inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of K4[Bi2Cl10]·4H2O

aFaculté des Sciences de Sfax, Laboratoire de Sciences des Matériaux et d'Environnement, BP 115 Sfax 3052, Tunisia
*Correspondence e-mail: mabrouk.khelifi@fss.rnu.tn

(Received 18 October 2008; accepted 29 October 2008; online 8 November 2008)

In comparison with the previous refinement of tetra­potassium di-μ-chlorido-bis­[tetra­chloridobismuthate(III)] tetra­hydrate [Volkova, Udovenko, Levin & Shevchenko (1983). Koord. Khim. 9, 356–360], the current redetermination reveals anisotropic displacement parameters for all non-H atoms, localization of the H atoms, and higher precision of lattice parameters and inter­atomic distances. The crystal structure is built up of edge-sharing [Bi2Cl10]4− double octa­hedra with the bridging Cl atoms situated on a mirror plane, three K+ counter-cations (two of which are on mirror planes), and two water mol­ecules that are solely coordinated to the K+ cations. These building units are linked into a three-dimensional network structure. Additional O—H⋯Cl hydrogen bonds between the water mol­ecules and the complex anions stabilize this arrangement.

Related literature

The isotypic Br compound was reported by Laza­rini (1977[Lazarini, F. (1977). Acta Cryst. B33, 1954-1956.]). For related structures, see: Belkyal et al. (1997[Belkyal, L., Mokhlisse, R., Tanouti, B., Hesse, K.-F. & Depmeier, W. (1997). Eur. J. Solid. State Inorg. Chem. 34, 1085-1091.]); Benachenhou et al. (1986[Benachenhou, F., Mairesse, G., Nowogrocki, G. & Thomas, D. (1986). J. Solid State Chem. 65, 13-26.]). For general background, see: Larson (1970[Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.]); Prince (1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]); Watkin (1994[Watkin, D. (1994). Acta Cryst. A50, 411-437.]).

Experimental

Crystal data
  • K4[Bi2Cl10]·4H2O

  • Mr = 1000.94

  • Orthorhombic, P n m a

  • a = 8.4310 (1) Å

  • b = 21.8444 (3) Å

  • c = 12.2561 (2) Å

  • V = 2257.21 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 17.49 mm−1

  • T = 295 (2) K

  • 0.28 × 0.12 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.067, Tmax = 0.247

  • 26961 measured reflections

  • 4596 independent reflections

  • 2801 reflections with I > 3.0σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.017

  • S = 1.08

  • 2801 reflections

  • 114 parameters

  • All H-atom parameters refined

  • Δρmax = 1.01 e Å−3

  • Δρmin = −0.82 e Å−3

Table 1
Selected bond lengths (Å)

Bi1—Cl7i 2.5954 (8)
Bi1—Cl4 2.6190 (8)
Bi1—Cl2 2.6522 (8)
Bi1—Cl6i 2.7205 (7)
Bi1—Cl5ii 2.8512 (7)
Bi1—Cl3 2.8724 (7)
Symmetry codes: (i) x, y, z+1; (ii) [x, -y-{\script{1\over 2}}, z+1].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H13⋯Cl7iii 0.92 (7) 2.32 (7) 3.234 (4) 169 (7)
O11—H14⋯Cl4iv 0.78 (7) 2.56 (8) 3.273 (3) 150 (9)
O12—H8⋯Cl7v 0.79 (6) 2.78 (7) 3.497 (4) 152 (7)
O12—H15⋯Cl2vi 0.81 (17) 2.81 (8) 3.514 (3) 145 (9)
Symmetry codes: (iii) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (vi) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: CRYSTALS and publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Some bismuth-containing compounds (Belkyal et al., 1997; Benachenhou et al., 1986) exhibit phase transitions and have interesting physical properties which make them the object of an intensive research due to their potential application in catalysis.

Under investigation of a series of these materials, we have selected the K4[Bi2Cl10].4H2O compound and redetermined its structure. For the previous crystallographic study on this compound, see: Volkova et al. (1983). The isotypic Br compound was reported by Lazarini (1977).

The structure of the title compound can be described by [Bi2Cl10]4- pairs of octahedra, K+ cations and water molecules (Fig. 1), forming a three-dimensional network (Fig. 2). The [Bi2Cl10]4- anions are formed by pairs of distorted [BiCl6] octahedra sharing an edge. The mean Bi—Cl distances range from 2.5954 (8) to 2.8724 (7) Å with the Cl—Bi—Cl angles varying between 80.58 (2) and 94.82 (3)°, likewise showing the distortions of the BiCl6 octahedra. Compared to the previous study, the distortion of the [BiCl6] octahedra is relatively lower. The structure is additionally stabilized by the presence of hydrogen bonds of the type O—H···Cl between water molecules and the binuclear complex anions. For the polyhedra around the K+ cations the coordinations are similar. Whereas two K+ cations (K8 and K9) are located at the 4c sites (m symmetry), the third cation (K10) is on a general position. However, all K+ cations are surrounded by two water O atoms and seven Cl atoms, leading to irregular [KO2Cl7] polyhedra.

Related literature top

The isotypic Br compound was reported by Lazarini (1977). For related structures, see: Belkyal et al. (1997); Benachenhou et al. (1986). For general background, see: Larson (1970); Prince (1982); Watkin (1994).

Experimental top

(BiO)2CO3 was dissolved in concentrated hydrochloric acid in order to prepare a BiCl3 solution. The latter was then added to an aqueous KCl solution in a molar ratio of 1:2. The resulting solution has been kept under stirring for 1 h and was allowed to stand at room temperature for some days. After this time colourless crystals of the title compound were obtained and isolated from the acid solution by filtration.

Refinement top

The H atom positions were located from difference Fourier maps and were refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: APEX2 (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and CRYSTALS (Betteridge et al., 2003); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003) and publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Part of the crystal structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius. [Symmetry codes: (i) x, y, z + 1; (ii) -x, -1/2 - y, z + 1.]
[Figure 2] Fig. 2. Projection of the K4[Bi2Cl10].4H2O structure along the a axis, showing the pairs of edge-sharing [BiCl6] octahedra.
tetrapotassium di-µ-chlorido-bis[tetrachloridomuthate(III)] tetrahydrate top
Crystal data top
K4[Bi2Cl10]·4H2OF(000) = 1808
Mr = 1000.94Dx = 2.945 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 4596 reflections
a = 8.4310 (1) Åθ = 1.9–34.2°
b = 21.8444 (3) ŵ = 17.49 mm1
c = 12.2561 (2) ÅT = 295 K
V = 2257.21 (6) Å3Prism, colourless
Z = 40.28 × 0.12 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
2801 reflections with I > 3.0σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 34.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1012
Tmin = 0.067, Tmax = 0.247k = 2233
26961 measured reflectionsl = 1917
4596 independent reflections
Refinement top
Refinement on FSecondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017All H-atom parameters refined
wR(F2) = 0.017 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 0.260 0.753E-01 0.968E-01
S = 1.08(Δ/σ)max = 0.002
2801 reflectionsΔρmax = 1.01 e Å3
114 parametersΔρmin = 0.82 e Å3
0 restraintsExtinction correction: Larson (1970), Equation 22
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 33.8 (8)
Crystal data top
K4[Bi2Cl10]·4H2OV = 2257.21 (6) Å3
Mr = 1000.94Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 8.4310 (1) ŵ = 17.49 mm1
b = 21.8444 (3) ÅT = 295 K
c = 12.2561 (2) Å0.28 × 0.12 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
4596 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
2801 reflections with I > 3.0σ(I)
Tmin = 0.067, Tmax = 0.247Rint = 0.034
26961 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0170 restraints
wR(F2) = 0.017All H-atom parameters refined
S = 1.08Δρmax = 1.01 e Å3
2801 reflectionsΔρmin = 0.82 e Å3
114 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.367812 (10)0.349919 (4)0.996881 (8)0.0204
Cl20.49635 (11)0.35057 (4)0.79938 (7)0.0394
Cl30.17101 (13)0.25000.92700 (9)0.0308
Cl40.15802 (11)0.43464 (4)0.95182 (7)0.0360
Cl50.56356 (13)0.25000.06223 (10)0.0308
Cl60.24213 (9)0.34605 (4)0.20120 (6)0.0302
Cl70.57912 (10)0.42888 (4)0.05937 (7)0.0331
K80.44796 (13)0.25000.34052 (9)0.0349
K90.28965 (14)0.25000.66630 (9)0.0379
K100.02601 (12)0.54772 (5)0.80949 (8)0.0506
O110.3695 (3)0.16188 (16)0.5001 (3)0.0504
O120.2459 (5)0.47915 (15)0.6858 (3)0.0552
H130.278 (9)0.140 (3)0.487 (5)0.10 (2)*
H80.205 (8)0.481 (3)0.629 (5)0.09 (2)*
H140.428 (8)0.142 (3)0.535 (5)0.09 (2)*
H150.223 (5)0.445 (8)0.707 (6)0.08 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.02127 (5)0.01939 (4)0.02050 (4)0.00016 (3)0.00160 (4)0.00009 (4)
Cl20.0440 (4)0.0469 (5)0.0272 (3)0.0084 (4)0.0102 (3)0.0035 (3)
Cl30.0218 (5)0.0365 (6)0.0342 (5)0.00000.0043 (4)0.0000
Cl40.0351 (4)0.0338 (4)0.0392 (4)0.0049 (3)0.0057 (3)0.0086 (3)
Cl50.0228 (5)0.0305 (5)0.0390 (5)0.00000.0037 (4)0.0000
Cl60.0316 (3)0.0338 (4)0.0252 (3)0.0039 (3)0.0044 (3)0.0028 (3)
Cl70.0338 (4)0.0302 (4)0.0354 (4)0.0042 (3)0.0028 (3)0.0025 (3)
K80.0329 (5)0.0334 (5)0.0383 (5)0.00000.0061 (4)0.0000
K90.0370 (6)0.0432 (6)0.0335 (5)0.00000.0037 (4)0.0000
K100.0460 (5)0.0586 (5)0.0472 (5)0.0134 (4)0.0086 (4)0.0190 (4)
O110.0291 (13)0.0507 (16)0.071 (2)0.0020 (11)0.0121 (15)0.0093 (17)
O120.076 (2)0.0449 (17)0.0446 (17)0.0092 (17)0.0009 (17)0.0044 (14)
Geometric parameters (Å, º) top
Bi1—Cl7i2.5954 (8)Bi1—Cl32.8724 (7)
Bi1—Cl42.6190 (8)O11—H130.92 (7)
Bi1—Cl22.6522 (8)O11—H140.78 (7)
Bi1—Cl6i2.7205 (7)O12—H80.79 (6)
Bi1—Cl5ii2.8512 (7)O12—H150.81 (12)
Cl6i—Bi1—Cl7i90.94 (3)Cl6i—Bi1—Cl487.31 (3)
Cl6i—Bi1—Cl5ii86.74 (3)Cl7i—Bi1—Cl493.22 (3)
Cl7i—Bi1—Cl5ii91.64 (2)Cl5ii—Bi1—Cl4172.37 (3)
Cl6i—Bi1—Cl2178.11 (3)Cl2—Bi1—Cl494.57 (3)
Cl7i—Bi1—Cl289.16 (3)Cl3—Bi1—Cl494.82 (3)
Cl5ii—Bi1—Cl291.37 (3)Bi1iii—Cl3—Bi198.91 (3)
Cl6i—Bi1—Cl391.48 (3)Bi1iv—Cl5—Bi1v99.91 (3)
Cl7i—Bi1—Cl3171.71 (3)H13—O11—H14110 (6)
Cl5ii—Bi1—Cl380.58 (2)H8—O12—H15103 (7)
Cl2—Bi1—Cl388.16 (3)
Symmetry codes: (i) x, y, z+1; (ii) x, y1/2, z+1; (iii) x, y1/2, z; (iv) x, y, z1; (v) x, y1/2, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H13···Cl7vi0.92 (7)2.32 (7)3.234 (4)169 (7)
O11—H14···Cl4vii0.78 (7)2.56 (8)3.273 (3)150 (9)
O12—H8···Cl7viii0.79 (6)2.78 (7)3.497 (4)152 (7)
O12—H15···Cl2ix0.81 (17)2.81 (8)3.514 (3)145 (9)
Symmetry codes: (vi) x1/2, y1/2, z+1/2; (vii) x+1/2, y1/2, z+3/2; (viii) x1/2, y, z+1/2; (ix) x1/2, y, z+3/2.

Experimental details

Crystal data
Chemical formulaK4[Bi2Cl10]·4H2O
Mr1000.94
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)295
a, b, c (Å)8.4310 (1), 21.8444 (3), 12.2561 (2)
V3)2257.21 (6)
Z4
Radiation typeMo Kα
µ (mm1)17.49
Crystal size (mm)0.28 × 0.12 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.067, 0.247
No. of measured, independent and
observed [I > 3.0σ(I)] reflections
26961, 4596, 2801
Rint0.034
(sin θ/λ)max1)0.790
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.017, 1.08
No. of reflections2801
No. of parameters114
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)1.01, 0.82

Computer programs: APEX2 (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and CRYSTALS (Betteridge et al., 2003), DIAMOND (Brandenburg, 2001), CRYSTALS (Betteridge et al., 2003) and publCIF (Westrip, 2008).

Selected bond lengths (Å) top
Bi1—Cl7i2.5954 (8)Bi1—Cl6i2.7205 (7)
Bi1—Cl42.6190 (8)Bi1—Cl5ii2.8512 (7)
Bi1—Cl22.6522 (8)Bi1—Cl32.8724 (7)
Symmetry codes: (i) x, y, z+1; (ii) x, y1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H13···Cl7iii0.92 (7)2.32 (7)3.234 (4)169 (7)
O11—H14···Cl4iv0.78 (7)2.56 (8)3.273 (3)150 (9)
O12—H8···Cl7v0.79 (6)2.78 (7)3.497 (4)152 (7)
O12—H15···Cl2vi0.81 (17)2.81 (8)3.514 (3)145 (9)
Symmetry codes: (iii) x1/2, y1/2, z+1/2; (iv) x+1/2, y1/2, z+3/2; (v) x1/2, y, z+1/2; (vi) x1/2, y, z+3/2.
 

References

First citationBelkyal, L., Mokhlisse, R., Tanouti, B., Hesse, K.-F. & Depmeier, W. (1997). Eur. J. Solid. State Inorg. Chem. 34, 1085–1091.  CAS Google Scholar
First citationBenachenhou, F., Mairesse, G., Nowogrocki, G. & Thomas, D. (1986). J. Solid State Chem. 65, 13–26.  CrossRef CAS Web of Science Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLarson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.  Google Scholar
First citationLazarini, F. (1977). Acta Cryst. B33, 1954–1956.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVolkova, L. M., Udovenko, A. A., Levin, A. N. & Shevchenko, V. Ya. (1983). Koord. Khim. 9, 356–360.  CAS Google Scholar
First citationWatkin, D. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds