 1 h at room temperature. The mixture was stirred for a further 12 h at ambient temperature. Finally, Mn(ClO4)2.6H2O (0.4 mmol, 0.15 g) dissolved in methanol (5 ml) was added to the mixture and stirred for 8 h at room temperature. The dark-red block-shaped crystals suitable for X-ray diffraction precipitated by slow volatilization over a period of one month.

Refinement top

All C-bound H atoms were placed in calculated positions with 0.93–0.97 Å, and included in the refinement in the riding-model approximation, with U(H) set to 1.2–1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I), showing the labeling of the non-H atoms and 30% probability ellipsoids. H atoms have been omitted for clarity.
[µ-10,21-Dimethyl-3,6,14,17-tetrazatricyclo[17.3.1.18,12]tetracosa-1(23),2, 6,8,10,12 (24),13,17,19,21-decaene-23,24-diolato-κ4N3,N6, O23,O24:κ4N14,N17,O23,O24]bis(perchlorato-κO)dimanganese(II) top
Crystal data top
[Mn2(C22H22N4O2)(ClO4)2]Z = 1
Mr = 683.22F(000) = 346
Triclinic, P1Dx = 1.796 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3129 (10) ÅCell parameters from 1608 reflections
b = 8.3759 (11) Åθ = 2.5–25.7°
c = 9.9712 (12) ŵ = 1.28 mm1
α = 81.484 (2)°T = 291 K
β = 68.520 (3)°Block, red
γ = 78.838 (2)°0.31 × 0.21 × 0.15 mm
V = 631.56 (14) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
2439 independent reflections
Radiation source: sealed tube1701 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 610
Tmin = 0.73, Tmax = 0.83k = 910
3663 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0643P)2]
where P = (Fo2 + 2Fc2)/3
2439 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Mn2(C22H22N4O2)(ClO4)2]γ = 78.838 (2)°
Mr = 683.22V = 631.56 (14) Å3
Triclinic, P1Z = 1
a = 8.3129 (10) ÅMo Kα radiation
b = 8.3759 (11) ŵ = 1.28 mm1
c = 9.9712 (12) ÅT = 291 K
α = 81.484 (2)°0.31 × 0.21 × 0.15 mm
β = 68.520 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2439 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1701 reflections with I > 2σ(I)
Tmin = 0.73, Tmax = 0.83Rint = 0.029
3663 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 0.99Δρmax = 0.56 e Å3
2439 reflectionsΔρmin = 0.58 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7059 (6)0.6449 (6)0.4901 (5)0.0464 (10)
C20.5527 (5)0.6225 (5)0.6085 (5)0.0419 (9)
C30.3922 (6)0.7068 (5)0.6049 (4)0.0400 (9)
H30.29080.68550.68060.048*
C40.3786 (6)0.8204 (5)0.4932 (5)0.0458 (10)
C50.5336 (6)0.8403 (6)0.3738 (5)0.0475 (11)
H50.52780.91070.29380.057*
C60.6944 (6)0.7556 (5)0.3752 (5)0.0413 (9)
C70.5468 (6)0.5007 (6)0.7344 (5)0.0476 (10)
H70.43690.48300.79910.057*
C80.8486 (5)0.7881 (5)0.2457 (4)0.0335 (8)
H80.82850.86620.17460.040*
C90.8484 (6)0.2595 (5)0.9110 (5)0.0494 (11)
H9A0.84020.33790.97660.059*
H9B0.86680.15070.95740.059*
C100.6753 (5)0.2848 (5)0.8787 (4)0.0425 (10)
H10A0.66160.18450.84920.051*
H10B0.57660.31240.96550.051*
C110.2057 (6)0.9079 (6)0.4876 (5)0.0494 (11)
H11A0.11310.86520.56670.074*
H11B0.19530.89230.39780.074*
H11C0.19801.02240.49460.074*
Cl10.82655 (13)0.75907 (13)0.86577 (11)0.0428 (3)
Mn10.91488 (7)0.43436 (7)0.64841 (6)0.0349 (2)
N10.6784 (5)0.4187 (4)0.7614 (4)0.0475 (9)
N20.9957 (5)0.2803 (4)0.7770 (4)0.0469 (9)
O10.8573 (4)0.5649 (4)0.4947 (3)0.0449 (7)
O20.9409 (4)0.6619 (4)0.7542 (3)0.0523 (8)
O30.9142 (4)0.8814 (4)0.8771 (3)0.0457 (7)
O40.7776 (4)0.6558 (4)0.9924 (3)0.0476 (7)
O50.6808 (4)0.8267 (4)0.8254 (3)0.0551 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.036 (2)0.059 (3)0.043 (2)0.0015 (19)0.0149 (18)0.010 (2)
C20.037 (2)0.039 (2)0.049 (2)0.0074 (17)0.0145 (19)0.0029 (18)
C30.038 (2)0.044 (2)0.042 (2)0.0069 (17)0.0163 (17)0.0121 (17)
C40.052 (3)0.041 (2)0.050 (2)0.0047 (19)0.028 (2)0.0122 (19)
C50.038 (2)0.067 (3)0.041 (2)0.005 (2)0.0200 (19)0.014 (2)
C60.043 (2)0.0331 (19)0.045 (2)0.0020 (17)0.0115 (18)0.0112 (17)
C70.039 (2)0.055 (3)0.045 (2)0.012 (2)0.0046 (19)0.010 (2)
C80.042 (2)0.0357 (19)0.0332 (19)0.0088 (16)0.0277 (17)0.0084 (15)
C90.036 (2)0.042 (2)0.058 (3)0.0016 (18)0.009 (2)0.008 (2)
C100.043 (2)0.049 (3)0.039 (2)0.0161 (19)0.0178 (19)0.0065 (18)
C110.048 (3)0.055 (3)0.044 (2)0.002 (2)0.016 (2)0.010 (2)
Cl10.0484 (6)0.0439 (5)0.0378 (5)0.0173 (4)0.0121 (4)0.0020 (4)
Mn10.0334 (3)0.0348 (3)0.0293 (3)0.0010 (2)0.0074 (2)0.0043 (2)
N10.042 (2)0.044 (2)0.051 (2)0.0087 (17)0.0114 (17)0.0014 (16)
N20.049 (2)0.045 (2)0.0361 (18)0.0054 (17)0.0119 (16)0.0038 (16)
O10.0312 (14)0.0499 (17)0.0430 (16)0.0020 (12)0.0097 (12)0.0100 (13)
O20.0483 (18)0.0482 (17)0.0523 (18)0.0217 (14)0.0020 (15)0.0113 (14)
O30.0583 (18)0.0484 (17)0.0359 (15)0.0247 (14)0.0123 (13)0.0094 (12)
O40.0412 (16)0.0527 (18)0.0475 (17)0.0193 (13)0.0142 (13)0.0133 (14)
O50.0497 (18)0.0483 (18)0.0445 (17)0.0108 (14)0.0063 (14)0.0157 (14)
Geometric parameters (Å, º) top
C1—O11.321 (5)C9—H9B0.9700
C1—C61.383 (6)C10—N11.492 (5)
C1—C21.406 (6)C10—H10A0.9700
C2—C31.393 (6)C10—H10B0.9700
C2—C71.488 (6)C11—H11A0.9600
C3—C41.376 (6)C11—H11B0.9600
C3—H30.9300C11—H11C0.9600
C4—C51.417 (6)Cl1—O41.394 (3)
C4—C111.499 (6)Cl1—O51.405 (3)
C5—C61.390 (6)Cl1—O31.406 (3)
C5—H50.9300Cl1—O21.413 (3)
C6—C81.485 (6)Mn1—N21.888 (3)
C7—N11.269 (6)Mn1—N11.893 (4)
C7—H70.9300Mn1—O11.900 (3)
C8—N2i1.262 (5)Mn1—O1i1.909 (3)
C8—H80.9300Mn1—O22.391 (3)
C9—N21.460 (5)Mn1—Mn1i2.9228 (11)
C9—C101.556 (6)N2—C8i1.262 (5)
C9—H9A0.9700O1—Mn1i1.909 (3)
O1—C1—C6121.9 (4)C4—C11—H11B109.5
O1—C1—C2119.0 (4)H11A—C11—H11B109.5
C6—C1—C2119.0 (4)C4—C11—H11C109.5
C3—C2—C1119.4 (4)H11A—C11—H11C109.5
C3—C2—C7116.3 (4)H11B—C11—H11C109.5
C1—C2—C7124.0 (4)O4—Cl1—O5110.61 (18)
C4—C3—C2122.3 (4)O4—Cl1—O3112.37 (19)
C4—C3—H3118.8O5—Cl1—O3111.3 (2)
C2—C3—H3118.8O4—Cl1—O2107.3 (2)
C3—C4—C5117.5 (4)O5—Cl1—O2106.4 (2)
C3—C4—C11122.3 (4)O3—Cl1—O2108.58 (18)
C5—C4—C11119.9 (4)N2—Mn1—N191.90 (16)
C6—C5—C4120.6 (4)N2—Mn1—O1170.28 (14)
C6—C5—H5119.7N1—Mn1—O193.45 (14)
C4—C5—H5119.7N2—Mn1—O1i93.60 (13)
C1—C6—C5120.9 (4)N1—Mn1—O1i168.66 (16)
C1—C6—C8123.0 (4)O1—Mn1—O1i79.78 (13)
C5—C6—C8116.1 (4)N2—Mn1—O293.10 (15)
N1—C7—C2125.8 (4)N1—Mn1—O297.47 (14)
N1—C7—H7117.1O1—Mn1—O294.23 (13)
C2—C7—H7117.1O1i—Mn1—O292.12 (12)
N2i—C8—C6126.1 (3)N2—Mn1—Mn1i132.98 (11)
N2i—C8—H8117.0N1—Mn1—Mn1i132.81 (12)
C6—C8—H8117.0O1—Mn1—Mn1i40.01 (8)
N2—C9—C10110.2 (4)O1i—Mn1—Mn1i39.77 (8)
N2—C9—H9A109.6O2—Mn1—Mn1i94.14 (8)
C10—C9—H9A109.6C7—N1—C10126.4 (4)
N2—C9—H9B109.6C7—N1—Mn1125.2 (3)
C10—C9—H9B109.6C10—N1—Mn1108.2 (3)
H9A—C9—H9B108.1C8i—N2—C9125.4 (3)
N1—C10—C9109.9 (3)C8i—N2—Mn1126.2 (3)
N1—C10—H10A109.7C9—N2—Mn1108.3 (3)
C9—C10—H10A109.7C1—O1—Mn1130.6 (3)
N1—C10—H10B109.7C1—O1—Mn1i129.0 (3)
C9—C10—H10B109.7Mn1—O1—Mn1i100.22 (13)
H10A—C10—H10B108.2Cl1—O2—Mn1134.41 (17)
C4—C11—H11A109.5
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Mn2(C22H22N4O2)(ClO4)2]
Mr683.22
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)8.3129 (10), 8.3759 (11), 9.9712 (12)
α, β, γ (°)81.484 (2), 68.520 (3), 78.838 (2)
V3)631.56 (14)
Z1
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.31 × 0.21 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.73, 0.83
No. of measured, independent and
observed [I > 2σ(I)] reflections
3663, 2439, 1701
Rint0.029
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.118, 0.99
No. of reflections2439
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.58

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the National Science Foundation of China (grant No. 20271039).

References

First citationBai, J.-L., Zhou, H., Pan, Z.-Q. & Meng, X.-G. (2007). Acta Cryst. E63, m2641.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrooker, S. & Croucher, P. D. (1997). Chem. Commun. pp. 459–460.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChattopadhyay, T., Banu, K. S., Banerjee, A., Ribas, J., Majee, A., Nethaji, M. & Das, D. (2007). J. Mol. Struct. 833, 13–22.  Web of Science CSD CrossRef CAS Google Scholar
First citationJong, C. B., Chung, H. H. & Ki, J. K. (2006). Inorg. Chem. Commun. 9, 171–174.  Google Scholar
First citationKi, J. K., Duk, S. J., Duk, S. K., Chi, K. C., Ki, M. P. & Jong, C. B. (2006). Bull. Korean Chem. Soc. 27, 1747–1751.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaniguchi, S. (1984). Bull. Chem. Soc. Jpn, 57, 2683–2684.  CrossRef CAS Web of Science Google Scholar
First citationTei, L., Blake, A. J., Devillanova, F. A., Garau, A., Lippolis, V., Wilson, C. & Schröder, M. (2001). Chem. Commun. pp. 2582–2583.  Web of Science CSD CrossRef Google Scholar
First citationVenegas-Yazigi, D., Cortés, S., Paredes-García, V., Peña, O., Ibañez, A., Baggio, R. & Spodine, E. (2006). Polyhedron, 25, 2072–2082.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds