metal-organic compounds
Carbonyl(η5-cyclopentadienyl)(pyridine)(triethylstannyl)iron(II)
aDepartment of Chemistry, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
*Correspondence e-mail: nakazawa@sci.osaka-cu.ac.jp
In the title complex, [Fe(C5H5){Sn(C2H5)3}(C5H5N)(CO)], the Fe atom is coordinated by carbonyl, pyridine, triethylstannyl and cyclopentadienyl ligands in a typical three-legged piano-stool configuration. The Fe—Sn and Fe—N bond distances are 2.5455 (13) and 1.984 (6) Å, respectively.
Related literature
For background, see: Nakazawa et al. (2007). Applications of transition metal complexes with a stannyl ligand are reviewed by Smith et al. (2000). For a related transition metal stannyl complex having a pyridine ligand, see: Rickard et al. (1999). For structures of related silyl analogues, see: Iwata et al. (2003); Nakazawa et al. (2007); Itazaki et al. (2007).
Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku, 2001); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808037781/wm2203sup1.cif
contains datablocks I, FePySnR3. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808037781/wm2203Isup2.hkl
A benzene solution (8 ml) containing (C5H5)(CO)2Fe(SnEt3) (0.98 mmol, 374 mg) and pyridine (4.88 mmol, 0.40 ml) was photoirradiated with a 400 W medium pressure mercury arc lamp at 298 K for several hours in nitrogen atmosphere. During the irradiation, the generated CO was degassed several times. Removing volatile materials under reduced pressure led to the formation of a dark red oil, which was dissolved in hexane (1 ml). After the hexane solution was cooled at 233 K for 3 h, the resulting dark red crystals were filtered off and dried in vacuo to give (C5H5)(CO)Fe(SnEt3)(py) (I) (0.94 mmol, 407 mg, 96% yield). Spectroscopic analysis: 1H NMR (400 MHz, C6D6, δ, p.p.m.): 1.10 (q, JHH = 8.5 Hz, 6H, Sn(CH2CH3)), 1.41 (t, JHH = 8.5 Hz, 9H, Sn(CH2CH3)), 4.19 (s, 5H, C5H5), 5.83 (t, JHH = 6.1 Hz, 2H, py), 6.38 (t, JHH = 6.1 Hz, 1H, py), 8.55 (d, JHH = 6.1 Hz, 2H, py). 13C{1H} NMR (100.4 MHz, C6D6, δ, p.p.m.): 3.46 (s, JCSn = 78.8 Hz, Sn(CH2CH3)), 12.70 (s, JCSn = 10.0 Hz, Sn(CH2CH3)), 79.05 (s, Cp), 122.85 (s, py), 133.77 (s, py), 157.91 (s, py), 223.58 (s, CO). 119Sn{1H} NMR (149.2 MHz, C6D6, δ, p.p.m.): 128.32. Anal. Calc. for C17H25NOSnFe: C, 47.05; H, 5.81; N, 3.23. Found: C, 46.50; H, 5.72; N, 3.09%.
All H atoms were positioned geometrically and treated using a riding model, with C—H distances assumed to be 0.99 Å for methylene H atoms, 0.98 Å for methyl H atoms, and 0.95 Å for aromatic H atoms. The Uiso(H) values were taken to be 1.2Ueq(C) of the respective parent carbon atom.
Data collection: CrystalClear (Rigaku, 2001); cell
CrystalClear (Rigaku, 2001); data reduction: CrystalClear (Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[FeSn(C2H5)3(C5H5)(C5H5N)(CO)] | F(000) = 872 |
Mr = 433.92 | Dx = 1.569 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71070 Å |
Hall symbol: -P 2ybc | Cell parameters from 4766 reflections |
a = 15.038 (4) Å | θ = 4.1–27.5° |
b = 7.8271 (19) Å | µ = 2.15 mm−1 |
c = 15.717 (4) Å | T = 200 K |
β = 96.783 (5)° | Platelet, red |
V = 1837.1 (8) Å3 | 0.13 × 0.13 × 0.02 mm |
Z = 4 |
Rigaku/MSC Mercury CCD diffractometer | 3439 reflections with I > 2σ(I) |
Detector resolution: 14.6199 pixels mm-1 | Rint = 0.069 |
ω scans | θmax = 27.5°, θmin = 4.1° |
Absorption correction: multi-scan (Jacobson, 1998) | h = −19→18 |
Tmin = 0.768, Tmax = 0.958 | k = −10→8 |
17586 measured reflections | l = −20→19 |
4174 independent reflections |
Refinement on F2 | 3 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.088 | w = 1/[σ2(Fo2) + 25.1156P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.138 | (Δ/σ)max < 0.001 |
S = 1.07 | Δρmax = 0.54 e Å−3 |
4174 reflections | Δρmin = −0.50 e Å−3 |
193 parameters |
[FeSn(C2H5)3(C5H5)(C5H5N)(CO)] | V = 1837.1 (8) Å3 |
Mr = 433.92 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 15.038 (4) Å | µ = 2.15 mm−1 |
b = 7.8271 (19) Å | T = 200 K |
c = 15.717 (4) Å | 0.13 × 0.13 × 0.02 mm |
β = 96.783 (5)° |
Rigaku/MSC Mercury CCD diffractometer | 4174 independent reflections |
Absorption correction: multi-scan (Jacobson, 1998) | 3439 reflections with I > 2σ(I) |
Tmin = 0.768, Tmax = 0.958 | Rint = 0.069 |
17586 measured reflections |
R[F2 > 2σ(F2)] = 0.088 | 3 restraints |
wR(F2) = 0.138 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + 25.1156P] where P = (Fo2 + 2Fc2)/3 |
4174 reflections | Δρmax = 0.54 e Å−3 |
193 parameters | Δρmin = −0.50 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.17373 (7) | 0.08483 (15) | 0.47425 (7) | 0.0262 (3) | |
C1 | 0.2299 (11) | −0.1470 (15) | 0.5222 (7) | 0.078 (4) | |
H1A | 0.2698 | −0.2160 | 0.4944 | 0.093* | |
C2 | 0.1358 (12) | −0.1582 (16) | 0.5128 (7) | 0.086 (4) | |
H2A | 0.1004 | −0.2352 | 0.4764 | 0.103* | |
C3 | 0.1044 (7) | −0.0394 (19) | 0.5652 (7) | 0.070 (3) | |
H3A | 0.0433 | −0.0214 | 0.5725 | 0.084* | |
C4 | 0.1768 (8) | 0.0509 (14) | 0.6059 (6) | 0.052 (3) | |
H4A | 0.1738 | 0.1426 | 0.6451 | 0.062* | |
C5 | 0.2532 (7) | −0.0163 (15) | 0.5796 (6) | 0.054 (3) | |
H5A | 0.3125 | 0.0210 | 0.5978 | 0.065* | |
N1 | 0.1412 (4) | 0.0387 (8) | 0.3504 (4) | 0.0274 (14) | |
C6 | 0.1798 (6) | −0.0873 (12) | 0.3099 (5) | 0.040 (2) | |
H6A | 0.2255 | −0.1524 | 0.3419 | 0.048* | |
C7 | 0.1574 (7) | −0.1279 (13) | 0.2252 (6) | 0.049 (2) | |
H7A | 0.1872 | −0.2181 | 0.1996 | 0.059* | |
C8 | 0.0916 (7) | −0.0367 (13) | 0.1782 (5) | 0.045 (2) | |
H8A | 0.0745 | −0.0626 | 0.1195 | 0.054* | |
C9 | 0.0508 (6) | 0.0922 (13) | 0.2171 (5) | 0.042 (2) | |
H9A | 0.0048 | 0.1577 | 0.1858 | 0.050* | |
C10 | 0.0771 (6) | 0.1266 (11) | 0.3024 (5) | 0.0334 (19) | |
H10A | 0.0483 | 0.2173 | 0.3285 | 0.040* | |
C11 | 0.1287 (6) | 0.2880 (12) | 0.4731 (5) | 0.035 (2) | |
O1 | 0.0971 (5) | 0.4230 (9) | 0.4738 (4) | 0.0531 (18) | |
Sn1 | 0.31362 (4) | 0.23728 (8) | 0.43713 (3) | 0.03269 (17) | |
C12 | 0.3938 (8) | 0.3606 (18) | 0.5443 (7) | 0.072 (4) | |
H12A | 0.4362 | 0.2750 | 0.5719 | 0.086* | |
H12B | 0.4297 | 0.4514 | 0.5209 | 0.086* | |
C13 | 0.3452 (9) | 0.4377 (17) | 0.6116 (8) | 0.083 (4) | |
H13A | 0.2973 | 0.5118 | 0.5848 | 0.107* | |
H13B | 0.3870 | 0.5054 | 0.6506 | 0.107* | |
H13C | 0.3193 | 0.3470 | 0.6438 | 0.107* | |
C14 | 0.4046 (8) | 0.0648 (16) | 0.3820 (8) | 0.071 (3) | |
H14A | 0.4156 | −0.0345 | 0.4208 | 0.086* | |
H14B | 0.3739 | 0.0217 | 0.3270 | 0.086* | |
C15 | 0.4914 (9) | 0.134 (2) | 0.3659 (11) | 0.108 (5) | |
H15A | 0.4826 | 0.2192 | 0.3202 | 0.141* | |
H15B | 0.5291 | 0.0410 | 0.3485 | 0.141* | |
H15C | 0.5206 | 0.1871 | 0.4183 | 0.141* | |
C16 | 0.2821 (7) | 0.4348 (14) | 0.3418 (7) | 0.061 (3) | |
H16A | 0.2572 | 0.3782 | 0.2878 | 0.073* | |
H16B | 0.2338 | 0.5063 | 0.3608 | 0.073* | |
C17 | 0.3541 (8) | 0.5497 (17) | 0.3217 (8) | 0.081 (4) | |
H17A | 0.3804 | 0.6069 | 0.3742 | 0.105* | |
H17B | 0.3295 | 0.6355 | 0.2800 | 0.105* | |
H17C | 0.4004 | 0.4833 | 0.2975 | 0.105* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.0280 (6) | 0.0289 (6) | 0.0216 (5) | −0.0011 (5) | 0.0021 (4) | 0.0025 (5) |
C1 | 0.136 (9) | 0.048 (7) | 0.053 (7) | 0.046 (7) | 0.027 (7) | 0.031 (6) |
C2 | 0.150 (10) | 0.053 (7) | 0.044 (6) | −0.052 (8) | −0.029 (7) | 0.025 (5) |
C3 | 0.039 (5) | 0.113 (10) | 0.055 (6) | −0.010 (6) | 0.000 (5) | 0.053 (6) |
C4 | 0.075 (8) | 0.053 (6) | 0.030 (5) | 0.013 (6) | 0.012 (5) | 0.014 (4) |
C5 | 0.038 (5) | 0.075 (8) | 0.046 (6) | −0.001 (5) | −0.006 (4) | 0.034 (6) |
N1 | 0.029 (3) | 0.026 (4) | 0.028 (3) | 0.000 (3) | 0.009 (3) | 0.000 (3) |
C6 | 0.043 (5) | 0.040 (5) | 0.037 (4) | 0.007 (4) | 0.002 (4) | −0.009 (4) |
C7 | 0.058 (6) | 0.048 (6) | 0.043 (5) | −0.004 (5) | 0.006 (5) | −0.018 (4) |
C8 | 0.057 (6) | 0.051 (6) | 0.027 (4) | −0.017 (5) | 0.007 (4) | −0.007 (4) |
C9 | 0.044 (5) | 0.051 (6) | 0.028 (4) | −0.002 (5) | −0.004 (4) | 0.000 (4) |
C10 | 0.037 (5) | 0.033 (5) | 0.029 (4) | 0.004 (4) | 0.002 (3) | 0.002 (3) |
C11 | 0.035 (4) | 0.046 (6) | 0.023 (4) | 0.004 (4) | −0.001 (3) | −0.004 (4) |
O1 | 0.066 (5) | 0.039 (4) | 0.052 (4) | 0.020 (4) | −0.001 (3) | −0.010 (3) |
Sn1 | 0.0279 (3) | 0.0395 (3) | 0.0304 (3) | −0.0058 (3) | 0.00236 (19) | 0.0041 (3) |
C12 | 0.061 (7) | 0.095 (10) | 0.056 (7) | −0.042 (7) | −0.004 (5) | −0.002 (7) |
C13 | 0.107 (11) | 0.073 (9) | 0.067 (8) | −0.018 (8) | 0.003 (7) | −0.019 (7) |
C14 | 0.060 (7) | 0.066 (8) | 0.094 (9) | 0.004 (6) | 0.031 (6) | 0.000 (7) |
C15 | 0.066 (9) | 0.121 (14) | 0.148 (14) | 0.026 (9) | 0.051 (9) | 0.016 (11) |
C16 | 0.059 (7) | 0.052 (7) | 0.069 (7) | −0.015 (6) | 0.000 (5) | 0.029 (6) |
C17 | 0.068 (8) | 0.081 (9) | 0.095 (9) | 0.000 (7) | 0.019 (7) | 0.046 (8) |
Fe1—C11 | 1.728 (9) | C9—C10 | 1.379 (11) |
Fe1—N1 | 1.984 (6) | C9—H9A | 0.9500 |
Fe1—C5 | 2.080 (8) | C10—H10A | 0.9500 |
Fe1—C4 | 2.082 (9) | C11—O1 | 1.159 (10) |
Fe1—C2 | 2.096 (11) | Sn1—C16 | 2.166 (9) |
Fe1—C1 | 2.103 (10) | Sn1—C14 | 2.174 (11) |
Fe1—C3 | 2.104 (10) | Sn1—C12 | 2.177 (10) |
Fe1—Sn1 | 2.5455 (13) | C12—C13 | 1.483 (16) |
C1—C5 | 1.381 (16) | C12—H12A | 0.9900 |
C1—C2 | 1.408 (19) | C12—H12B | 0.9900 |
C1—H1A | 0.9500 | C13—H13A | 0.9800 |
C2—C3 | 1.362 (19) | C13—H13B | 0.9800 |
C2—H2A | 0.9500 | C13—H13C | 0.9800 |
C3—C4 | 1.389 (15) | C14—C15 | 1.461 (17) |
C3—H3A | 0.9500 | C14—H14A | 0.9900 |
C4—C5 | 1.372 (14) | C14—H14B | 0.9900 |
C4—H4A | 0.9500 | C15—H15A | 0.9800 |
C5—H5A | 0.9500 | C15—H15B | 0.9800 |
N1—C10 | 1.341 (10) | C15—H15C | 0.9800 |
N1—C6 | 1.343 (10) | C16—C17 | 1.471 (14) |
C6—C7 | 1.371 (12) | C16—H16A | 0.9900 |
C6—H6A | 0.9500 | C16—H16B | 0.9900 |
C7—C8 | 1.364 (13) | C17—H17A | 0.9800 |
C7—H7A | 0.9500 | C17—H17B | 0.9800 |
C8—C9 | 1.362 (13) | C17—H17C | 0.9800 |
C8—H8A | 0.9500 | ||
C11—Fe1—N1 | 96.1 (3) | C6—N1—Fe1 | 121.9 (5) |
C11—Fe1—C5 | 123.1 (4) | N1—C6—C7 | 124.0 (9) |
N1—Fe1—C5 | 139.8 (4) | N1—C6—H6A | 118.0 |
C11—Fe1—C4 | 95.2 (4) | C7—C6—H6A | 118.0 |
N1—Fe1—C4 | 157.9 (4) | C8—C7—C6 | 118.9 (9) |
C5—Fe1—C4 | 38.5 (4) | C8—C7—H7A | 120.6 |
C11—Fe1—C2 | 136.0 (6) | C6—C7—H7A | 120.6 |
N1—Fe1—C2 | 94.3 (4) | C9—C8—C7 | 118.8 (8) |
C5—Fe1—C2 | 64.8 (5) | C9—C8—H8A | 120.6 |
C4—Fe1—C2 | 64.6 (4) | C7—C8—H8A | 120.6 |
C11—Fe1—C1 | 159.7 (4) | C8—C9—C10 | 119.2 (9) |
N1—Fe1—C1 | 103.7 (4) | C8—C9—H9A | 120.4 |
C5—Fe1—C1 | 38.5 (5) | C10—C9—H9A | 120.4 |
C4—Fe1—C1 | 64.7 (4) | N1—C10—C9 | 123.5 (8) |
C2—Fe1—C1 | 39.2 (5) | N1—C10—H10A | 118.3 |
C11—Fe1—C3 | 102.0 (5) | C9—C10—H10A | 118.3 |
N1—Fe1—C3 | 119.9 (4) | O1—C11—Fe1 | 178.3 (8) |
C5—Fe1—C3 | 64.4 (4) | C16—Sn1—C14 | 105.3 (5) |
C4—Fe1—C3 | 38.8 (4) | C16—Sn1—C12 | 105.9 (5) |
C2—Fe1—C3 | 37.9 (5) | C14—Sn1—C12 | 105.5 (5) |
C1—Fe1—C3 | 64.4 (5) | C16—Sn1—Fe1 | 111.9 (3) |
C11—Fe1—Sn1 | 84.2 (3) | C14—Sn1—Fe1 | 112.1 (3) |
N1—Fe1—Sn1 | 88.59 (19) | C12—Sn1—Fe1 | 115.3 (3) |
C5—Fe1—Sn1 | 87.0 (3) | C13—C12—Sn1 | 117.3 (8) |
C4—Fe1—Sn1 | 111.5 (3) | C13—C12—H12A | 108.0 |
C2—Fe1—Sn1 | 138.8 (5) | Sn1—C12—H12A | 108.0 |
C1—Fe1—Sn1 | 100.3 (4) | C13—C12—H12B | 108.0 |
C3—Fe1—Sn1 | 149.5 (3) | Sn1—C12—H12B | 108.0 |
C5—C1—C2 | 106.8 (11) | H12A—C12—H12B | 107.2 |
C5—C1—Fe1 | 69.8 (6) | C12—C13—H13A | 109.5 |
C2—C1—Fe1 | 70.1 (6) | C12—C13—H13B | 109.5 |
C5—C1—H1A | 126.6 | H13A—C13—H13B | 109.5 |
C2—C1—H1A | 126.6 | C12—C13—H13C | 109.5 |
Fe1—C1—H1A | 125.0 | H13A—C13—H13C | 109.5 |
C3—C2—C1 | 108.1 (11) | H13B—C13—H13C | 109.5 |
C3—C2—Fe1 | 71.4 (7) | C15—C14—Sn1 | 117.2 (10) |
C1—C2—Fe1 | 70.7 (6) | C15—C14—H14A | 108.0 |
C3—C2—H2A | 126.0 | Sn1—C14—H14A | 108.0 |
C1—C2—H2A | 126.0 | C15—C14—H14B | 108.0 |
Fe1—C2—H2A | 123.6 | Sn1—C14—H14B | 108.0 |
C2—C3—C4 | 108.5 (11) | H14A—C14—H14B | 107.2 |
C2—C3—Fe1 | 70.8 (6) | C14—C15—H15A | 109.5 |
C4—C3—Fe1 | 69.8 (6) | C14—C15—H15B | 109.5 |
C2—C3—H3A | 125.7 | H15A—C15—H15B | 109.5 |
C4—C3—H3A | 125.7 | C14—C15—H15C | 109.5 |
Fe1—C3—H3A | 125.3 | H15A—C15—H15C | 109.5 |
C5—C4—C3 | 107.7 (10) | H15B—C15—H15C | 109.5 |
C5—C4—Fe1 | 70.7 (5) | C17—C16—Sn1 | 118.6 (8) |
C3—C4—Fe1 | 71.5 (6) | C17—C16—H16A | 107.7 |
C5—C4—H4A | 126.2 | Sn1—C16—H16A | 107.7 |
C3—C4—H4A | 126.2 | C17—C16—H16B | 107.7 |
Fe1—C4—H4A | 123.4 | Sn1—C16—H16B | 107.7 |
C4—C5—C1 | 109.0 (10) | H16A—C16—H16B | 107.1 |
C4—C5—Fe1 | 70.8 (5) | C16—C17—H17A | 109.5 |
C1—C5—Fe1 | 71.6 (6) | C16—C17—H17B | 109.5 |
C4—C5—H5A | 125.5 | H17A—C17—H17B | 109.5 |
C1—C5—H5A | 125.5 | C16—C17—H17C | 109.5 |
Fe1—C5—H5A | 123.6 | H17A—C17—H17C | 109.5 |
C10—N1—C6 | 115.6 (7) | H17B—C17—H17C | 109.5 |
C10—N1—Fe1 | 122.4 (5) | ||
C11—Fe1—C1—C5 | −30 (2) | N1—Fe1—C5—C4 | −144.9 (6) |
N1—Fe1—C1—C5 | 162.9 (6) | C2—Fe1—C5—C4 | −80.2 (8) |
C4—Fe1—C1—C5 | −37.2 (6) | C1—Fe1—C5—C4 | −118.5 (10) |
C2—Fe1—C1—C5 | −117.3 (10) | C3—Fe1—C5—C4 | −38.1 (7) |
C3—Fe1—C1—C5 | −80.3 (7) | Sn1—Fe1—C5—C4 | 130.9 (7) |
Sn1—Fe1—C1—C5 | 71.8 (7) | C11—Fe1—C5—C1 | 168.2 (8) |
C11—Fe1—C1—C2 | 87.8 (18) | N1—Fe1—C5—C1 | −26.3 (10) |
N1—Fe1—C1—C2 | −79.8 (8) | C4—Fe1—C5—C1 | 118.5 (10) |
C5—Fe1—C1—C2 | 117.3 (10) | C2—Fe1—C5—C1 | 38.3 (8) |
C4—Fe1—C1—C2 | 80.1 (8) | C3—Fe1—C5—C1 | 80.4 (9) |
C3—Fe1—C1—C2 | 37.0 (7) | Sn1—Fe1—C5—C1 | −110.6 (8) |
Sn1—Fe1—C1—C2 | −170.8 (7) | C11—Fe1—N1—C10 | −19.8 (7) |
C5—C1—C2—C3 | −1.4 (12) | C5—Fe1—N1—C10 | 172.4 (7) |
Fe1—C1—C2—C3 | −61.9 (8) | C4—Fe1—N1—C10 | 100.5 (11) |
C5—C1—C2—Fe1 | 60.5 (7) | C2—Fe1—N1—C10 | 117.3 (8) |
C11—Fe1—C2—C3 | −32.4 (10) | C1—Fe1—N1—C10 | 155.9 (7) |
N1—Fe1—C2—C3 | −135.8 (7) | C3—Fe1—N1—C10 | 87.8 (8) |
C5—Fe1—C2—C3 | 80.0 (7) | Sn1—Fe1—N1—C10 | −103.8 (6) |
C4—Fe1—C2—C3 | 37.3 (6) | C11—Fe1—N1—C6 | 162.7 (7) |
C1—Fe1—C2—C3 | 117.7 (10) | C5—Fe1—N1—C6 | −5.1 (9) |
Sn1—Fe1—C2—C3 | 131.4 (7) | C4—Fe1—N1—C6 | −77.0 (11) |
C11—Fe1—C2—C1 | −150.1 (8) | C2—Fe1—N1—C6 | −60.2 (8) |
N1—Fe1—C2—C1 | 106.5 (8) | C1—Fe1—N1—C6 | −21.6 (8) |
C5—Fe1—C2—C1 | −37.7 (7) | C3—Fe1—N1—C6 | −89.7 (8) |
C4—Fe1—C2—C1 | −80.4 (7) | Sn1—Fe1—N1—C6 | 78.7 (6) |
C3—Fe1—C2—C1 | −117.7 (10) | C10—N1—C6—C7 | 0.0 (13) |
Sn1—Fe1—C2—C1 | 13.8 (10) | Fe1—N1—C6—C7 | 177.7 (7) |
C1—C2—C3—C4 | 1.7 (12) | N1—C6—C7—C8 | −0.4 (15) |
Fe1—C2—C3—C4 | −59.8 (7) | C6—C7—C8—C9 | 0.4 (15) |
C1—C2—C3—Fe1 | 61.5 (7) | C7—C8—C9—C10 | 0.0 (14) |
C11—Fe1—C3—C2 | 157.6 (8) | C6—N1—C10—C9 | 0.4 (12) |
N1—Fe1—C3—C2 | 53.3 (8) | Fe1—N1—C10—C9 | −177.3 (7) |
C5—Fe1—C3—C2 | −81.3 (8) | C8—C9—C10—N1 | −0.4 (14) |
C4—Fe1—C3—C2 | −119.1 (11) | C11—Fe1—Sn1—C16 | −42.6 (4) |
C1—Fe1—C3—C2 | −38.3 (7) | N1—Fe1—Sn1—C16 | 53.7 (4) |
Sn1—Fe1—C3—C2 | −103.3 (11) | C5—Fe1—Sn1—C16 | −166.2 (5) |
C11—Fe1—C3—C4 | −83.3 (7) | C4—Fe1—Sn1—C16 | −135.9 (5) |
N1—Fe1—C3—C4 | 172.4 (6) | C2—Fe1—Sn1—C16 | 148.6 (6) |
C5—Fe1—C3—C4 | 37.9 (7) | C1—Fe1—Sn1—C16 | 157.4 (5) |
C2—Fe1—C3—C4 | 119.1 (11) | C3—Fe1—Sn1—C16 | −146.4 (9) |
C1—Fe1—C3—C4 | 80.8 (8) | C11—Fe1—Sn1—C14 | −160.6 (5) |
Sn1—Fe1—C3—C4 | 15.8 (13) | N1—Fe1—Sn1—C14 | −64.4 (4) |
C2—C3—C4—C5 | −1.3 (11) | C5—Fe1—Sn1—C14 | 75.7 (5) |
Fe1—C3—C4—C5 | −61.8 (7) | C4—Fe1—Sn1—C14 | 106.1 (5) |
C2—C3—C4—Fe1 | 60.4 (7) | C2—Fe1—Sn1—C14 | 30.5 (6) |
C11—Fe1—C4—C5 | −140.1 (7) | C1—Fe1—Sn1—C14 | 39.3 (5) |
N1—Fe1—C4—C5 | 99.5 (11) | C3—Fe1—Sn1—C14 | 95.5 (9) |
C2—Fe1—C4—C5 | 80.8 (8) | C11—Fe1—Sn1—C12 | 78.7 (5) |
C1—Fe1—C4—C5 | 37.3 (7) | N1—Fe1—Sn1—C12 | 174.9 (5) |
C3—Fe1—C4—C5 | 117.2 (10) | C5—Fe1—Sn1—C12 | −45.0 (6) |
Sn1—Fe1—C4—C5 | −54.3 (7) | C4—Fe1—Sn1—C12 | −14.6 (5) |
C11—Fe1—C4—C3 | 102.7 (8) | C2—Fe1—Sn1—C12 | −90.2 (7) |
N1—Fe1—C4—C3 | −17.7 (14) | C1—Fe1—Sn1—C12 | −81.4 (6) |
C5—Fe1—C4—C3 | −117.2 (10) | C3—Fe1—Sn1—C12 | −25.2 (9) |
C2—Fe1—C4—C3 | −36.4 (8) | C16—Sn1—C12—C13 | 89.4 (10) |
C1—Fe1—C4—C3 | −80.0 (9) | C14—Sn1—C12—C13 | −159.2 (10) |
Sn1—Fe1—C4—C3 | −171.5 (7) | Fe1—Sn1—C12—C13 | −35.0 (11) |
C3—C4—C5—C1 | 0.4 (11) | C16—Sn1—C14—C15 | 64.0 (12) |
Fe1—C4—C5—C1 | −61.8 (7) | C12—Sn1—C14—C15 | −47.8 (12) |
C3—C4—C5—Fe1 | 62.3 (7) | Fe1—Sn1—C14—C15 | −174.1 (10) |
C2—C1—C5—C4 | 0.6 (11) | C14—Sn1—C16—C17 | −65.9 (11) |
Fe1—C1—C5—C4 | 61.3 (7) | C12—Sn1—C16—C17 | 45.6 (11) |
C2—C1—C5—Fe1 | −60.7 (7) | Fe1—Sn1—C16—C17 | 172.0 (9) |
C11—Fe1—C5—C4 | 49.7 (8) |
Experimental details
Crystal data | |
Chemical formula | [FeSn(C2H5)3(C5H5)(C5H5N)(CO)] |
Mr | 433.92 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 200 |
a, b, c (Å) | 15.038 (4), 7.8271 (19), 15.717 (4) |
β (°) | 96.783 (5) |
V (Å3) | 1837.1 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.15 |
Crystal size (mm) | 0.13 × 0.13 × 0.02 |
Data collection | |
Diffractometer | Rigaku/MSC Mercury CCD diffractometer |
Absorption correction | Multi-scan (Jacobson, 1998) |
Tmin, Tmax | 0.768, 0.958 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17586, 4174, 3439 |
Rint | 0.069 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.088, 0.138, 1.07 |
No. of reflections | 4174 |
No. of parameters | 193 |
No. of restraints | 3 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + 25.1156P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 0.54, −0.50 |
Computer programs: CrystalClear (Rigaku, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).
Acknowledgements
This work was supported by a Grant-in-Aid for Science Research on Priority Areas (grant No. 20036043, Synergistic Effect of Elements) and by a Grant-in-Aid for Young Scientists (B) (grant No. 20750049) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The authors also acknowledge support from the Daicel Chemical Industries Ltd Award in Synthetic Organic Chemistry, Japan, and the Kinki-chiho-hatsumei-center.
References
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Itazaki, M., Ueda, K. & Nakazawa, H. (2007). Acta Cryst. E63, m1312–m1313. Web of Science CSD CrossRef IUCr Journals Google Scholar
Iwata, M., Okazaki, M. & Tobita, H. (2003). Chem. Commun. pp. 2744–2745. Web of Science CSD CrossRef Google Scholar
Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan. Google Scholar
Nakazawa, H., Itazaki, M., Kamata, K. & Ueda, K. (2007). Chem. Asian J. 2, 882–888. Web of Science CSD CrossRef PubMed CAS Google Scholar
Rickard, C. E. F., Roper, W. R., Woodman, T. J. & Wright, L. J. (1999). Chem. Commun. pp. 1101–1102. Web of Science CSD CrossRef Google Scholar
Rigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, N. D., Mancuso, J. & Lautens, M. (2000). Chem. Rev. 100, 3257–3282. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Transition metal complexes with a stannyl ligand have attracted considerable attention because they are very important intermediates in hydrostannation reaction (Smith et al., 2000). On the other hand, we reported that an iron complex with a pyridine ligand acts as a good precursor in the C—CN bond cleavage of organonitriles (Nakazawa et al., 2007). A large number of stannyl complexes and of pyridine complexes have been synthesized, however only one crystal structure has been reported to date for a transition metal stannyl complex having a pyridine ligand, viz. [Os(CO)(Me)(PPh3)2(SnMe2Cl)(py)] (Rickard et al., 1999). This paper is the first report of the molecular and crystal structure of an Fe—Sn complex with pyridine.
The title complex, [(CO)(C5H5)(Sn(C2H5)3)(C5H5N)Fe], (I), was synthesized by the reaction of (C5H5)(CO)2Fe(SnEt3) with pyridine under photolytic conditions. An ORTEP drawing of the molecule is displayed in Fig. 1. Complex (I) has a typical three–legged piano–stool configuration: the Fe atom has a terminal CO ligand, a triethylstannyl ligand, a pyridine and a cyclopentadienyl ligand (Cp) with the latter bonded in an η5–fashion. The Fe1—Sn1, Fe1—N1 and Fe1—C11 distances [2.5455 (13), 1.984 (6), 1.728 (9) Å] in (I) are comparable to the silyl analogues; [Cp*(CO)Fe(SiMe2NPh2)(py)] [Cp* = C5Me5, 2.3330 (4), 1.991 (1), 1.716 (2) Å; Iwata et al., 2003], [(C5H5)(CO)Fe(SiEt3)(py)] [2.303 (5), 1.9823 (17), 1.719 (2) Å; Nakazawa et al., 2007], and [(C5H5)(CO)Fe(SiEt3)(C5H5N-3,5-CH3)] [2.3341 (9), 1.982 (2), 1.722 (3) Å; Itazaki et al., 2007]. The N1—Fe1—Sn1 angle [88.59 (19)°] is slightly narrower than that for [(C5H5)(CO)Fe(SiEt3)(py)] [89.25 (10)°; Nakazawa et al., 2007].