metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Carbon­yl(η5-cyclo­penta­dien­yl)(pyridine)(tri­ethyl­stann­yl)iron(II)

aDepartment of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
*Correspondence e-mail: nakazawa@sci.osaka-cu.ac.jp

(Received 20 October 2008; accepted 14 November 2008; online 20 November 2008)

In the title complex, [Fe(C5H5){Sn(C2H5)3}(C5H5N)(CO)], the Fe atom is coordinated by carbonyl, pyridine, triethyl­stannyl and cyclo­penta­dienyl ligands in a typical three-legged piano-stool configuration. The Fe—Sn and Fe—N bond distances are 2.5455 (13) and 1.984 (6) Å, respectively.

Related literature

For background, see: Nakazawa et al. (2007[Nakazawa, H., Itazaki, M., Kamata, K. & Ueda, K. (2007). Chem. Asian J. 2, 882-888.]). Applications of transition metal complexes with a stannyl ligand are reviewed by Smith et al. (2000[Smith, N. D., Mancuso, J. & Lautens, M. (2000). Chem. Rev. 100, 3257-3282.]). For a related transition metal stannyl complex having a pyridine ligand, see: Rickard et al. (1999[Rickard, C. E. F., Roper, W. R., Woodman, T. J. & Wright, L. J. (1999). Chem. Commun. pp. 1101-1102.]). For structures of related silyl analogues, see: Iwata et al. (2003[Iwata, M., Okazaki, M. & Tobita, H. (2003). Chem. Commun. pp. 2744-2745.]); Nakazawa et al. (2007[Nakazawa, H., Itazaki, M., Kamata, K. & Ueda, K. (2007). Chem. Asian J. 2, 882-888.]); Itazaki et al. (2007[Itazaki, M., Ueda, K. & Nakazawa, H. (2007). Acta Cryst. E63, m1312-m1313.]).

[Scheme 1]

Experimental

Crystal data
  • [FeSn(C2H5)3(C5H5)(C5H5N)(CO)]

  • Mr = 433.92

  • Monoclinic, P 21 /c

  • a = 15.038 (4) Å

  • b = 7.8271 (19) Å

  • c = 15.717 (4) Å

  • β = 96.783 (5)°

  • V = 1837.1 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.15 mm−1

  • T = 200 (2) K

  • 0.13 × 0.13 × 0.02 mm

Data collection
  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998[Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.768, Tmax = 0.958

  • 17586 measured reflections

  • 4174 independent reflections

  • 3439 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.088

  • wR(F2) = 0.138

  • S = 1.07

  • 4174 reflections

  • 193 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: CrystalClear (Rigaku, 2001[Rigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Transition metal complexes with a stannyl ligand have attracted considerable attention because they are very important intermediates in hydrostannation reaction (Smith et al., 2000). On the other hand, we reported that an iron complex with a pyridine ligand acts as a good precursor in the C—CN bond cleavage of organonitriles (Nakazawa et al., 2007). A large number of stannyl complexes and of pyridine complexes have been synthesized, however only one crystal structure has been reported to date for a transition metal stannyl complex having a pyridine ligand, viz. [Os(CO)(Me)(PPh3)2(SnMe2Cl)(py)] (Rickard et al., 1999). This paper is the first report of the molecular and crystal structure of an Fe—Sn complex with pyridine.

The title complex, [(CO)(C5H5)(Sn(C2H5)3)(C5H5N)Fe], (I), was synthesized by the reaction of (C5H5)(CO)2Fe(SnEt3) with pyridine under photolytic conditions. An ORTEP drawing of the molecule is displayed in Fig. 1. Complex (I) has a typical three–legged piano–stool configuration: the Fe atom has a terminal CO ligand, a triethylstannyl ligand, a pyridine and a cyclopentadienyl ligand (Cp) with the latter bonded in an η5–fashion. The Fe1—Sn1, Fe1—N1 and Fe1—C11 distances [2.5455 (13), 1.984 (6), 1.728 (9) Å] in (I) are comparable to the silyl analogues; [Cp*(CO)Fe(SiMe2NPh2)(py)] [Cp* = C5Me5, 2.3330 (4), 1.991 (1), 1.716 (2) Å; Iwata et al., 2003], [(C5H5)(CO)Fe(SiEt3)(py)] [2.303 (5), 1.9823 (17), 1.719 (2) Å; Nakazawa et al., 2007], and [(C5H5)(CO)Fe(SiEt3)(C5H5N-3,5-CH3)] [2.3341 (9), 1.982 (2), 1.722 (3) Å; Itazaki et al., 2007]. The N1—Fe1—Sn1 angle [88.59 (19)°] is slightly narrower than that for [(C5H5)(CO)Fe(SiEt3)(py)] [89.25 (10)°; Nakazawa et al., 2007].

Related literature top

For background, see: Nakazawa et al. (2007). Applications of transition metal complexes with a stannyl ligand are reviewed by Smith et al. (2000). For a related transition metal stannyl complex having a pyridine ligand, see: Rickard et al. (1999). For structures of related silyl analogues, see: Iwata et al. (2003); Nakazawa et al. (2007); Itazaki et al. (2007).

Experimental top

A benzene solution (8 ml) containing (C5H5)(CO)2Fe(SnEt3) (0.98 mmol, 374 mg) and pyridine (4.88 mmol, 0.40 ml) was photoirradiated with a 400 W medium pressure mercury arc lamp at 298 K for several hours in nitrogen atmosphere. During the irradiation, the generated CO was degassed several times. Removing volatile materials under reduced pressure led to the formation of a dark red oil, which was dissolved in hexane (1 ml). After the hexane solution was cooled at 233 K for 3 h, the resulting dark red crystals were filtered off and dried in vacuo to give (C5H5)(CO)Fe(SnEt3)(py) (I) (0.94 mmol, 407 mg, 96% yield). Spectroscopic analysis: 1H NMR (400 MHz, C6D6, δ, p.p.m.): 1.10 (q, JHH = 8.5 Hz, 6H, Sn(CH2CH3)), 1.41 (t, JHH = 8.5 Hz, 9H, Sn(CH2CH3)), 4.19 (s, 5H, C5H5), 5.83 (t, JHH = 6.1 Hz, 2H, py), 6.38 (t, JHH = 6.1 Hz, 1H, py), 8.55 (d, JHH = 6.1 Hz, 2H, py). 13C{1H} NMR (100.4 MHz, C6D6, δ, p.p.m.): 3.46 (s, JCSn = 78.8 Hz, Sn(CH2CH3)), 12.70 (s, JCSn = 10.0 Hz, Sn(CH2CH3)), 79.05 (s, Cp), 122.85 (s, py), 133.77 (s, py), 157.91 (s, py), 223.58 (s, CO). 119Sn{1H} NMR (149.2 MHz, C6D6, δ, p.p.m.): 128.32. Anal. Calc. for C17H25NOSnFe: C, 47.05; H, 5.81; N, 3.23. Found: C, 46.50; H, 5.72; N, 3.09%.

Refinement top

All H atoms were positioned geometrically and treated using a riding model, with C—H distances assumed to be 0.99 Å for methylene H atoms, 0.98 Å for methyl H atoms, and 0.95 Å for aromatic H atoms. The Uiso(H) values were taken to be 1.2Ueq(C) of the respective parent carbon atom.

Computing details top

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear (Rigaku, 2001); data reduction: CrystalClear (Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule of [(CO)(C5H5)(Sn(C2H5)3)(C5H5N)Fe], (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
Carbonyl(η5-cyclopentadienyl)(pyridine)(triethylstannyl)iron(II) top
Crystal data top
[FeSn(C2H5)3(C5H5)(C5H5N)(CO)]F(000) = 872
Mr = 433.92Dx = 1.569 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 4766 reflections
a = 15.038 (4) Åθ = 4.1–27.5°
b = 7.8271 (19) ŵ = 2.15 mm1
c = 15.717 (4) ÅT = 200 K
β = 96.783 (5)°Platelet, red
V = 1837.1 (8) Å30.13 × 0.13 × 0.02 mm
Z = 4
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3439 reflections with I > 2σ(I)
Detector resolution: 14.6199 pixels mm-1Rint = 0.069
ω scansθmax = 27.5°, θmin = 4.1°
Absorption correction: multi-scan
(Jacobson, 1998)
h = 1918
Tmin = 0.768, Tmax = 0.958k = 108
17586 measured reflectionsl = 2019
4174 independent reflections
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.088 w = 1/[σ2(Fo2) + 25.1156P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.138(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.54 e Å3
4174 reflectionsΔρmin = 0.50 e Å3
193 parameters
Crystal data top
[FeSn(C2H5)3(C5H5)(C5H5N)(CO)]V = 1837.1 (8) Å3
Mr = 433.92Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.038 (4) ŵ = 2.15 mm1
b = 7.8271 (19) ÅT = 200 K
c = 15.717 (4) Å0.13 × 0.13 × 0.02 mm
β = 96.783 (5)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
4174 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
3439 reflections with I > 2σ(I)
Tmin = 0.768, Tmax = 0.958Rint = 0.069
17586 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0883 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + 25.1156P]
where P = (Fo2 + 2Fc2)/3
4174 reflectionsΔρmax = 0.54 e Å3
193 parametersΔρmin = 0.50 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.17373 (7)0.08483 (15)0.47425 (7)0.0262 (3)
C10.2299 (11)0.1470 (15)0.5222 (7)0.078 (4)
H1A0.26980.21600.49440.093*
C20.1358 (12)0.1582 (16)0.5128 (7)0.086 (4)
H2A0.10040.23520.47640.103*
C30.1044 (7)0.0394 (19)0.5652 (7)0.070 (3)
H3A0.04330.02140.57250.084*
C40.1768 (8)0.0509 (14)0.6059 (6)0.052 (3)
H4A0.17380.14260.64510.062*
C50.2532 (7)0.0163 (15)0.5796 (6)0.054 (3)
H5A0.31250.02100.59780.065*
N10.1412 (4)0.0387 (8)0.3504 (4)0.0274 (14)
C60.1798 (6)0.0873 (12)0.3099 (5)0.040 (2)
H6A0.22550.15240.34190.048*
C70.1574 (7)0.1279 (13)0.2252 (6)0.049 (2)
H7A0.18720.21810.19960.059*
C80.0916 (7)0.0367 (13)0.1782 (5)0.045 (2)
H8A0.07450.06260.11950.054*
C90.0508 (6)0.0922 (13)0.2171 (5)0.042 (2)
H9A0.00480.15770.18580.050*
C100.0771 (6)0.1266 (11)0.3024 (5)0.0334 (19)
H10A0.04830.21730.32850.040*
C110.1287 (6)0.2880 (12)0.4731 (5)0.035 (2)
O10.0971 (5)0.4230 (9)0.4738 (4)0.0531 (18)
Sn10.31362 (4)0.23728 (8)0.43713 (3)0.03269 (17)
C120.3938 (8)0.3606 (18)0.5443 (7)0.072 (4)
H12A0.43620.27500.57190.086*
H12B0.42970.45140.52090.086*
C130.3452 (9)0.4377 (17)0.6116 (8)0.083 (4)
H13A0.29730.51180.58480.107*
H13B0.38700.50540.65060.107*
H13C0.31930.34700.64380.107*
C140.4046 (8)0.0648 (16)0.3820 (8)0.071 (3)
H14A0.41560.03450.42080.086*
H14B0.37390.02170.32700.086*
C150.4914 (9)0.134 (2)0.3659 (11)0.108 (5)
H15A0.48260.21920.32020.141*
H15B0.52910.04100.34850.141*
H15C0.52060.18710.41830.141*
C160.2821 (7)0.4348 (14)0.3418 (7)0.061 (3)
H16A0.25720.37820.28780.073*
H16B0.23380.50630.36080.073*
C170.3541 (8)0.5497 (17)0.3217 (8)0.081 (4)
H17A0.38040.60690.37420.105*
H17B0.32950.63550.28000.105*
H17C0.40040.48330.29750.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0280 (6)0.0289 (6)0.0216 (5)0.0011 (5)0.0021 (4)0.0025 (5)
C10.136 (9)0.048 (7)0.053 (7)0.046 (7)0.027 (7)0.031 (6)
C20.150 (10)0.053 (7)0.044 (6)0.052 (8)0.029 (7)0.025 (5)
C30.039 (5)0.113 (10)0.055 (6)0.010 (6)0.000 (5)0.053 (6)
C40.075 (8)0.053 (6)0.030 (5)0.013 (6)0.012 (5)0.014 (4)
C50.038 (5)0.075 (8)0.046 (6)0.001 (5)0.006 (4)0.034 (6)
N10.029 (3)0.026 (4)0.028 (3)0.000 (3)0.009 (3)0.000 (3)
C60.043 (5)0.040 (5)0.037 (4)0.007 (4)0.002 (4)0.009 (4)
C70.058 (6)0.048 (6)0.043 (5)0.004 (5)0.006 (5)0.018 (4)
C80.057 (6)0.051 (6)0.027 (4)0.017 (5)0.007 (4)0.007 (4)
C90.044 (5)0.051 (6)0.028 (4)0.002 (5)0.004 (4)0.000 (4)
C100.037 (5)0.033 (5)0.029 (4)0.004 (4)0.002 (3)0.002 (3)
C110.035 (4)0.046 (6)0.023 (4)0.004 (4)0.001 (3)0.004 (4)
O10.066 (5)0.039 (4)0.052 (4)0.020 (4)0.001 (3)0.010 (3)
Sn10.0279 (3)0.0395 (3)0.0304 (3)0.0058 (3)0.00236 (19)0.0041 (3)
C120.061 (7)0.095 (10)0.056 (7)0.042 (7)0.004 (5)0.002 (7)
C130.107 (11)0.073 (9)0.067 (8)0.018 (8)0.003 (7)0.019 (7)
C140.060 (7)0.066 (8)0.094 (9)0.004 (6)0.031 (6)0.000 (7)
C150.066 (9)0.121 (14)0.148 (14)0.026 (9)0.051 (9)0.016 (11)
C160.059 (7)0.052 (7)0.069 (7)0.015 (6)0.000 (5)0.029 (6)
C170.068 (8)0.081 (9)0.095 (9)0.000 (7)0.019 (7)0.046 (8)
Geometric parameters (Å, º) top
Fe1—C111.728 (9)C9—C101.379 (11)
Fe1—N11.984 (6)C9—H9A0.9500
Fe1—C52.080 (8)C10—H10A0.9500
Fe1—C42.082 (9)C11—O11.159 (10)
Fe1—C22.096 (11)Sn1—C162.166 (9)
Fe1—C12.103 (10)Sn1—C142.174 (11)
Fe1—C32.104 (10)Sn1—C122.177 (10)
Fe1—Sn12.5455 (13)C12—C131.483 (16)
C1—C51.381 (16)C12—H12A0.9900
C1—C21.408 (19)C12—H12B0.9900
C1—H1A0.9500C13—H13A0.9800
C2—C31.362 (19)C13—H13B0.9800
C2—H2A0.9500C13—H13C0.9800
C3—C41.389 (15)C14—C151.461 (17)
C3—H3A0.9500C14—H14A0.9900
C4—C51.372 (14)C14—H14B0.9900
C4—H4A0.9500C15—H15A0.9800
C5—H5A0.9500C15—H15B0.9800
N1—C101.341 (10)C15—H15C0.9800
N1—C61.343 (10)C16—C171.471 (14)
C6—C71.371 (12)C16—H16A0.9900
C6—H6A0.9500C16—H16B0.9900
C7—C81.364 (13)C17—H17A0.9800
C7—H7A0.9500C17—H17B0.9800
C8—C91.362 (13)C17—H17C0.9800
C8—H8A0.9500
C11—Fe1—N196.1 (3)C6—N1—Fe1121.9 (5)
C11—Fe1—C5123.1 (4)N1—C6—C7124.0 (9)
N1—Fe1—C5139.8 (4)N1—C6—H6A118.0
C11—Fe1—C495.2 (4)C7—C6—H6A118.0
N1—Fe1—C4157.9 (4)C8—C7—C6118.9 (9)
C5—Fe1—C438.5 (4)C8—C7—H7A120.6
C11—Fe1—C2136.0 (6)C6—C7—H7A120.6
N1—Fe1—C294.3 (4)C9—C8—C7118.8 (8)
C5—Fe1—C264.8 (5)C9—C8—H8A120.6
C4—Fe1—C264.6 (4)C7—C8—H8A120.6
C11—Fe1—C1159.7 (4)C8—C9—C10119.2 (9)
N1—Fe1—C1103.7 (4)C8—C9—H9A120.4
C5—Fe1—C138.5 (5)C10—C9—H9A120.4
C4—Fe1—C164.7 (4)N1—C10—C9123.5 (8)
C2—Fe1—C139.2 (5)N1—C10—H10A118.3
C11—Fe1—C3102.0 (5)C9—C10—H10A118.3
N1—Fe1—C3119.9 (4)O1—C11—Fe1178.3 (8)
C5—Fe1—C364.4 (4)C16—Sn1—C14105.3 (5)
C4—Fe1—C338.8 (4)C16—Sn1—C12105.9 (5)
C2—Fe1—C337.9 (5)C14—Sn1—C12105.5 (5)
C1—Fe1—C364.4 (5)C16—Sn1—Fe1111.9 (3)
C11—Fe1—Sn184.2 (3)C14—Sn1—Fe1112.1 (3)
N1—Fe1—Sn188.59 (19)C12—Sn1—Fe1115.3 (3)
C5—Fe1—Sn187.0 (3)C13—C12—Sn1117.3 (8)
C4—Fe1—Sn1111.5 (3)C13—C12—H12A108.0
C2—Fe1—Sn1138.8 (5)Sn1—C12—H12A108.0
C1—Fe1—Sn1100.3 (4)C13—C12—H12B108.0
C3—Fe1—Sn1149.5 (3)Sn1—C12—H12B108.0
C5—C1—C2106.8 (11)H12A—C12—H12B107.2
C5—C1—Fe169.8 (6)C12—C13—H13A109.5
C2—C1—Fe170.1 (6)C12—C13—H13B109.5
C5—C1—H1A126.6H13A—C13—H13B109.5
C2—C1—H1A126.6C12—C13—H13C109.5
Fe1—C1—H1A125.0H13A—C13—H13C109.5
C3—C2—C1108.1 (11)H13B—C13—H13C109.5
C3—C2—Fe171.4 (7)C15—C14—Sn1117.2 (10)
C1—C2—Fe170.7 (6)C15—C14—H14A108.0
C3—C2—H2A126.0Sn1—C14—H14A108.0
C1—C2—H2A126.0C15—C14—H14B108.0
Fe1—C2—H2A123.6Sn1—C14—H14B108.0
C2—C3—C4108.5 (11)H14A—C14—H14B107.2
C2—C3—Fe170.8 (6)C14—C15—H15A109.5
C4—C3—Fe169.8 (6)C14—C15—H15B109.5
C2—C3—H3A125.7H15A—C15—H15B109.5
C4—C3—H3A125.7C14—C15—H15C109.5
Fe1—C3—H3A125.3H15A—C15—H15C109.5
C5—C4—C3107.7 (10)H15B—C15—H15C109.5
C5—C4—Fe170.7 (5)C17—C16—Sn1118.6 (8)
C3—C4—Fe171.5 (6)C17—C16—H16A107.7
C5—C4—H4A126.2Sn1—C16—H16A107.7
C3—C4—H4A126.2C17—C16—H16B107.7
Fe1—C4—H4A123.4Sn1—C16—H16B107.7
C4—C5—C1109.0 (10)H16A—C16—H16B107.1
C4—C5—Fe170.8 (5)C16—C17—H17A109.5
C1—C5—Fe171.6 (6)C16—C17—H17B109.5
C4—C5—H5A125.5H17A—C17—H17B109.5
C1—C5—H5A125.5C16—C17—H17C109.5
Fe1—C5—H5A123.6H17A—C17—H17C109.5
C10—N1—C6115.6 (7)H17B—C17—H17C109.5
C10—N1—Fe1122.4 (5)
C11—Fe1—C1—C530 (2)N1—Fe1—C5—C4144.9 (6)
N1—Fe1—C1—C5162.9 (6)C2—Fe1—C5—C480.2 (8)
C4—Fe1—C1—C537.2 (6)C1—Fe1—C5—C4118.5 (10)
C2—Fe1—C1—C5117.3 (10)C3—Fe1—C5—C438.1 (7)
C3—Fe1—C1—C580.3 (7)Sn1—Fe1—C5—C4130.9 (7)
Sn1—Fe1—C1—C571.8 (7)C11—Fe1—C5—C1168.2 (8)
C11—Fe1—C1—C287.8 (18)N1—Fe1—C5—C126.3 (10)
N1—Fe1—C1—C279.8 (8)C4—Fe1—C5—C1118.5 (10)
C5—Fe1—C1—C2117.3 (10)C2—Fe1—C5—C138.3 (8)
C4—Fe1—C1—C280.1 (8)C3—Fe1—C5—C180.4 (9)
C3—Fe1—C1—C237.0 (7)Sn1—Fe1—C5—C1110.6 (8)
Sn1—Fe1—C1—C2170.8 (7)C11—Fe1—N1—C1019.8 (7)
C5—C1—C2—C31.4 (12)C5—Fe1—N1—C10172.4 (7)
Fe1—C1—C2—C361.9 (8)C4—Fe1—N1—C10100.5 (11)
C5—C1—C2—Fe160.5 (7)C2—Fe1—N1—C10117.3 (8)
C11—Fe1—C2—C332.4 (10)C1—Fe1—N1—C10155.9 (7)
N1—Fe1—C2—C3135.8 (7)C3—Fe1—N1—C1087.8 (8)
C5—Fe1—C2—C380.0 (7)Sn1—Fe1—N1—C10103.8 (6)
C4—Fe1—C2—C337.3 (6)C11—Fe1—N1—C6162.7 (7)
C1—Fe1—C2—C3117.7 (10)C5—Fe1—N1—C65.1 (9)
Sn1—Fe1—C2—C3131.4 (7)C4—Fe1—N1—C677.0 (11)
C11—Fe1—C2—C1150.1 (8)C2—Fe1—N1—C660.2 (8)
N1—Fe1—C2—C1106.5 (8)C1—Fe1—N1—C621.6 (8)
C5—Fe1—C2—C137.7 (7)C3—Fe1—N1—C689.7 (8)
C4—Fe1—C2—C180.4 (7)Sn1—Fe1—N1—C678.7 (6)
C3—Fe1—C2—C1117.7 (10)C10—N1—C6—C70.0 (13)
Sn1—Fe1—C2—C113.8 (10)Fe1—N1—C6—C7177.7 (7)
C1—C2—C3—C41.7 (12)N1—C6—C7—C80.4 (15)
Fe1—C2—C3—C459.8 (7)C6—C7—C8—C90.4 (15)
C1—C2—C3—Fe161.5 (7)C7—C8—C9—C100.0 (14)
C11—Fe1—C3—C2157.6 (8)C6—N1—C10—C90.4 (12)
N1—Fe1—C3—C253.3 (8)Fe1—N1—C10—C9177.3 (7)
C5—Fe1—C3—C281.3 (8)C8—C9—C10—N10.4 (14)
C4—Fe1—C3—C2119.1 (11)C11—Fe1—Sn1—C1642.6 (4)
C1—Fe1—C3—C238.3 (7)N1—Fe1—Sn1—C1653.7 (4)
Sn1—Fe1—C3—C2103.3 (11)C5—Fe1—Sn1—C16166.2 (5)
C11—Fe1—C3—C483.3 (7)C4—Fe1—Sn1—C16135.9 (5)
N1—Fe1—C3—C4172.4 (6)C2—Fe1—Sn1—C16148.6 (6)
C5—Fe1—C3—C437.9 (7)C1—Fe1—Sn1—C16157.4 (5)
C2—Fe1—C3—C4119.1 (11)C3—Fe1—Sn1—C16146.4 (9)
C1—Fe1—C3—C480.8 (8)C11—Fe1—Sn1—C14160.6 (5)
Sn1—Fe1—C3—C415.8 (13)N1—Fe1—Sn1—C1464.4 (4)
C2—C3—C4—C51.3 (11)C5—Fe1—Sn1—C1475.7 (5)
Fe1—C3—C4—C561.8 (7)C4—Fe1—Sn1—C14106.1 (5)
C2—C3—C4—Fe160.4 (7)C2—Fe1—Sn1—C1430.5 (6)
C11—Fe1—C4—C5140.1 (7)C1—Fe1—Sn1—C1439.3 (5)
N1—Fe1—C4—C599.5 (11)C3—Fe1—Sn1—C1495.5 (9)
C2—Fe1—C4—C580.8 (8)C11—Fe1—Sn1—C1278.7 (5)
C1—Fe1—C4—C537.3 (7)N1—Fe1—Sn1—C12174.9 (5)
C3—Fe1—C4—C5117.2 (10)C5—Fe1—Sn1—C1245.0 (6)
Sn1—Fe1—C4—C554.3 (7)C4—Fe1—Sn1—C1214.6 (5)
C11—Fe1—C4—C3102.7 (8)C2—Fe1—Sn1—C1290.2 (7)
N1—Fe1—C4—C317.7 (14)C1—Fe1—Sn1—C1281.4 (6)
C5—Fe1—C4—C3117.2 (10)C3—Fe1—Sn1—C1225.2 (9)
C2—Fe1—C4—C336.4 (8)C16—Sn1—C12—C1389.4 (10)
C1—Fe1—C4—C380.0 (9)C14—Sn1—C12—C13159.2 (10)
Sn1—Fe1—C4—C3171.5 (7)Fe1—Sn1—C12—C1335.0 (11)
C3—C4—C5—C10.4 (11)C16—Sn1—C14—C1564.0 (12)
Fe1—C4—C5—C161.8 (7)C12—Sn1—C14—C1547.8 (12)
C3—C4—C5—Fe162.3 (7)Fe1—Sn1—C14—C15174.1 (10)
C2—C1—C5—C40.6 (11)C14—Sn1—C16—C1765.9 (11)
Fe1—C1—C5—C461.3 (7)C12—Sn1—C16—C1745.6 (11)
C2—C1—C5—Fe160.7 (7)Fe1—Sn1—C16—C17172.0 (9)
C11—Fe1—C5—C449.7 (8)

Experimental details

Crystal data
Chemical formula[FeSn(C2H5)3(C5H5)(C5H5N)(CO)]
Mr433.92
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)15.038 (4), 7.8271 (19), 15.717 (4)
β (°) 96.783 (5)
V3)1837.1 (8)
Z4
Radiation typeMo Kα
µ (mm1)2.15
Crystal size (mm)0.13 × 0.13 × 0.02
Data collection
DiffractometerRigaku/MSC Mercury CCD
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.768, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
17586, 4174, 3439
Rint0.069
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.088, 0.138, 1.07
No. of reflections4174
No. of parameters193
No. of restraints3
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + 25.1156P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.54, 0.50

Computer programs: CrystalClear (Rigaku, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

 

Acknowledgements

This work was supported by a Grant-in-Aid for Science Research on Priority Areas (grant No. 20036043, Synergistic Effect of Elements) and by a Grant-in-Aid for Young Scientists (B) (grant No. 20750049) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The authors also acknowledge support from the Daicel Chemical Industries Ltd Award in Synthetic Organic Chemistry, Japan, and the Kinki-chiho-hatsumei-center.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationItazaki, M., Ueda, K. & Nakazawa, H. (2007). Acta Cryst. E63, m1312–m1313.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIwata, M., Okazaki, M. & Tobita, H. (2003). Chem. Commun. pp. 2744–2745.  Web of Science CSD CrossRef Google Scholar
First citationJacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationNakazawa, H., Itazaki, M., Kamata, K. & Ueda, K. (2007). Chem. Asian J. 2, 882–888.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRickard, C. E. F., Roper, W. R., Woodman, T. J. & Wright, L. J. (1999). Chem. Commun. pp. 1101–1102.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, N. D., Mancuso, J. & Lautens, M. (2000). Chem. Rev. 100, 3257–3282.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds