organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(5-Bromo-2-hy­droxy­benzyl­­idene)-p-toluene­sulfonohydrazide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran
*Correspondence e-mail: hkfun@usm.my

(Received 3 November 2008; accepted 10 November 2008; online 13 November 2008)

The title compound, C14H13BrN2O3S, features an intra­molecular O—H⋯N hydrogen bond which generates an S(6) ring motif. The dihedral angle between the two benzene rings is 86.47 (6)°. Inter­molecular N—H⋯O and C—H⋯O inter­actions link neighbouring mol­ecules via R22(13) ring motifs, forming one-dimensional extended chains along the c axis.

Related literature

For background to sulfonamides, see: Kayser et al. (2004[Kayser, F. H., Bienz, K. A., Eckert, J. & Zinkernagel, R. M. (2004). Medical Microbiology, pp. 1-20. Berlin: Thieme Medical.]). For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures and applications see: Tabatabaee et al. (2007[Tabatabaee, M., Anari-Abbasnejad, M., Nozari, N., Sadegheian, S. & Ghasemzadeh, M. (2007). Acta Cryst. E63, o2099-o2100.]); Mehrabi et al. (2008[Mehrabi, H., Kia, R., Hassanzadeh, A., Ghobadi, S. & Khavasi, H. R. (2008). Acta Cryst. E64, o1845.]); Ali et al. (2007[Ali, H. M., Laila, M., Wan Jefrey, B. & Ng, S. W. (2007). Acta Cryst. E63, o1617-o1618.]); Tierney et al. (2006[Tierney, M., McPhee, S. Jr & Papadakis, M. A. (2006). Current Medical Diagnosis & Treatment, 45th ed., pp. 1-50. New York: McGraw-Hill Medical.]); Krygowski et al. (1998[Krygowski, T. M., Pietka, E., Anulewicz, R., Cyranski, M. K. & Nowacki, J. (1998). Tetrahedron, 54, 12289-12292.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13BrN2O3S

  • Mr = 369.23

  • Monoclinic, P 21 /c

  • a = 15.8890 (3) Å

  • b = 9.8502 (2) Å

  • c = 9.8702 (2) Å

  • β = 105.475 (1)°

  • V = 1488.78 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.91 mm−1

  • T = 100.0 (1) K

  • 0.45 × 0.34 × 0.31 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.308, Tmax = 0.407

  • 41486 measured reflections

  • 7057 independent reflections

  • 5961 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.079

  • S = 1.06

  • 7057 reflections

  • 199 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.28 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O2i 0.851 (19) 2.002 (19) 2.8476 (13) 172.4 (19)
O1—H1O1⋯N1 0.84 (3) 1.94 (3) 2.6740 (14) 146 (3)
C7—H7A⋯O1i 0.93 2.60 3.3793 (15) 142
C10—H10A⋯Br1ii 0.93 2.91 3.8082 (12) 164
C12—H12A⋯O3iii 0.93 2.49 3.3691 (15) 158
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Sulfonamides were the first class of antimicrobial agents to be discovered. They inhibit dihydropteroate synthetase in the bacterial folic acid pathway. Although their clinical role has diminished, they are still useful in certain situations, because of their efficacy and low cost (Krygowski et al., 1998). Sulfonamides (e.g. sulfanilamide, sulfamethoxazole, sulfafurazole) are structural analogues of p-aminobenzoic acid (PABA) and compete with PABA to block its conversion to dihydrofolic acid. These agents are generally used in combination with other drugs to prevent or treat a number of bacterial and parasitic infections (Tierney et al., 2006). With regard to all of the above, we report herein the crystal structure of the title compound, (I).

Bond lengths and angles in (I), Fig. 1, are comparable with those in related structures (Mehrabi et al., 2008; Ali et al. 2007). An intramolecular O—H···N hydrogen bond is noted which generates a S(6) ring motif. The two benzene rings make the dihedral angle of 86.47 (6)°. Intermolecular N—H···O and C—H···O interactions link neighbouring molecules via R22(13) ring motifs to form 1-D extended chains along the c-axis, Fig. 2 and Table 1. The crystal structure is further stabilized by intermolecular N—H···O, C—H···Br, C—H···O and π···π [Cg1···Cg1 = 3.9548 (8) Å; symmetry code: 2 - x, 1 - y, 2 - z] interactions.

Related literature top

For background on sulfonamides, see: Kayser et al. (2004). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures and applications see: Tabatabaee et al. (2007); Mehrabi et al. (2008); Ali et al. (2007); Tierney et al. (2006); Krygowski et al. (1998).

Experimental top

p-Tosylhydrazine (2 mmol) was added to a refluxing ethanolic solution (50 ml) of 5-bromosalicylaldehyde (2 mmol). The mixture was stirred for 2 h. After cooling, the colorless crystalline solid was isolated by filtration, washed with cold ethanol, and recrystallized from an ethanol solution of (I).

Refinement top

H atoms bound to O1 and N2 were located from a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically and refined as riding model with C—H = 0.93 - 0.96 Å, and with Uiso(H) = 1.2-1.5Ueq(C). A rotating group model was used for the methyl group. The highest residual electron density peak (1.28 eÅ-3) was located 0.64 Å from Br1 and the deepest hole (-0.59 eÅ-3) was located 0.59 Å from Br1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% displacement ellipsoids and the atomic numbering. The intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of (I) viewed down the b-axis, showing 1-D extended chains along the c-axis through N—H···O hydrogen bonding. Intermolecular hydrogen bonds are shown as dashed lines.
(E)-N'-(5-Bromo-2-hydroxybenzylidene)-p-toluenesulfonohydrazide top
Crystal data top
C14H13BrN2O3SF(000) = 744
Mr = 369.23Dx = 1.647 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9995 reflections
a = 15.8890 (3) Åθ = 2.5–37.4°
b = 9.8502 (2) ŵ = 2.91 mm1
c = 9.8702 (2) ÅT = 100 K
β = 105.475 (1)°Block, colourless
V = 1488.78 (5) Å30.45 × 0.34 × 0.31 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7057 independent reflections
Radiation source: fine-focus sealed tube5961 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 36.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2625
Tmin = 0.308, Tmax = 0.407k = 1616
41486 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0378P)2 + 0.5647P]
where P = (Fo2 + 2Fc2)/3
7057 reflections(Δ/σ)max = 0.003
199 parametersΔρmax = 1.28 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
C14H13BrN2O3SV = 1488.78 (5) Å3
Mr = 369.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.8890 (3) ŵ = 2.91 mm1
b = 9.8502 (2) ÅT = 100 K
c = 9.8702 (2) Å0.45 × 0.34 × 0.31 mm
β = 105.475 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7057 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5961 reflections with I > 2σ(I)
Tmin = 0.308, Tmax = 0.407Rint = 0.035
41486 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 1.28 e Å3
7057 reflectionsΔρmin = 0.59 e Å3
199 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.191754 (8)0.636650 (14)1.149579 (15)0.02941 (4)
S10.645085 (17)0.74186 (3)0.60027 (3)0.01571 (5)
O10.91105 (6)0.56509 (11)0.60615 (10)0.02610 (17)
O20.67053 (6)0.78504 (9)0.47792 (9)0.02295 (16)
O30.57441 (5)0.80755 (8)0.63807 (9)0.02088 (15)
N10.80775 (6)0.71072 (9)0.72484 (10)0.01769 (15)
N20.73002 (6)0.77064 (9)0.73584 (10)0.01728 (15)
C10.97310 (8)0.58383 (12)0.72937 (13)0.02124 (19)
C21.05653 (9)0.53277 (14)0.74093 (15)0.0272 (2)
H2A1.06830.48780.66520.033*
C31.12225 (8)0.54873 (14)0.86523 (15)0.0279 (2)
H3A1.17780.51440.87290.033*
C41.10429 (8)0.61625 (12)0.97777 (14)0.0237 (2)
C51.02200 (8)0.66843 (12)0.96797 (13)0.02211 (19)
H5A1.01100.71381.04410.027*
C60.95532 (7)0.65296 (11)0.84359 (12)0.01914 (18)
C70.86985 (7)0.70900 (11)0.83885 (12)0.01990 (18)
H7A0.86000.74450.92060.024*
C80.62834 (7)0.56588 (10)0.59177 (11)0.01615 (16)
C90.66712 (8)0.48649 (11)0.50865 (12)0.02087 (19)
H9A0.69830.52650.45180.025*
C100.65842 (8)0.34621 (11)0.51211 (13)0.0223 (2)
H10A0.68410.29240.45670.027*
C110.61190 (7)0.28427 (11)0.59702 (12)0.01949 (18)
C120.57195 (8)0.36678 (11)0.67689 (13)0.02032 (18)
H12A0.53930.32710.73180.024*
C130.58016 (7)0.50714 (11)0.67562 (12)0.01874 (17)
H13A0.55390.56120.73000.022*
C140.60620 (9)0.13240 (11)0.60308 (15)0.0257 (2)
H14A0.62300.09350.52500.039*
H14B0.54730.10630.59860.039*
H14C0.64460.10030.68940.039*
H1N20.7171 (12)0.7519 (19)0.812 (2)0.027 (4)*
H1O10.8634 (18)0.596 (3)0.615 (3)0.057 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01916 (6)0.02972 (7)0.03454 (8)0.00490 (4)0.00119 (5)0.00973 (5)
S10.01756 (10)0.01561 (10)0.01476 (10)0.00098 (7)0.00568 (8)0.00033 (7)
O10.0248 (4)0.0345 (5)0.0198 (4)0.0064 (3)0.0074 (3)0.0009 (3)
O20.0322 (4)0.0216 (3)0.0178 (4)0.0002 (3)0.0114 (3)0.0031 (3)
O30.0191 (3)0.0196 (3)0.0246 (4)0.0042 (3)0.0069 (3)0.0005 (3)
N10.0164 (4)0.0173 (3)0.0206 (4)0.0000 (3)0.0071 (3)0.0001 (3)
N20.0165 (4)0.0191 (4)0.0171 (4)0.0003 (3)0.0059 (3)0.0025 (3)
C10.0217 (5)0.0216 (4)0.0217 (5)0.0026 (4)0.0081 (4)0.0037 (4)
C20.0245 (5)0.0295 (5)0.0305 (6)0.0072 (4)0.0122 (5)0.0035 (5)
C30.0208 (5)0.0282 (5)0.0359 (7)0.0051 (4)0.0095 (5)0.0075 (5)
C40.0172 (4)0.0233 (5)0.0290 (6)0.0010 (4)0.0035 (4)0.0069 (4)
C50.0189 (5)0.0213 (4)0.0251 (5)0.0017 (4)0.0042 (4)0.0007 (4)
C60.0178 (4)0.0181 (4)0.0218 (5)0.0002 (3)0.0057 (4)0.0017 (3)
C70.0181 (4)0.0199 (4)0.0219 (5)0.0005 (3)0.0057 (4)0.0023 (4)
C80.0168 (4)0.0161 (4)0.0154 (4)0.0003 (3)0.0040 (3)0.0008 (3)
C90.0253 (5)0.0193 (4)0.0211 (5)0.0006 (4)0.0114 (4)0.0023 (4)
C100.0263 (5)0.0184 (4)0.0238 (5)0.0005 (4)0.0094 (4)0.0037 (4)
C110.0181 (4)0.0174 (4)0.0209 (5)0.0002 (3)0.0015 (4)0.0004 (3)
C120.0187 (4)0.0201 (4)0.0228 (5)0.0018 (3)0.0067 (4)0.0016 (4)
C130.0175 (4)0.0197 (4)0.0205 (4)0.0001 (3)0.0075 (3)0.0002 (3)
C140.0291 (6)0.0171 (4)0.0286 (6)0.0001 (4)0.0035 (5)0.0009 (4)
Geometric parameters (Å, º) top
Br1—C41.8947 (13)C5—H5A0.9300
S1—O31.4292 (8)C6—C71.4551 (16)
S1—O21.4363 (9)C7—H7A0.9300
S1—N21.6518 (10)C8—C91.3907 (15)
S1—C81.7524 (10)C8—C131.3943 (15)
O1—C11.3585 (16)C9—C101.3900 (16)
O1—H1O10.84 (3)C9—H9A0.9300
N1—C71.2837 (15)C10—C111.3971 (17)
N1—N21.3989 (13)C10—H10A0.9300
N2—H1N20.852 (19)C11—C121.3972 (16)
C1—C21.3937 (17)C11—C141.5008 (16)
C1—C61.4087 (16)C12—C131.3891 (15)
C2—C31.392 (2)C12—H12A0.9300
C2—H2A0.9300C13—H13A0.9300
C3—C41.388 (2)C14—H14A0.9600
C3—H3A0.9300C14—H14B0.9600
C4—C51.3840 (17)C14—H14C0.9600
C5—C61.3995 (17)
O3—S1—O2120.16 (5)C1—C6—C7122.85 (11)
O3—S1—N2103.88 (5)N1—C7—C6121.72 (10)
O2—S1—N2106.13 (5)N1—C7—H7A119.1
O3—S1—C8109.91 (5)C6—C7—H7A119.1
O2—S1—C8109.02 (5)C9—C8—C13121.11 (10)
N2—S1—C8106.82 (5)C9—C8—S1119.93 (8)
C1—O1—H1O1108.2 (18)C13—C8—S1118.85 (8)
C7—N1—N2115.19 (9)C10—C9—C8118.81 (10)
N1—N2—S1114.34 (7)C10—C9—H9A120.6
N1—N2—H1N2113.8 (13)C8—C9—H9A120.6
S1—N2—H1N2110.0 (13)C9—C10—C11121.39 (10)
O1—C1—C2118.13 (11)C9—C10—H10A119.3
O1—C1—C6121.98 (10)C11—C10—H10A119.3
C2—C1—C6119.89 (12)C10—C11—C12118.51 (10)
C3—C2—C1120.33 (12)C10—C11—C14120.42 (11)
C3—C2—H2A119.8C12—C11—C14121.07 (11)
C1—C2—H2A119.8C13—C12—C11121.06 (10)
C4—C3—C2119.57 (11)C13—C12—H12A119.5
C4—C3—H3A120.2C11—C12—H12A119.5
C2—C3—H3A120.2C12—C13—C8119.09 (10)
C5—C4—C3120.94 (12)C12—C13—H13A120.5
C5—C4—Br1118.48 (10)C8—C13—H13A120.5
C3—C4—Br1120.58 (9)C11—C14—H14A109.5
C4—C5—C6120.05 (12)C11—C14—H14B109.5
C4—C5—H5A120.0H14A—C14—H14B109.5
C6—C5—H5A120.0C11—C14—H14C109.5
C5—C6—C1119.22 (11)H14A—C14—H14C109.5
C5—C6—C7117.93 (10)H14B—C14—H14C109.5
C7—N1—N2—S1166.98 (8)C5—C6—C7—N1173.17 (11)
O3—S1—N2—N1177.80 (7)C1—C6—C7—N17.24 (17)
O2—S1—N2—N154.59 (9)O3—S1—C8—C9155.48 (9)
C8—S1—N2—N161.63 (8)O2—S1—C8—C921.84 (11)
O1—C1—C2—C3179.66 (12)N2—S1—C8—C992.44 (10)
C6—C1—C2—C30.54 (19)O3—S1—C8—C1328.24 (10)
C1—C2—C3—C40.2 (2)O2—S1—C8—C13161.87 (9)
C2—C3—C4—C50.25 (19)N2—S1—C8—C1383.85 (9)
C2—C3—C4—Br1178.81 (10)C13—C8—C9—C101.12 (18)
C3—C4—C5—C60.31 (18)S1—C8—C9—C10175.08 (9)
Br1—C4—C5—C6178.78 (9)C8—C9—C10—C110.07 (19)
C4—C5—C6—C10.06 (17)C9—C10—C11—C121.54 (18)
C4—C5—C6—C7179.67 (11)C9—C10—C11—C14177.72 (12)
O1—C1—C6—C5179.73 (11)C10—C11—C12—C131.87 (18)
C2—C1—C6—C50.48 (17)C14—C11—C12—C13177.39 (11)
O1—C1—C6—C70.14 (17)C11—C12—C13—C80.73 (18)
C2—C1—C6—C7179.92 (11)C9—C8—C13—C120.80 (17)
N2—N1—C7—C6178.58 (10)S1—C8—C13—C12175.44 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O2i0.851 (19)2.002 (19)2.8476 (13)172.4 (19)
O1—H1O1···N10.84 (3)1.94 (3)2.6740 (14)146 (3)
C7—H7A···O1i0.932.603.3793 (15)142
C10—H10A···Br1ii0.932.913.8082 (12)164
C12—H12A···O3iii0.932.493.3691 (15)158
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+2, y1/2, z+3/2; (iii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H13BrN2O3S
Mr369.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)15.8890 (3), 9.8502 (2), 9.8702 (2)
β (°) 105.475 (1)
V3)1488.78 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.91
Crystal size (mm)0.45 × 0.34 × 0.31
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.308, 0.407
No. of measured, independent and
observed [I > 2σ(I)] reflections
41486, 7057, 5961
Rint0.035
(sin θ/λ)max1)0.827
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.079, 1.06
No. of reflections7057
No. of parameters199
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.28, 0.59

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O2i0.851 (19)2.002 (19)2.8476 (13)172.4 (19)
O1—H1O1···N10.84 (3)1.94 (3)2.6740 (14)146 (3)
C7—H7A···O1i0.932.603.3793 (15)142
C10—H10A···Br1ii0.932.913.8082 (12)164
C12—H12A···O3iii0.932.493.3691 (15)158
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+2, y1/2, z+3/2; (iii) x+1, y1/2, z+3/2.
 

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK thanks PNU for financial support.

References

First citationAli, H. M., Laila, M., Wan Jefrey, B. & Ng, S. W. (2007). Acta Cryst. E63, o1617–o1618.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKayser, F. H., Bienz, K. A., Eckert, J. & Zinkernagel, R. M. (2004). Medical Microbiology, pp. 1–20. Berlin: Thieme Medical.  Google Scholar
First citationKrygowski, T. M., Pietka, E., Anulewicz, R., Cyranski, M. K. & Nowacki, J. (1998). Tetrahedron, 54, 12289–12292.  Web of Science CSD CrossRef CAS Google Scholar
First citationMehrabi, H., Kia, R., Hassanzadeh, A., Ghobadi, S. & Khavasi, H. R. (2008). Acta Cryst. E64, o1845.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTabatabaee, M., Anari-Abbasnejad, M., Nozari, N., Sadegheian, S. & Ghasemzadeh, M. (2007). Acta Cryst. E63, o2099–o2100.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTierney, M., McPhee, S. Jr & Papadakis, M. A. (2006). Current Medical Diagnosis & Treatment, 45th ed., pp. 1–50. New York: McGraw–Hill Medical.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds