metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(isopropoxido-κO)bis­­(2-methyl­quinolin-8-olato-κ2N,O)titanium(IV)

aDepartment of Chemistry, Shahid Beheshti University, Tehran, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 29 October 2008; accepted 29 October 2008; online 8 November 2008)

The two 2-methyl­quinolin-8-olate anions in the title complex, [Ti(C10H8NO)2(C3H7O)2], chelate the TiIV atom, which shows an all-cis distorted octa­hedral N2O4 coordination geometry.

Related literature

For the synthesis, see: Bickley & Nick (1979[Bickley, D. G. & Nick, S. (1979). Inorg. Chem. 18, 2200-2204.]); Harrod & Taylor (1975[Harrod, J. F. & Taylor, K. R. (1975). Inorg. Chem. 14, 1541-1545.]). For the crystal structure of bis­(isoprop­oxy)bis(quinolin-8-olato)titanium, see: Zeng et al. (2002[Zeng, W. F., Chen, Y. S., Chiang, M. Y., Chern, S. S. & Cheng, C. P. (2002). Polyhedron, 21, 1081-1087.]).

[Scheme 1]

Experimental

Crystal data
  • [Ti(C10H8NO)2(C3H7O)2]

  • Mr = 482.42

  • Monoclinic, P 21 /c

  • a = 9.5851 (2) Å

  • b = 13.5768 (2) Å

  • c = 18.7779 (3) Å

  • β = 102.559 (1)°

  • V = 2385.19 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 100 (2) K

  • 0.35 × 0.25 × 0.15 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.875, Tmax = 0.943

  • 16391 measured reflections

  • 5467 independent reflections

  • 4651 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.088

  • S = 1.03

  • 5467 reflections

  • 304 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. ]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. ]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Related literature top

For the synthesis, see: Bickley & Nick (1979); Harrod & Taylor (1975). For the crystal structure of bis(isopropoxy)bis(quinolin-8-olato)titanium, see: Zeng et al. (2002).

Experimental top

8-Hydroxy-2-methylquinoline (1.59 g, 10 mmol) was added to the titanium isopropoxide (2.84 g, 10 mmol) in toluene (20 ml) at room temperature. The mixture was stirred for a day and than solvent was removed under reduced pressure to furnish an orange solid. The solid was crystallized from dichloromethane and n-hexane (1:1) to give yellow crystals, m.p. 445 K. IR (KBr, cm-1): 1575 (CC, CN), 1236 (C—O). 1H NMR (CDCl3, p.p.m.): 0.94 (CH3, doublet), 1.14 (CH3, doublet), 2.83 (CH3, singlet), 4.61 (CH, quartet), 6.9–8.58 (aromatic H atoms).

Refinement top

Hydrogen atoms were placed in their calculated positions (C—H 0.95–0.98 Å) and were treated as riding on their parent atoms, with U(H) set to 1.2–1.5 times Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of Ti(C10H8NO)2(C3H7O)2 at the 70% probability level showing atom labelling. Hydrogen atoms are drawn as spheres of arbitrary radius.
Bis(isopropoxido-κO)bis(2-methylquinolin-8-olato- κ2N,O)titanium(IV) top
Crystal data top
[Ti(C10H8NO)2(C3H7O)2]F(000) = 1016
Mr = 482.42Dx = 1.343 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6457 reflections
a = 9.5851 (2) Åθ = 2.2–28.3°
b = 13.5768 (2) ŵ = 0.39 mm1
c = 18.7779 (3) ÅT = 100 K
β = 102.559 (1)°Irregular chip, yellow
V = 2385.19 (7) Å30.35 × 0.25 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
5467 independent reflections
Radiation source: fine-focus sealed tube4651 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1211
Tmin = 0.875, Tmax = 0.943k = 1717
16391 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0394P)2 + 1.3426P]
where P = (Fo2 + 2Fc2)/3
5467 reflections(Δ/σ)max = 0.001
304 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Ti(C10H8NO)2(C3H7O)2]V = 2385.19 (7) Å3
Mr = 482.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5851 (2) ŵ = 0.39 mm1
b = 13.5768 (2) ÅT = 100 K
c = 18.7779 (3) Å0.35 × 0.25 × 0.15 mm
β = 102.559 (1)°
Data collection top
Bruker SMART APEX
diffractometer
5467 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4651 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.943Rint = 0.025
16391 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.03Δρmax = 0.39 e Å3
5467 reflectionsΔρmin = 0.39 e Å3
304 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ti10.36712 (3)0.433571 (18)0.241664 (14)0.01288 (8)
O10.26537 (11)0.55637 (7)0.23824 (6)0.0166 (2)
O20.46090 (11)0.31617 (7)0.28355 (5)0.0153 (2)
O30.49414 (11)0.48288 (8)0.19514 (6)0.0187 (2)
O40.24248 (11)0.37144 (8)0.16802 (5)0.0171 (2)
N10.19366 (13)0.41035 (9)0.31601 (6)0.0142 (2)
N20.51257 (13)0.48222 (9)0.35581 (6)0.0145 (2)
C10.16171 (16)0.57482 (11)0.27306 (8)0.0169 (3)
C20.09311 (17)0.66473 (12)0.27024 (9)0.0219 (3)
H20.12060.71720.24270.026*
C30.01715 (18)0.67913 (12)0.30789 (9)0.0261 (4)
H30.06280.74150.30550.031*
C40.05984 (17)0.60535 (13)0.34771 (9)0.0259 (4)
H40.13510.61640.37240.031*
C50.00847 (16)0.51221 (12)0.35212 (8)0.0204 (3)
C60.12004 (15)0.49752 (11)0.31484 (8)0.0155 (3)
C70.02862 (17)0.43106 (13)0.39098 (9)0.0244 (3)
H70.10220.43700.41740.029*
C80.04179 (17)0.34421 (13)0.39039 (9)0.0228 (3)
H80.01550.28900.41570.027*
C90.15426 (16)0.33490 (11)0.35243 (8)0.0170 (3)
C100.22910 (17)0.23783 (11)0.35446 (9)0.0210 (3)
H10A0.26680.23030.31020.032*
H10B0.16150.18450.35700.032*
H10C0.30810.23520.39750.032*
C110.54608 (15)0.31020 (11)0.34980 (8)0.0151 (3)
C120.60985 (17)0.22382 (12)0.37911 (8)0.0197 (3)
H120.59610.16470.35140.024*
C130.69565 (17)0.22374 (12)0.45060 (9)0.0226 (3)
H130.73810.16380.47060.027*
C140.71930 (17)0.30763 (12)0.49184 (9)0.0215 (3)
H140.77600.30540.54010.026*
C150.65868 (16)0.39776 (12)0.46212 (8)0.0170 (3)
C160.57156 (15)0.39851 (11)0.39100 (8)0.0145 (3)
C170.68312 (16)0.49006 (12)0.49736 (8)0.0199 (3)
H170.73670.49400.54620.024*
C180.62969 (17)0.57309 (11)0.46108 (8)0.0197 (3)
H180.64930.63530.48420.024*
C190.54487 (16)0.56820 (11)0.38889 (8)0.0171 (3)
C200.49429 (18)0.66222 (11)0.35024 (9)0.0235 (3)
H20A0.45950.64910.29810.035*
H20B0.57360.70930.35700.035*
H20C0.41660.68990.37040.035*
C210.63093 (17)0.48966 (12)0.17852 (9)0.0199 (3)
H210.67540.55350.19800.024*
C220.6130 (2)0.48986 (15)0.09632 (9)0.0321 (4)
H22A0.55050.54450.07540.048*
H22B0.57030.42740.07640.048*
H22C0.70660.49780.08400.048*
C230.72535 (18)0.40664 (13)0.21459 (10)0.0274 (4)
H23A0.73280.40910.26740.041*
H23B0.82070.41350.20420.041*
H23C0.68380.34340.19560.041*
C240.17566 (17)0.41249 (11)0.09929 (8)0.0181 (3)
H240.22490.47550.09220.022*
C250.1915 (2)0.34129 (13)0.03960 (9)0.0308 (4)
H25A0.29320.33060.04110.046*
H25B0.14510.36870.00790.046*
H25C0.14640.27840.04700.046*
C260.02027 (18)0.43437 (14)0.09889 (10)0.0279 (4)
H26A0.01500.48090.13810.042*
H26B0.02860.37310.10650.042*
H26C0.02590.46320.05180.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.01437 (14)0.01316 (13)0.01128 (13)0.00042 (10)0.00319 (9)0.00035 (9)
O10.0175 (5)0.0147 (5)0.0178 (5)0.0012 (4)0.0042 (4)0.0013 (4)
O20.0170 (5)0.0156 (5)0.0125 (5)0.0015 (4)0.0016 (4)0.0008 (4)
O30.0177 (5)0.0219 (5)0.0178 (5)0.0005 (4)0.0068 (4)0.0032 (4)
O40.0201 (5)0.0170 (5)0.0130 (5)0.0005 (4)0.0013 (4)0.0005 (4)
N10.0133 (6)0.0169 (6)0.0119 (6)0.0007 (5)0.0017 (5)0.0018 (4)
N20.0132 (6)0.0164 (6)0.0144 (6)0.0013 (5)0.0041 (5)0.0001 (5)
C10.0155 (7)0.0176 (7)0.0158 (7)0.0004 (6)0.0006 (5)0.0037 (5)
C20.0216 (8)0.0172 (7)0.0240 (8)0.0025 (6)0.0016 (6)0.0030 (6)
C30.0224 (8)0.0231 (8)0.0296 (9)0.0087 (7)0.0013 (7)0.0095 (7)
C40.0170 (8)0.0343 (9)0.0262 (8)0.0060 (7)0.0039 (6)0.0099 (7)
C50.0136 (7)0.0289 (8)0.0177 (7)0.0009 (6)0.0011 (6)0.0054 (6)
C60.0131 (7)0.0185 (7)0.0133 (7)0.0000 (6)0.0005 (5)0.0034 (5)
C70.0162 (8)0.0388 (10)0.0197 (8)0.0011 (7)0.0071 (6)0.0023 (7)
C80.0192 (8)0.0305 (9)0.0189 (8)0.0048 (7)0.0049 (6)0.0035 (6)
C90.0154 (7)0.0214 (7)0.0129 (7)0.0034 (6)0.0003 (5)0.0001 (5)
C100.0216 (8)0.0205 (8)0.0214 (8)0.0019 (6)0.0056 (6)0.0045 (6)
C110.0128 (7)0.0189 (7)0.0139 (7)0.0002 (5)0.0034 (5)0.0007 (5)
C120.0196 (8)0.0188 (7)0.0205 (8)0.0022 (6)0.0042 (6)0.0016 (6)
C130.0208 (8)0.0237 (8)0.0223 (8)0.0055 (6)0.0025 (6)0.0077 (6)
C140.0173 (8)0.0296 (8)0.0164 (7)0.0009 (6)0.0010 (6)0.0047 (6)
C150.0136 (7)0.0240 (8)0.0140 (7)0.0016 (6)0.0042 (6)0.0013 (6)
C160.0122 (7)0.0182 (7)0.0141 (7)0.0002 (5)0.0049 (5)0.0014 (5)
C170.0152 (7)0.0301 (8)0.0142 (7)0.0047 (6)0.0030 (6)0.0032 (6)
C180.0183 (8)0.0221 (8)0.0191 (7)0.0062 (6)0.0052 (6)0.0061 (6)
C190.0151 (7)0.0188 (7)0.0182 (7)0.0037 (6)0.0057 (6)0.0018 (6)
C200.0278 (9)0.0167 (7)0.0238 (8)0.0025 (6)0.0009 (7)0.0008 (6)
C210.0189 (8)0.0216 (8)0.0210 (8)0.0041 (6)0.0081 (6)0.0003 (6)
C220.0325 (10)0.0447 (11)0.0233 (9)0.0086 (8)0.0156 (7)0.0071 (8)
C230.0180 (8)0.0340 (9)0.0305 (9)0.0017 (7)0.0059 (7)0.0053 (7)
C240.0218 (8)0.0189 (7)0.0130 (7)0.0004 (6)0.0024 (6)0.0019 (5)
C250.0447 (11)0.0302 (9)0.0160 (8)0.0091 (8)0.0031 (7)0.0011 (7)
C260.0225 (9)0.0362 (10)0.0245 (8)0.0057 (7)0.0037 (7)0.0071 (7)
Geometric parameters (Å, º) top
Ti1—O31.7766 (11)C12—C131.414 (2)
Ti1—O41.8255 (10)C12—H120.9500
Ti1—O21.9130 (10)C13—C141.368 (2)
Ti1—O11.9255 (10)C13—H130.9500
Ti1—N22.3822 (12)C14—C151.416 (2)
Ti1—N12.4130 (12)C14—H140.9500
O1—C11.3266 (18)C15—C161.413 (2)
O2—C111.3338 (17)C15—C171.413 (2)
O3—C211.4153 (18)C17—C181.359 (2)
O4—C241.4239 (17)C17—H170.9500
N1—C91.3311 (19)C18—C191.422 (2)
N1—C61.3756 (19)C18—H180.9500
N2—C191.3270 (19)C19—C201.496 (2)
N2—C161.3731 (19)C20—H20A0.9800
C1—C21.382 (2)C20—H20B0.9800
C1—C61.419 (2)C20—H20C0.9800
C2—C31.407 (2)C21—C231.511 (2)
C2—H20.9500C21—C221.515 (2)
C3—C41.365 (3)C21—H211.0000
C3—H30.9500C22—H22A0.9800
C4—C51.418 (2)C22—H22B0.9800
C4—H40.9500C22—H22C0.9800
C5—C71.409 (2)C23—H23A0.9800
C5—C61.414 (2)C23—H23B0.9800
C7—C81.360 (2)C23—H23C0.9800
C7—H70.9500C24—C251.512 (2)
C8—C91.421 (2)C24—C261.517 (2)
C8—H80.9500C24—H241.0000
C9—C101.497 (2)C25—H25A0.9800
C10—H10A0.9800C25—H25B0.9800
C10—H10B0.9800C25—H25C0.9800
C10—H10C0.9800C26—H26A0.9800
C11—C121.380 (2)C26—H26B0.9800
C11—C161.419 (2)C26—H26C0.9800
O3—Ti1—O4101.96 (5)C14—C13—C12121.83 (15)
O3—Ti1—O2101.84 (5)C14—C13—H13119.1
O4—Ti1—O295.62 (4)C12—C13—H13119.1
O3—Ti1—O193.07 (5)C13—C14—C15119.54 (14)
O4—Ti1—O197.56 (5)C13—C14—H14120.2
O2—Ti1—O1157.58 (4)C15—C14—H14120.2
O3—Ti1—N290.48 (5)C16—C15—C17116.11 (14)
O4—Ti1—N2165.52 (4)C16—C15—C14119.09 (14)
O2—Ti1—N274.36 (4)C17—C15—C14124.74 (14)
O1—Ti1—N289.03 (4)N2—C16—C15123.90 (14)
O3—Ti1—N1164.98 (5)N2—C16—C11115.65 (13)
O4—Ti1—N187.60 (4)C15—C16—C11120.37 (14)
O2—Ti1—N188.54 (4)C18—C17—C15119.67 (14)
O1—Ti1—N174.02 (4)C18—C17—H17120.2
N2—Ti1—N181.82 (4)C15—C17—H17120.2
C1—O1—Ti1125.12 (9)C17—C18—C19120.95 (14)
C11—O2—Ti1124.87 (9)C17—C18—H18119.5
C21—O3—Ti1154.13 (10)C19—C18—H18119.5
C24—O4—Ti1126.66 (9)N2—C19—C18120.93 (14)
C9—N1—C6117.94 (13)N2—C19—C20120.36 (14)
C9—N1—Ti1134.90 (10)C18—C19—C20118.70 (13)
C6—N1—Ti1107.09 (9)C19—C20—H20A109.5
C19—N2—C16118.24 (13)C19—C20—H20B109.5
C19—N2—Ti1134.14 (10)H20A—C20—H20B109.5
C16—N2—Ti1107.62 (9)C19—C20—H20C109.5
O1—C1—C2123.29 (14)H20A—C20—H20C109.5
O1—C1—C6117.65 (13)H20B—C20—H20C109.5
C2—C1—C6119.06 (14)O3—C21—C23110.24 (12)
C1—C2—C3120.43 (15)O3—C21—C22108.63 (13)
C1—C2—H2119.8C23—C21—C22112.47 (14)
C3—C2—H2119.8O3—C21—H21108.5
C4—C3—C2121.38 (15)C23—C21—H21108.5
C4—C3—H3119.3C22—C21—H21108.5
C2—C3—H3119.3C21—C22—H22A109.5
C3—C4—C5119.79 (15)C21—C22—H22B109.5
C3—C4—H4120.1H22A—C22—H22B109.5
C5—C4—H4120.1C21—C22—H22C109.5
C7—C5—C6116.69 (14)H22A—C22—H22C109.5
C7—C5—C4124.21 (15)H22B—C22—H22C109.5
C6—C5—C4119.09 (15)C21—C23—H23A109.5
N1—C6—C5123.64 (14)C21—C23—H23B109.5
N1—C6—C1116.11 (13)H23A—C23—H23B109.5
C5—C6—C1120.24 (14)C21—C23—H23C109.5
C8—C7—C5119.49 (15)H23A—C23—H23C109.5
C8—C7—H7120.3H23B—C23—H23C109.5
C5—C7—H7120.3O4—C24—C25108.89 (12)
C7—C8—C9120.86 (15)O4—C24—C26109.19 (12)
C7—C8—H8119.6C25—C24—C26112.20 (14)
C9—C8—H8119.6O4—C24—H24108.8
N1—C9—C8121.34 (14)C25—C24—H24108.8
N1—C9—C10120.18 (13)C26—C24—H24108.8
C8—C9—C10118.48 (13)C24—C25—H25A109.5
C9—C10—H10A109.5C24—C25—H25B109.5
C9—C10—H10B109.5H25A—C25—H25B109.5
H10A—C10—H10B109.5C24—C25—H25C109.5
C9—C10—H10C109.5H25A—C25—H25C109.5
H10A—C10—H10C109.5H25B—C25—H25C109.5
H10B—C10—H10C109.5C24—C26—H26A109.5
O2—C11—C12123.48 (13)C24—C26—H26B109.5
O2—C11—C16117.07 (13)H26A—C26—H26B109.5
C12—C11—C16119.45 (13)C24—C26—H26C109.5
C11—C12—C13119.68 (15)H26A—C26—H26C109.5
C11—C12—H12120.2H26B—C26—H26C109.5
C13—C12—H12120.2
O3—Ti1—O1—C1171.18 (11)Ti1—N1—C6—C10.15 (14)
O4—Ti1—O1—C186.32 (11)C7—C5—C6—N11.2 (2)
O2—Ti1—O1—C139.19 (19)C4—C5—C6—N1179.55 (14)
N2—Ti1—O1—C180.75 (11)C7—C5—C6—C1178.57 (14)
N1—Ti1—O1—C11.02 (11)C4—C5—C6—C10.6 (2)
O3—Ti1—O2—C1191.30 (11)O1—C1—C6—N10.93 (19)
O4—Ti1—O2—C11165.20 (11)C2—C1—C6—N1179.29 (13)
O1—Ti1—O2—C1139.37 (18)O1—C1—C6—C5178.89 (13)
N2—Ti1—O2—C114.16 (10)C2—C1—C6—C50.9 (2)
N1—Ti1—O2—C1177.75 (11)C6—C5—C7—C80.6 (2)
O4—Ti1—O3—C21112.2 (2)C4—C5—C7—C8178.58 (15)
O2—Ti1—O3—C2113.8 (2)C5—C7—C8—C91.4 (2)
O1—Ti1—O3—C21149.4 (2)C6—N1—C9—C81.4 (2)
N2—Ti1—O3—C2160.3 (2)Ti1—N1—C9—C8177.92 (10)
N1—Ti1—O3—C21119.1 (2)C6—N1—C9—C10178.99 (13)
O3—Ti1—O4—C2450.83 (12)Ti1—N1—C9—C102.4 (2)
O2—Ti1—O4—C24154.22 (11)C7—C8—C9—N10.4 (2)
O1—Ti1—O4—C2443.96 (12)C7—C8—C9—C10179.26 (15)
N2—Ti1—O4—C24160.41 (16)Ti1—O2—C11—C12178.57 (11)
N1—Ti1—O4—C24117.49 (11)Ti1—O2—C11—C161.88 (18)
O3—Ti1—N1—C9152.04 (17)O2—C11—C12—C13178.34 (14)
O4—Ti1—N1—C977.85 (14)C16—C11—C12—C132.1 (2)
O2—Ti1—N1—C917.84 (14)C11—C12—C13—C140.8 (2)
O1—Ti1—N1—C9176.41 (14)C12—C13—C14—C151.1 (2)
N2—Ti1—N1—C992.25 (14)C13—C14—C15—C161.7 (2)
O3—Ti1—N1—C631.1 (2)C13—C14—C15—C17175.58 (15)
O4—Ti1—N1—C698.96 (9)C19—N2—C16—C153.5 (2)
O2—Ti1—N1—C6165.34 (9)Ti1—N2—C16—C15176.65 (11)
O1—Ti1—N1—C60.40 (9)C19—N2—C16—C11173.27 (13)
N2—Ti1—N1—C690.94 (9)Ti1—N2—C16—C116.53 (14)
O3—Ti1—N2—C1971.95 (14)C17—C15—C16—N20.4 (2)
O4—Ti1—N2—C19138.53 (18)C14—C15—C16—N2177.12 (13)
O2—Ti1—N2—C19174.12 (14)C17—C15—C16—C11177.10 (13)
O1—Ti1—N2—C1921.11 (14)C14—C15—C16—C110.4 (2)
N1—Ti1—N2—C1995.11 (14)O2—C11—C16—N24.13 (19)
O3—Ti1—N2—C16107.81 (9)C12—C11—C16—N2175.45 (13)
O4—Ti1—N2—C1641.7 (2)O2—C11—C16—C15178.93 (12)
O2—Ti1—N2—C165.64 (9)C12—C11—C16—C151.5 (2)
O1—Ti1—N2—C16159.13 (9)C16—C15—C17—C183.3 (2)
N1—Ti1—N2—C1685.13 (9)C14—C15—C17—C18174.09 (15)
Ti1—O1—C1—C2178.74 (11)C15—C17—C18—C192.3 (2)
Ti1—O1—C1—C61.49 (18)C16—N2—C19—C184.6 (2)
O1—C1—C2—C3179.34 (14)Ti1—N2—C19—C18175.66 (10)
C6—C1—C2—C30.4 (2)C16—N2—C19—C20174.44 (13)
C1—C2—C3—C40.3 (2)Ti1—N2—C19—C205.3 (2)
C2—C3—C4—C50.6 (2)C17—C18—C19—N21.8 (2)
C3—C4—C5—C7179.23 (16)C17—C18—C19—C20177.27 (14)
C3—C4—C5—C60.1 (2)Ti1—O3—C21—C238.2 (3)
C9—N1—C6—C52.2 (2)Ti1—O3—C21—C22131.9 (2)
Ti1—N1—C6—C5179.66 (12)Ti1—O4—C24—C25132.10 (12)
C9—N1—C6—C1177.60 (13)Ti1—O4—C24—C26105.08 (14)

Experimental details

Crystal data
Chemical formula[Ti(C10H8NO)2(C3H7O)2]
Mr482.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.5851 (2), 13.5768 (2), 18.7779 (3)
β (°) 102.559 (1)
V3)2385.19 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.35 × 0.25 × 0.15
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.875, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
16391, 5467, 4651
Rint0.025
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.088, 1.03
No. of reflections5467
No. of parameters304
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.39

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

 

Acknowledgements

The authors thank the Vice-President's Office for Research Affairs of Shahid Beheshti University and the University of Malaya for supporting this work.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBickley, D. G. & Nick, S. (1979). Inorg. Chem. 18, 2200–2204.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHarrod, J. F. & Taylor, K. R. (1975). Inorg. Chem. 14, 1541–1545.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar
First citationZeng, W. F., Chen, Y. S., Chiang, M. Y., Chern, S. S. & Cheng, C. P. (2002). Polyhedron, 21, 1081–1087.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds