organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages o2274-o2275

3-Hydr­­oxy-4-meth­oxy­benzaldehyde thio­semicarbazone hemihydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India, and cDepartment of Physics, KLE Society's Institute of Technology, Gokul Road, Hubli 590 030, India
*Correspondence e-mail: hkfun@usm.my

(Received 29 October 2008; accepted 30 October 2008; online 8 November 2008)

The asymmetric unit of the title compound, C9H11N3O2S·0.5H2O, comprises two crystallograpically independent thio­semicarbazone mol­ecules (A and B) and a water mol­ecule of crystallization. In each of the thio­semicarbazone mol­ecules, intra­molecular O—H⋯O and N—H⋯N hydrogen bonds form five-membered rings, producing S(5) ring motifs. Inter­molecular O—H⋯S and N—H⋯O inter­actions between mol­ecule B and the water mol­ecule form a six-membered ring, producing an R22(6) ring motif. Inter­molecular N—H⋯S hydrogen bonds form dimers involving pairs of both A and B mol­ecules, which form R22(8) ring motifs. The angles between the aromatic ring and thio­urea unit in the two mol­ecules are 0.80 (6) and 3.28 (5)°, which proves that each mol­ecule is fairly planar. The crystal structure is stabilized by inter­molecular O—H⋯S (×2), O—H⋯O, N—H⋯S (×2) and N—H⋯O (×2) hydrogen bonds and C—H⋯O (×2) contacts to form a three-dimensional network.

Related literature

For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For background to thio­semicarbazones, see: Al-Awadi et al. (2008[Al-Awadi, N. A., Shuaibna, Abbas A., Ei-Sherif, A. A., Ei-Dissouky, A. & Al-Saleh, E. (2008). Bioinorg. Chem. Appl. doi:10.1155/2008/479897.]); Kizilcikli et al. (2004[Kizilcikli, I., Ulkuseven, B., Dasdemir, Y. & Akkurt, B. (2004). Synth. React. Inorg. Met. Org. Chem. 34, 653-665.]); Mishra et al. (2006[Mishra, D., Nasker, S., Drew, M. G. B. & Chattopadhyay, S. K. (2006). Inorg. Chim. Acta, 359, 585-592.]). For a related structure, see: Ferrari et al. (2001[Ferrari, M. B., Capacchi, S., Bisceglie, F., Pelosi, G. & Tarasconi, P. (2001). Inorg. Chim. Acta, 312, 81-87.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11N3O2S·0.5H2O

  • Mr = 234.28

  • Triclinic, [P \overline 1]

  • a = 10.5288 (2) Å

  • b = 10.7045 (2) Å

  • c = 11.8154 (2) Å

  • α = 68.438 (1)°

  • β = 68.917 (1)°

  • γ = 68.114 (1)°

  • V = 1110.28 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 100.0 (1) K

  • 0.45 × 0.32 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.884, Tmax = 0.973

  • 45467 measured reflections

  • 10830 independent reflections

  • 8078 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.116

  • S = 1.10

  • 10830 reflections

  • 314 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.90 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W1⋯S1B 0.86 2.28 3.1257 (9) 169
O1W—H1W1⋯O1Ai 0.85 1.95 2.7955 (12) 173
N2A—H2NA⋯S1Aii 0.929 (18) 2.450 (18) 3.3732 (9) 172.6 (18)
N2B—H2NB⋯S1Biii 0.842 (19) 2.571 (18) 3.4055 (10) 171.2 (18)
N3A—H3NA⋯N1A 0.847 (19) 2.258 (15) 2.6129 (14) 105.4 (12)
N3A—H3NB⋯O1Wiv 0.864 (16) 2.000 (15) 2.8408 (12) 164.0 (17)
N3B—H3NC⋯O1W 0.833 (19) 2.399 (19) 3.1492 (14) 150.2 (17)
N3B—H3ND⋯N1B 0.875 (19) 2.288 (17) 2.6554 (14) 105.2 (13)
O1A—H1OA⋯O2A 0.81 (2) 2.185 (18) 2.6292 (12) 114.5 (15)
O1B—H1OB⋯S1Av 0.82 (2) 2.685 (19) 3.2346 (10) 125.9 (16)
O1B—H1OB⋯O2B 0.82 (2) 2.251 (19) 2.6949 (13) 114.4 (16)
C1B—H1BA⋯O1Wvi 0.93 2.40 3.3140 (14) 169
C9B—H9BA⋯O2Avii 0.96 2.51 3.2286 (15) 131
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+1, -z; (iii) -x+1, -y, -z+1; (iv) -x+1, -y+1, -z+1; (v) x-1, y-1, z; (vi) x, y-1, z; (vii) -x, -y, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Intriguing chelating patterns, biomedical properties, structural diversity and ion-sensing abilities (Al-Awadi et al., 2008; Kizilcikli et al., 2004; Mishra et al., 2006) have made thiosemicarbazones a class of compounds of immense importance. We report herein the crystal structure of the title compound, (I).

The bond lengths and angles in (I), Fig. 1, agree with those in a related structure (Ferrari et al. 2001). Intramolecular O—H···O and N—H···N hydrogen bonds, in each molecule of A and B, form five-membered rings, producing S(5) ring motifs (Bernstein et al. 1995). The angle between the aromatic ring and the thiourea unit in each of molecule A and B is 0.80 (6) and 3.28 (5)°, respectively, which indicates each molecule is almost planar. Intermolecular O—H···S and N—H···O interactions between molecule B and the water molecule form a six-membered ring, producing a R22(6) ring motif. Intermolecular N—H···S interactions for pairs of molecule A and similarly for pairs of molecules B lead to the formation of dimers with R22(8) ring motifs (Bernstein et al. 1995). The crystal structure is stabilized by intermolecular O—H···S, O—H···O, N—H···S (x 2) and N—H···O (x 2) hydrogen bonds and C—H···O (x 2) contacts, see Table 1. In the 3-D crystal structure the water molecules link neghbouring molecules to form 1-D chains along the b-axis of the unit cell (Fig. 2).

Related literature top

For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995). For background on thiosemicarbazones, see: Al-Awadi et al. (2008); Kizilcikli et al. (2004); Mishra et al. (2006). For a related structure, see: Ferrari et al. (2001).

Experimental top

3-Hydroxy-4-methoxy benzaldehyde (0.075 mol) and thiosemicarbazone (0.05 mol) were dissolved in a sufficient volume of methanol and the mixture was refluxed for 4 h until the whole volume of the mixture attains a pale-yellow colour. The mixture was then allowed to cool, poured into a beaker and kept aside for evaporation. The resulting crude sample was recrystallized twice from methanol. Pure light-yellow crystals of (I) were then obtained.

Refinement top

The H atoms of the water molecule were located from the difference Fourier map and constrained to refine on the parent atom with O—H = 0.85 - 0.86 Å, and with U(H) set to 1.5 times Ueq(O). The H atoms bound to the remaining O and N atoms were located from a difference Fourier map and refined freely, see Table 1 for distances. The C-bound H atoms were positioned geometrically and refined in the riding model approximation with C—H = 0.93 - 0.96 Å, and with U(H) set to 1.2 - 1.5 times Ueq(C). The rotating group model was applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids and the atomic numbering. Dashed lines show intramolecular hydrogen bonds.
[Figure 2] Fig. 2. Partial crystal packing in (I), viewed down the c-axis, showing 1-D chains mediated by the water molecule along the b-axis. Intra- and inter-molecular interactions are drawn as dashed lines.
3-Hydroxy-4-methoxybenzaldehyde thiosemicarbazone hemihydrate top
Crystal data top
C9H11N3O2S·0.5H2OZ = 4
Mr = 234.28F(000) = 492
Triclinic, P1Dx = 1.402 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.5288 (2) ÅCell parameters from 9992 reflections
b = 10.7045 (2) Åθ = 2.5–36.3°
c = 11.8154 (2) ŵ = 0.28 mm1
α = 68.438 (1)°T = 100 K
β = 68.917 (1)°Plate, light yellow
γ = 68.114 (1)°0.45 × 0.32 × 0.10 mm
V = 1110.28 (4) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
10830 independent reflections
Radiation source: fine-focus sealed tube8078 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 36.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1717
Tmin = 0.884, Tmax = 0.973k = 1717
45467 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0547P)2 + 0.1125P]
where P = (Fo2 + 2Fc2)/3
10830 reflections(Δ/σ)max = 0.001
314 parametersΔρmax = 0.90 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
C9H11N3O2S·0.5H2Oγ = 68.114 (1)°
Mr = 234.28V = 1110.28 (4) Å3
Triclinic, P1Z = 4
a = 10.5288 (2) ÅMo Kα radiation
b = 10.7045 (2) ŵ = 0.28 mm1
c = 11.8154 (2) ÅT = 100 K
α = 68.438 (1)°0.45 × 0.32 × 0.10 mm
β = 68.917 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
10830 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
8078 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.973Rint = 0.040
45467 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.90 e Å3
10830 reflectionsΔρmin = 0.63 e Å3
314 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.96703 (3)0.48913 (3)0.19973 (2)0.01747 (6)
O1A0.51514 (8)0.27402 (9)0.26347 (7)0.02001 (15)
O2A0.30169 (8)0.21411 (9)0.07261 (7)0.01997 (15)
N1A0.71556 (9)0.38149 (9)0.09845 (8)0.01559 (15)
N2A0.82582 (9)0.42443 (9)0.09440 (8)0.01634 (15)
N3A0.72833 (10)0.41202 (10)0.30323 (9)0.01863 (16)
C1A0.60929 (10)0.32375 (11)0.13430 (9)0.01602 (17)
H1AA0.68320.34530.20350.019*
C2A0.50692 (10)0.28289 (11)0.14735 (9)0.01535 (16)
C3A0.39489 (10)0.25053 (10)0.04411 (9)0.01556 (16)
C4A0.38655 (10)0.25938 (11)0.07304 (9)0.01677 (17)
H4AA0.31260.23760.14210.020*
C5A0.48947 (10)0.30101 (11)0.08621 (9)0.01594 (17)
H5AA0.48350.30780.16430.019*
C6A0.60192 (10)0.33279 (10)0.01652 (9)0.01479 (16)
C7A0.71238 (10)0.37674 (11)0.00763 (9)0.01642 (17)
H7AA0.78190.40180.07990.020*
C8A0.83058 (10)0.43992 (10)0.20092 (9)0.01451 (16)
C9A0.18681 (12)0.17340 (13)0.02852 (11)0.0237 (2)
H9AA0.12610.15520.00410.036*
H9AB0.13370.24730.06880.036*
H9AC0.22360.09040.08860.036*
S1B0.47040 (3)0.21971 (3)0.47447 (3)0.02029 (6)
O1B0.02689 (9)0.32448 (8)0.32698 (8)0.02095 (15)
O2B0.18810 (8)0.11332 (8)0.24783 (7)0.01905 (14)
N1B0.20913 (9)0.10835 (9)0.38890 (8)0.01597 (15)
N2B0.31944 (9)0.10741 (9)0.42677 (8)0.01711 (15)
N3B0.23043 (10)0.34380 (10)0.39796 (9)0.02002 (17)
C1B0.10696 (10)0.16764 (10)0.36407 (9)0.01606 (17)
H1BA0.17800.24270.39420.019*
C2B0.01113 (10)0.19098 (10)0.32466 (9)0.01548 (16)
C3B0.09831 (10)0.07809 (10)0.28235 (9)0.01488 (16)
C4B0.10910 (10)0.05636 (10)0.27978 (9)0.01613 (17)
H4BA0.18220.13100.25260.019*
C5B0.01134 (10)0.07990 (10)0.31756 (9)0.01574 (16)
H5BA0.01880.17010.31520.019*
C6B0.09823 (10)0.03191 (10)0.35910 (9)0.01469 (16)
C7B0.20549 (10)0.01329 (10)0.39715 (9)0.01585 (17)
H7BA0.27330.09170.42830.019*
C8B0.32919 (10)0.22659 (11)0.43096 (9)0.01633 (17)
C9B0.30345 (11)0.00063 (12)0.20815 (11)0.0222 (2)
H9BA0.36240.03650.18940.033*
H9BB0.26700.06580.13420.033*
H9BC0.35830.04440.27430.033*
O1W0.34588 (8)0.53871 (8)0.45766 (7)0.02077 (15)
H2W10.39110.45240.46110.031*
H1W10.39450.59020.39810.031*
H2NA0.8880 (18)0.4499 (18)0.0167 (16)0.037 (4)*
H2NB0.3777 (17)0.0311 (18)0.4514 (15)0.032 (4)*
H3NA0.6636 (16)0.3855 (16)0.3001 (14)0.025 (4)*
H3NB0.7234 (15)0.4214 (16)0.3744 (14)0.025 (4)*
H3NC0.2333 (17)0.4172 (18)0.4051 (15)0.033 (4)*
H3ND0.1594 (16)0.3384 (16)0.3798 (14)0.026 (4)*
H1OA0.4418 (18)0.2630 (18)0.2614 (16)0.036 (4)*
H1OB0.0391 (18)0.3255 (18)0.3063 (16)0.037 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.01803 (11)0.02175 (12)0.01820 (11)0.01016 (9)0.00575 (8)0.00572 (9)
O1A0.0214 (3)0.0294 (4)0.0160 (3)0.0126 (3)0.0040 (3)0.0087 (3)
O2A0.0179 (3)0.0289 (4)0.0197 (3)0.0134 (3)0.0029 (3)0.0087 (3)
N1A0.0144 (3)0.0177 (4)0.0181 (4)0.0063 (3)0.0058 (3)0.0050 (3)
N2A0.0165 (3)0.0214 (4)0.0155 (3)0.0096 (3)0.0047 (3)0.0048 (3)
N3A0.0176 (4)0.0251 (4)0.0174 (4)0.0100 (3)0.0029 (3)0.0079 (3)
C1A0.0152 (4)0.0199 (4)0.0155 (4)0.0075 (3)0.0031 (3)0.0057 (3)
C2A0.0166 (4)0.0179 (4)0.0149 (4)0.0063 (3)0.0049 (3)0.0057 (3)
C3A0.0144 (4)0.0174 (4)0.0179 (4)0.0066 (3)0.0047 (3)0.0054 (3)
C4A0.0162 (4)0.0203 (4)0.0156 (4)0.0079 (3)0.0031 (3)0.0048 (3)
C5A0.0163 (4)0.0197 (4)0.0141 (4)0.0068 (3)0.0042 (3)0.0049 (3)
C6A0.0142 (4)0.0165 (4)0.0160 (4)0.0052 (3)0.0051 (3)0.0047 (3)
C7A0.0151 (4)0.0193 (4)0.0172 (4)0.0070 (3)0.0045 (3)0.0048 (3)
C8A0.0147 (4)0.0142 (4)0.0167 (4)0.0042 (3)0.0058 (3)0.0045 (3)
C9A0.0193 (4)0.0321 (6)0.0253 (5)0.0151 (4)0.0009 (4)0.0105 (4)
S1B0.01952 (11)0.01809 (12)0.02886 (13)0.00806 (9)0.01069 (10)0.00520 (9)
O1B0.0208 (3)0.0155 (3)0.0330 (4)0.0036 (3)0.0123 (3)0.0099 (3)
O2B0.0178 (3)0.0175 (3)0.0280 (4)0.0032 (3)0.0118 (3)0.0089 (3)
N1B0.0142 (3)0.0186 (4)0.0181 (4)0.0064 (3)0.0052 (3)0.0054 (3)
N2B0.0157 (3)0.0157 (4)0.0236 (4)0.0053 (3)0.0086 (3)0.0049 (3)
N3B0.0193 (4)0.0159 (4)0.0279 (4)0.0046 (3)0.0095 (3)0.0061 (3)
C1B0.0148 (4)0.0152 (4)0.0201 (4)0.0028 (3)0.0063 (3)0.0065 (3)
C2B0.0158 (4)0.0141 (4)0.0191 (4)0.0044 (3)0.0049 (3)0.0067 (3)
C3B0.0146 (4)0.0169 (4)0.0164 (4)0.0057 (3)0.0047 (3)0.0059 (3)
C4B0.0168 (4)0.0152 (4)0.0187 (4)0.0045 (3)0.0072 (3)0.0045 (3)
C5B0.0170 (4)0.0137 (4)0.0183 (4)0.0050 (3)0.0058 (3)0.0044 (3)
C6B0.0148 (4)0.0156 (4)0.0158 (4)0.0055 (3)0.0041 (3)0.0050 (3)
C7B0.0150 (4)0.0164 (4)0.0182 (4)0.0050 (3)0.0054 (3)0.0051 (3)
C8B0.0165 (4)0.0172 (4)0.0173 (4)0.0073 (3)0.0039 (3)0.0045 (3)
C9B0.0193 (4)0.0214 (5)0.0322 (5)0.0022 (4)0.0141 (4)0.0104 (4)
O1W0.0225 (4)0.0180 (3)0.0206 (3)0.0044 (3)0.0056 (3)0.0051 (3)
Geometric parameters (Å, º) top
S1A—C8A1.6988 (10)O1B—C2B1.3668 (12)
O1A—C2A1.3794 (11)O1B—H1OB0.820 (17)
O1A—H1OA0.814 (17)O2B—C3B1.3633 (12)
O2A—C3A1.3593 (12)O2B—C9B1.4324 (12)
O2A—C9A1.4322 (13)N1B—C7B1.2836 (13)
N1A—C7A1.2857 (12)N1B—N2B1.3824 (11)
N1A—N2A1.3794 (12)N2B—C8B1.3373 (13)
N2A—C8A1.3486 (12)N2B—H2NB0.841 (17)
N2A—H2NA0.928 (17)N3B—C8B1.3292 (13)
N3A—C8A1.3219 (13)N3B—H3NC0.832 (17)
N3A—H3NA0.847 (16)N3B—H3ND0.875 (16)
N3A—H3NB0.864 (15)C1B—C2B1.3816 (13)
C1A—C2A1.3776 (13)C1B—C6B1.4016 (14)
C1A—C6A1.4028 (13)C1B—H1BA0.9300
C1A—H1AA0.9300C2B—C3B1.4037 (13)
C2A—C3A1.3993 (14)C3B—C4B1.3905 (14)
C3A—C4A1.3912 (13)C4B—C5B1.3888 (13)
C4A—C5A1.3890 (14)C4B—H4BA0.9300
C4A—H4AA0.9300C5B—C6B1.3966 (13)
C5A—C6A1.3977 (14)C5B—H5BA0.9300
C5A—H5AA0.9300C6B—C7B1.4547 (13)
C6A—C7A1.4550 (13)C7B—H7BA0.9300
C7A—H7AA0.9300C9B—H9BA0.9600
C9A—H9AA0.9600C9B—H9BB0.9600
C9A—H9AB0.9600C9B—H9BC0.9600
C9A—H9AC0.9600O1W—H2W10.8600
S1B—C8B1.7090 (10)O1W—H1W10.8531
C2A—O1A—H1OA109.5 (12)C3B—O2B—C9B115.87 (8)
C3A—O2A—C9A117.44 (8)C7B—N1B—N2B114.34 (8)
C7A—N1A—N2A115.51 (8)C8B—N2B—N1B120.11 (8)
C8A—N2A—N1A118.54 (8)C8B—N2B—H2NB119.9 (11)
C8A—N2A—H2NA123.0 (10)N1B—N2B—H2NB119.9 (11)
N1A—N2A—H2NA118.2 (10)C8B—N3B—H3NC118.1 (11)
C8A—N3A—H3NA120.0 (10)C8B—N3B—H3ND118.5 (10)
C8A—N3A—H3NB122.4 (10)H3NC—N3B—H3ND122.8 (15)
H3NA—N3A—H3NB117.6 (14)C2B—C1B—C6B120.65 (9)
C2A—C1A—C6A119.93 (9)C2B—C1B—H1BA119.7
C2A—C1A—H1AA120.0C6B—C1B—H1BA119.7
C6A—C1A—H1AA120.0O1B—C2B—C1B118.58 (9)
C1A—C2A—O1A119.54 (9)O1B—C2B—C3B121.76 (9)
C1A—C2A—C3A120.63 (9)C1B—C2B—C3B119.67 (9)
O1A—C2A—C3A119.82 (8)O2B—C3B—C4B125.42 (9)
O2A—C3A—C4A126.57 (9)O2B—C3B—C2B114.74 (9)
O2A—C3A—C2A113.56 (8)C4B—C3B—C2B119.84 (9)
C4A—C3A—C2A119.86 (9)C5B—C4B—C3B120.41 (9)
C5A—C4A—C3A119.55 (9)C5B—C4B—H4BA119.8
C5A—C4A—H4AA120.2C3B—C4B—H4BA119.8
C3A—C4A—H4AA120.2C4B—C5B—C6B120.01 (9)
C4A—C5A—C6A120.79 (9)C4B—C5B—H5BA120.0
C4A—C5A—H5AA119.6C6B—C5B—H5BA120.0
C6A—C5A—H5AA119.6C5B—C6B—C1B119.39 (9)
C5A—C6A—C1A119.24 (9)C5B—C6B—C7B122.48 (9)
C5A—C6A—C7A122.91 (8)C1B—C6B—C7B118.13 (9)
C1A—C6A—C7A117.85 (9)N1B—C7B—C6B121.82 (9)
N1A—C7A—C6A121.12 (9)N1B—C7B—H7BA119.1
N1A—C7A—H7AA119.4C6B—C7B—H7BA119.1
C6A—C7A—H7AA119.4N3B—C8B—N2B118.02 (9)
N3A—C8A—N2A117.23 (9)N3B—C8B—S1B123.94 (8)
N3A—C8A—S1A123.10 (7)N2B—C8B—S1B118.01 (7)
N2A—C8A—S1A119.64 (7)O2B—C9B—H9BA109.5
O2A—C9A—H9AA109.5O2B—C9B—H9BB109.5
O2A—C9A—H9AB109.5H9BA—C9B—H9BB109.5
H9AA—C9A—H9AB109.5O2B—C9B—H9BC109.5
O2A—C9A—H9AC109.5H9BA—C9B—H9BC109.5
H9AA—C9A—H9AC109.5H9BB—C9B—H9BC109.5
H9AB—C9A—H9AC109.5H2W1—O1W—H1W1109.0
C2B—O1B—H1OB109.3 (12)
C7A—N1A—N2A—C8A176.03 (9)C7B—N1B—N2B—C8B175.36 (9)
C6A—C1A—C2A—O1A179.88 (9)C6B—C1B—C2B—O1B177.67 (9)
C6A—C1A—C2A—C3A0.19 (15)C6B—C1B—C2B—C3B1.69 (15)
C9A—O2A—C3A—C4A3.53 (16)C9B—O2B—C3B—C4B1.14 (14)
C9A—O2A—C3A—C2A177.37 (9)C9B—O2B—C3B—C2B178.05 (9)
C1A—C2A—C3A—O2A179.06 (9)O1B—C2B—C3B—O2B1.74 (14)
O1A—C2A—C3A—O2A0.87 (14)C1B—C2B—C3B—O2B178.92 (9)
C1A—C2A—C3A—C4A0.10 (15)O1B—C2B—C3B—C4B179.02 (9)
O1A—C2A—C3A—C4A179.97 (9)C1B—C2B—C3B—C4B0.33 (15)
O2A—C3A—C4A—C5A178.74 (10)O2B—C3B—C4B—C5B179.85 (9)
C2A—C3A—C4A—C5A0.30 (15)C2B—C3B—C4B—C5B0.69 (15)
C3A—C4A—C5A—C6A0.61 (15)C3B—C4B—C5B—C6B0.35 (15)
C4A—C5A—C6A—C1A0.70 (15)C4B—C5B—C6B—C1B1.00 (15)
C4A—C5A—C6A—C7A179.96 (10)C4B—C5B—C6B—C7B178.61 (9)
C2A—C1A—C6A—C5A0.49 (15)C2B—C1B—C6B—C5B2.03 (15)
C2A—C1A—C6A—C7A179.86 (9)C2B—C1B—C6B—C7B177.59 (9)
N2A—N1A—C7A—C6A179.81 (9)N2B—N1B—C7B—C6B178.82 (9)
C5A—C6A—C7A—N1A3.67 (16)C5B—C6B—C7B—N1B3.38 (15)
C1A—C6A—C7A—N1A176.98 (9)C1B—C6B—C7B—N1B176.23 (9)
N1A—N2A—C8A—N3A0.26 (14)N1B—N2B—C8B—N3B0.04 (14)
N1A—N2A—C8A—S1A178.63 (7)N1B—N2B—C8B—S1B178.29 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W1···S1B0.862.283.1257 (9)169
O1W—H1W1···O1Ai0.851.952.7955 (12)173
N2A—H2NA···S1Aii0.929 (18)2.450 (18)3.3732 (9)172.6 (18)
N2B—H2NB···S1Biii0.842 (19)2.571 (18)3.4055 (10)171.2 (18)
N3A—H3NA···N1A0.847 (19)2.258 (15)2.6129 (14)105.4 (12)
N3A—H3NB···O1Wiv0.864 (16)2.000 (15)2.8408 (12)164.0 (17)
N3B—H3NC···O1W0.833 (19)2.399 (19)3.1492 (14)150.2 (17)
N3B—H3ND···N1B0.875 (19)2.288 (17)2.6554 (14)105.2 (13)
O1A—H1OA···O2A0.81 (2)2.185 (18)2.6292 (12)114.5 (15)
O1B—H1OB···S1Av0.82 (2)2.685 (19)3.2346 (10)125.9 (16)
O1B—H1OB···O2B0.82 (2)2.251 (19)2.6949 (13)114.4 (16)
C1B—H1BA···O1Wvi0.932.403.3140 (14)169
C9B—H9BA···O2Avii0.962.513.2286 (15)131
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1; (v) x1, y1, z; (vi) x, y1, z; (vii) x, y, z.

Experimental details

Crystal data
Chemical formulaC9H11N3O2S·0.5H2O
Mr234.28
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.5288 (2), 10.7045 (2), 11.8154 (2)
α, β, γ (°)68.438 (1), 68.917 (1), 68.114 (1)
V3)1110.28 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.45 × 0.32 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.884, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
45467, 10830, 8078
Rint0.040
(sin θ/λ)max1)0.839
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.116, 1.10
No. of reflections10830
No. of parameters314
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.90, 0.63

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W1···S1B0.862.283.1257 (9)169
O1W—H1W1···O1Ai0.851.952.7955 (12)173
N2A—H2NA···S1Aii0.929 (18)2.450 (18)3.3732 (9)172.6 (18)
N2B—H2NB···S1Biii0.842 (19)2.571 (18)3.4055 (10)171.2 (18)
N3A—H3NA···N1A0.847 (19)2.258 (15)2.6129 (14)105.4 (12)
N3A—H3NB···O1Wiv0.864 (16)2.000 (15)2.8408 (12)164.0 (17)
N3B—H3NC···O1W0.833 (19)2.399 (19)3.1492 (14)150.2 (17)
N3B—H3ND···N1B0.875 (19)2.288 (17)2.6554 (14)105.2 (13)
O1A—H1OA···O2A0.81 (2)2.185 (18)2.6292 (12)114.5 (15)
O1B—H1OB···S1Av0.82 (2)2.685 (19)3.2346 (10)125.9 (16)
O1B—H1OB···O2B0.82 (2)2.251 (19)2.6949 (13)114.4 (16)
C1B—H1BA···O1Wvi0.932.403.3140 (14)169
C9B—H9BA···O2Avii0.962.513.2286 (15)131
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1; (v) x1, y1, z; (vi) x, y1, z; (vii) x, y, z.
 

Acknowledgements

H-KF and RK thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a postdoctoral research fellowship. This work was supported by the Department of Science and Technology (DST), Government of India (grant No. SR/S2/LOP-17/2006).

References

First citationAl-Awadi, N. A., Shuaibna, Abbas A., Ei-Sherif, A. A., Ei-Dissouky, A. & Al-Saleh, E. (2008). Bioinorg. Chem. Appl. doi:10.1155/2008/479897.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFerrari, M. B., Capacchi, S., Bisceglie, F., Pelosi, G. & Tarasconi, P. (2001). Inorg. Chim. Acta, 312, 81–87.  Web of Science CSD CrossRef CAS Google Scholar
First citationKizilcikli, I., Ulkuseven, B., Dasdemir, Y. & Akkurt, B. (2004). Synth. React. Inorg. Met. Org. Chem. 34, 653–665.  CAS Google Scholar
First citationMishra, D., Nasker, S., Drew, M. G. B. & Chattopadhyay, S. K. (2006). Inorg. Chim. Acta, 359, 585–592.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages o2274-o2275
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds