organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis[2-(2-pyrid­yl)-1H-imidazol-1-yl]butane

aBiological Scientific and Technical College, Changchun University, Changchun 130022, People's Republic of China, and bDepartment of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
*Correspondence e-mail: lishunli@yahoo.cn

(Received 22 September 2008; accepted 8 November 2008; online 13 November 2008)

The title compound, C20H20N6, was isolated from dimethyl sulfoxide solution using 2-(1H-imidazol-2-yl)pyridine and 1,4-dichloro­butane in the presence of NaOH.

Related literature

For the coordination capabilities and catalytic properties of the metal complexes of N-heterocyclic precursors, see: Chiswell et al. (1964[Chiswell, B., Lioss, F. & Morris, B. S. (1964). Inorg. Chem. 3, 110-114.]); Herrmann (2002[Herrmann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290-1309.]); Herrmann & Kocher (1997[Herrmann, W. A. & Kocher, C. (1997). Angew. Chem. Int. Ed. Engl. 36, 2162-2187.]). For metal complexes with N-donor ligands, see: Carlucci et al. (2005[Carlucci, L., Ciani, G. & Proserpio, D. M. (2005). Cryst. Growth Des. 5, 37-39.]);

[Scheme 1]

Experimental

Crystal data
  • C20H20N6

  • Mr = 344.42

  • Monoclinic, P 21 /c

  • a = 11.0426 (10) Å

  • b = 13.4510 (12) Å

  • c = 12.7081 (11) Å

  • β = 111.213 (2)°

  • V = 1759.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.43 × 0.39 × 0.36 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.938, Tmax = 0.966

  • 10708 measured reflections

  • 4139 independent reflections

  • 1705 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.125

  • S = 1.03

  • 4139 reflections

  • 215 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]; data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Numerous flexible or rigid N-heterocyclic precursors have been synthesized and studied because they attract considerable attention because of their diverse coordination capabilities and the important catalytic properties of their metal complexes (Herrmann, 2002; Herrmann & Kocher, 1997). A lot of metal complexes with N-donor ligands, especially ligands with imidazole-type rings separated by an aromatic spacer, have been isolated with various structures (Carlucci et al., 2005). In the present work, the crystal structure of an N-donor ligand, (I), a newspacer for metal organic frameworks, is reported.

In the molecular structure of the title compound, (I), bond lengths and angles are normal. The dihedral angles between the imidazole ring and the pyridine ring in the same 2-(pyridin-2-yl)-1H-imidazol group are 11.6 and 37.8°, respectively. The dihedral angle between two imidazole rings in the same ligand is 13.2°. And the corresponding angle between two pyridine rings in the same ligand is 36.4°.

Related literature top

For the coordination capabilities and catalytic properties of the

metal complexes of N-heterocyclic precursors, see: Chiswell et al. (1964); Herrmann (2002); Herrmann & Kocher (1997). For metal complexes with N-donor ligands, see: Carlucci et al. (2005);

Experimental top

The predecessor 2-(2-pyridyl)imidazole was synthesized according to the literature (Chiswell et al., 1964). A mixture of 2-(2-pyridyl)imidazole (7.25 g, 50 mmol) and NaOH (2.00 g, 50 mmol) in DMSO (20 ml) was stirred at 60°Cfor 1 h, and the 1,4-dichlorobutane(3.18 g, 25 mmol) was added. The mixture was cooled to room temperature after stirring at 60°Cfor 24 h and then poured into 200 ml of water. A yellow solid formed immediately, which was isolated by filtration in 80% yield after drying in air. Crystals suitable for X-ray diffraction were isolated from 65% ethanol.

Refinement top

All H atoms on C atoms were poisitioned geometrically and refined as idea positions, with C—H = 0.93–0.97 Å, and Uiso=1.2 Ueq (C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 1997); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I). Displacement ellipsoids are drawn at the 30% probability level.
1,4-Bis[2-(2-pyridyl)-1H-imidazol-1-yl]butane top
Crystal data top
C20H20N6F(000) = 728
Mr = 344.42Dx = 1.300 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 795 reflections
a = 11.0426 (10) Åθ = 2.0–28.3°
b = 13.4510 (12) ŵ = 0.08 mm1
c = 12.7081 (11) ÅT = 293 K
β = 111.213 (2)°Block, colorless
V = 1759.7 (3) Å30.43 × 0.39 × 0.36 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4139 independent reflections
Radiation source: fine-focus sealed tube1705 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 147
Tmin = 0.938, Tmax = 0.966k = 1717
10708 measured reflectionsl = 1416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.04P)2]
where P = (Fo2 + 2Fc2)/3
4139 reflections(Δ/σ)max < 0.001
215 parametersΔρmax = 0.49 e Å3
1 restraintΔρmin = 0.48 e Å3
Crystal data top
C20H20N6V = 1759.7 (3) Å3
Mr = 344.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.0426 (10) ŵ = 0.08 mm1
b = 13.4510 (12) ÅT = 293 K
c = 12.7081 (11) Å0.43 × 0.39 × 0.36 mm
β = 111.213 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4139 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1705 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.966Rint = 0.031
10708 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0531 restraint
wR(F2) = 0.125H-atom parameters constrained
S = 1.03Δρmax = 0.49 e Å3
4139 reflectionsΔρmin = 0.48 e Å3
215 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.34332 (12)0.07519 (9)0.63433 (12)0.0497 (5)
C10.39593 (14)0.06046 (10)0.75039 (11)0.0417 (6)
C20.46903 (15)0.02419 (12)0.79408 (9)0.0518 (7)
H20.50420.03410.87170.062*
C30.48952 (15)0.09411 (9)0.72171 (14)0.0624 (8)
H30.53840.15080.75090.075*
C40.43691 (16)0.07938 (11)0.60565 (13)0.0589 (7)
H40.45060.12620.55720.071*
C50.36382 (15)0.00527 (12)0.56196 (8)0.0590 (7)
H50.32860.01510.48430.071*
C60.37230 (15)0.13348 (10)0.81951 (12)0.0395 (6)
N30.43588 (14)0.13294 (11)0.93287 (12)0.0502 (5)
C70.39003 (16)0.20944 (13)0.97707 (11)0.0534 (7)
H70.41690.22621.05310.064*
C80.29810 (15)0.25725 (11)0.89103 (13)0.0488 (6)
H80.25080.31260.89760.059*
N40.28714 (14)0.21030 (11)0.79365 (11)0.0413 (5)
C90.1363 (2)0.11723 (18)0.21435 (19)0.0467 (6)
C100.1977 (3)0.0643 (2)0.1161 (2)0.0572 (7)
H100.28210.08040.06970.069*
C110.1323 (3)0.0127 (2)0.0876 (2)0.0694 (8)
H110.17150.04880.02150.083*
C120.0090 (3)0.03454 (19)0.1584 (2)0.0656 (8)
H120.03810.08520.14110.079*
C130.0436 (3)0.0197 (2)0.2550 (2)0.0633 (7)
H130.12680.00300.30360.076*
C140.2034 (2)0.20182 (19)0.24123 (19)0.0474 (6)
C150.2823 (2)0.3070 (2)0.3309 (2)0.0606 (7)
H150.30170.34070.38680.073*
C160.3281 (3)0.3272 (2)0.2197 (2)0.0679 (8)
H160.38500.37890.18630.081*
C170.2028 (2)0.24607 (16)0.68080 (17)0.0451 (6)
H17A0.25040.24120.63020.054*
H17B0.18370.31580.68660.054*
C180.0760 (2)0.19055 (17)0.62919 (17)0.0458 (6)
H18A0.02660.19500.67850.055*
H18B0.09320.12090.62050.055*
C190.0021 (2)0.23502 (17)0.51472 (17)0.0463 (6)
H19A0.02060.30410.52470.056*
H19B0.04990.23320.46740.056*
C200.1283 (2)0.18114 (18)0.45550 (17)0.0521 (7)
H20A0.11030.11210.44450.062*
H20B0.18070.18270.50250.062*
N20.0161 (2)0.09507 (15)0.28481 (16)0.0547 (6)
N50.20146 (18)0.22651 (15)0.34553 (15)0.0499 (5)
N60.2800 (2)0.26188 (17)0.16254 (16)0.0592 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0433 (12)0.0591 (14)0.0435 (11)0.0011 (11)0.0120 (10)0.0039 (10)
C10.0336 (14)0.0477 (16)0.0433 (14)0.0021 (12)0.0134 (11)0.0033 (12)
C20.0542 (17)0.0541 (17)0.0480 (15)0.0130 (14)0.0197 (13)0.0063 (13)
C30.0624 (19)0.0572 (18)0.0724 (19)0.0184 (15)0.0300 (16)0.0105 (15)
C40.0576 (18)0.0644 (19)0.0600 (18)0.0036 (15)0.0275 (15)0.0020 (14)
C50.0577 (18)0.072 (2)0.0489 (15)0.0003 (16)0.0212 (14)0.0070 (15)
C60.0390 (14)0.0402 (15)0.0386 (14)0.0023 (12)0.0132 (12)0.0029 (11)
N30.0484 (13)0.0572 (14)0.0408 (12)0.0002 (11)0.0113 (10)0.0023 (10)
C70.0606 (18)0.0584 (17)0.0407 (14)0.0019 (15)0.0179 (14)0.0079 (13)
C80.0547 (17)0.0471 (16)0.0462 (15)0.0000 (13)0.0202 (13)0.0054 (13)
N40.0409 (12)0.0417 (12)0.0396 (11)0.0002 (10)0.0122 (10)0.0003 (9)
C90.0460 (17)0.0529 (17)0.0424 (14)0.0080 (14)0.0174 (14)0.0021 (12)
C100.0557 (18)0.0694 (19)0.0465 (16)0.0118 (16)0.0184 (14)0.0005 (14)
C110.084 (2)0.067 (2)0.0632 (19)0.0193 (19)0.0340 (19)0.0153 (16)
C120.077 (2)0.0563 (19)0.0702 (19)0.0037 (17)0.0342 (18)0.0105 (16)
C130.0542 (18)0.0583 (18)0.0733 (19)0.0057 (16)0.0181 (16)0.0025 (15)
C140.0381 (15)0.0605 (18)0.0423 (15)0.0038 (14)0.0128 (13)0.0029 (13)
C150.0445 (16)0.077 (2)0.0548 (17)0.0102 (16)0.0115 (14)0.0114 (15)
C160.0498 (18)0.081 (2)0.0626 (18)0.0179 (16)0.0081 (16)0.0013 (16)
C170.0429 (15)0.0441 (15)0.0433 (13)0.0031 (13)0.0096 (12)0.0067 (11)
C180.0421 (15)0.0497 (15)0.0438 (14)0.0013 (13)0.0132 (12)0.0046 (11)
C190.0407 (14)0.0539 (16)0.0398 (13)0.0023 (13)0.0091 (12)0.0027 (12)
C200.0454 (16)0.0670 (18)0.0435 (15)0.0044 (14)0.0157 (13)0.0002 (12)
N20.0478 (14)0.0564 (14)0.0553 (13)0.0004 (12)0.0132 (12)0.0049 (11)
N50.0387 (12)0.0689 (15)0.0376 (12)0.0013 (11)0.0085 (10)0.0021 (11)
N60.0482 (14)0.0759 (17)0.0483 (13)0.0105 (13)0.0112 (12)0.0039 (12)
Geometric parameters (Å, º) top
N1—C11.3900C11—H110.9300
N1—C51.3900C12—C131.365 (3)
C1—C21.3900C12—H120.9300
C1—C61.4036C13—N21.337 (3)
C2—C31.3900C13—H130.9300
C2—H20.9300C14—N61.325 (3)
C3—C41.3900C14—N51.359 (3)
C3—H30.9300C15—C161.345 (3)
C4—C51.3900C15—N51.372 (3)
C4—H40.9300C15—H150.9300
C5—H50.9300C16—N61.364 (3)
C6—N31.3551C16—H160.9300
C6—N41.3551C17—C181.511 (3)
N3—C71.3551C17—H17A0.9700
C7—C81.3551C17—H17B0.9700
C7—H70.9300C18—C191.520 (3)
C8—N41.3551C18—H18A0.9700
C8—H80.9300C18—H18B0.9700
N4—C171.480 (2)C19—C201.509 (3)
C9—N21.338 (3)C19—H19A0.9700
C9—C101.383 (3)C19—H19B0.9700
C9—C141.464 (3)C20—N51.470 (3)
C10—C111.385 (3)C20—H20A0.9700
C10—H100.9300C20—H20B0.9700
C11—C121.365 (3)
C1—N1—C5120.0N2—C13—C12124.6 (2)
N1—C1—C2120.0N2—C13—H13117.7
N1—C1—C6117.60C12—C13—H13117.7
C2—C1—C6122.40N6—C14—N5111.6 (2)
C1—C2—C3120.0N6—C14—C9122.5 (2)
C1—C2—H2120.0N5—C14—C9125.9 (2)
C3—C2—H2120.0C16—C15—N5106.3 (2)
C4—C3—C2120.0C16—C15—H15126.9
C4—C3—H3120.0N5—C15—H15126.9
C2—C3—H3120.0C15—C16—N6111.0 (2)
C3—C4—C5120.0C15—C16—H16124.5
C3—C4—H4120.0N6—C16—H16124.5
C5—C4—H4120.0N4—C17—C18114.81 (17)
C4—C5—N1120.0N4—C17—H17A108.6
C4—C5—H5120.0C18—C17—H17A108.6
N1—C5—H5120.0N4—C17—H17B108.6
N3—C6—N4108.0C18—C17—H17B108.6
N3—C6—C1121.29H17A—C17—H17B107.5
N4—C6—C1130.66C17—C18—C19109.66 (18)
C6—N3—C7108.0C17—C18—H18A109.7
N3—C7—C8108.0C19—C18—H18A109.7
N3—C7—H7126.0C17—C18—H18B109.7
C8—C7—H7126.0C19—C18—H18B109.7
C7—C8—N4108.0H18A—C18—H18B108.2
C7—C8—H8126.0C20—C19—C18112.96 (19)
N4—C8—H8126.0C20—C19—H19A109.0
C6—N4—C8108.0C18—C19—H19A109.0
C6—N4—C17128.42 (14)C20—C19—H19B109.0
C8—N4—C17123.39 (14)C18—C19—H19B109.0
N2—C9—C10122.2 (2)H19A—C19—H19B107.8
N2—C9—C14118.7 (2)N5—C20—C19111.43 (19)
C10—C9—C14119.1 (2)N5—C20—H20A109.3
C9—C10—C11119.3 (3)C19—C20—H20A109.3
C9—C10—H10120.4N5—C20—H20B109.3
C11—C10—H10120.4C19—C20—H20B109.3
C12—C11—C10118.6 (3)H20A—C20—H20B108.0
C12—C11—H11120.7C13—N2—C9116.8 (2)
C10—C11—H11120.7C14—N5—C15106.33 (19)
C13—C12—C11118.5 (3)C14—N5—C20129.4 (2)
C13—C12—H12120.8C15—N5—C20124.2 (2)
C11—C12—H12120.8C14—N6—C16104.8 (2)
C5—N1—C1—C20.0C10—C9—C14—N5141.1 (2)
N1—C1—C2—C30.0N5—C15—C16—N60.5 (3)
C1—C2—C3—C40.0C6—N4—C17—C1883.6 (2)
C2—C3—C4—C50.0C8—N4—C17—C18102.05 (19)
C3—C4—C5—N10.0N4—C17—C18—C19179.30 (18)
C1—N1—C5—C40.0C17—C18—C19—C20177.87 (19)
N4—C6—N3—C70.0C18—C19—C20—N5179.65 (19)
C6—N3—C7—C80.0C12—C13—N2—C90.7 (4)
N3—C7—C8—N40.0C10—C9—N2—C131.0 (3)
N3—C6—N4—C80.0C14—C9—N2—C13177.6 (2)
N3—C6—N4—C17175.07 (18)N6—C14—N5—C150.2 (3)
C1—C6—N4—C177.4 (2)C9—C14—N5—C15176.9 (2)
C7—C8—N4—C60.0N6—C14—N5—C20178.8 (2)
C7—C8—N4—C17175.38 (17)C9—C14—N5—C204.2 (4)
N2—C9—C10—C111.6 (3)C16—C15—N5—C140.4 (3)
C14—C9—C10—C11176.9 (2)C16—C15—N5—C20178.6 (2)
C9—C10—C11—C120.6 (4)C19—C20—N5—C1494.6 (3)
C10—C11—C12—C131.0 (4)C19—C20—N5—C1584.2 (3)
C11—C12—C13—N21.7 (4)N5—C14—N6—C160.1 (3)
N2—C9—C14—N6142.9 (2)C9—C14—N6—C16177.3 (2)
C10—C9—C14—N635.7 (3)C15—C16—N6—C140.4 (3)
N2—C9—C14—N540.3 (3)

Experimental details

Crystal data
Chemical formulaC20H20N6
Mr344.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.0426 (10), 13.4510 (12), 12.7081 (11)
β (°) 111.213 (2)
V3)1759.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.43 × 0.39 × 0.36
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.938, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
10708, 4139, 1705
Rint0.031
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.125, 1.03
No. of reflections4139
No. of parameters215
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.48

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

 

References

First citationBruker (1997). SMART. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarlucci, L., Ciani, G. & Proserpio, D. M. (2005). Cryst. Growth Des. 5, 37–39.  Web of Science CSD CrossRef CAS Google Scholar
First citationChiswell, B., Lioss, F. & Morris, B. S. (1964). Inorg. Chem. 3, 110–114.  CrossRef CAS Web of Science Google Scholar
First citationHerrmann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290–1309.  Web of Science CrossRef CAS Google Scholar
First citationHerrmann, W. A. & Kocher, C. (1997). Angew. Chem. Int. Ed. Engl. 36, 2162–2187.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds